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Abstract—Crowdsourcing has beenwidely established as ameans to enable human computation at large-scale, in particular for tasks

that require manual labelling of large sets of data items. Answers obtained from heterogeneous crowdworkers are aggregated to obtain

a robust result. However, existingmethods for answer aggregation are designed for discrete tasks, where answers are given as a single

label per item. In this paper, we consider partial-agreement tasks that are common in many applications such as image tagging and

document annotation, where items are assigned sets of labels. Common approaches for the aggregation of partial-agreement answers

either (i) reduce the problem to several instances of an aggregation problem for discrete tasks or (ii) consider each label independently.

Going beyond the state-of-the-art, we propose a novel Bayesian nonparametric model to aggregate the partial-agreement answers in

a generic way. This model enables us to compute the consensus of partially-sound and partially-complete worker answers, while taking

into account mutual relationships in labels and different answer sets.We also show how this model is instantiated for incremental

learning, incorporating new answers from crowdworkers as they arrive. An evaluation of our method using real-world datasets reveals

that it consistently outperforms the state-of-the-art in terms of precision, recall, and robustness against faulty workers and data sparsity.

Index Terms—Crowdsourcing, nonparametric models, bayesian models, answer aggregation
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1 INTRODUCTION

FUELLED by the massive availability of Internet users,
crowdsourcing has been widely established as a means

for human computation at large-scale [1]. Tasks that are
rather trivial for humans, but computationally expensive or
even unsolvable for machines can be efficiently addressed by
crowdsourcing. Specifically, crowdsourcing has been applied
for such diverse applications as data acquisition, data inte-
gration, datamining, information extraction, and information
retrieval [2], [3], [4], [5], [6]. Today, a large number of plat-
forms, such as Amazon Mechanical Turk and CrowdFlower,
facilitate the development of crowdsourcing applications.

Aggregation of Crowd Answers. Most crowdsourcing setups
are based on questions (aka tasks) that, once posted to a crowd-
sourcing platform, are answered by users (aka crowdworkers)
for financial rewards. Yet, each task is answered by multiple
workers to accommodate for their different levels of expertise
and motivation. Aggregation of answers shall complement
individual errors, thereby exploiting the ‘wisdomof the crowd’.

Answer aggregation is challenging for several reasons.
The worker population may contain faulty workers (e.g.,

spammers) that give random answers, but are hard to identify
before-hand in the absence of detailed worker information.
Furthermore, workers may be unintentionally biased by per-
sonal interest or systematic misunderstanding of the tasks [7].
Aggregation of answers is also complicated by limitedmutual
information between workers and tasks, e.g., some workers
are assigned with too few tasks and vice-versa [7]. To over-
come these challenges, variousmethods for automatic answer
aggregation have been proposed in the literature (see [8], [9]
for a survey), including (i) non-iterative techniques which
compute the aggregated answer as a linear combination of
votes, and (ii) iterative techniques which leverage mutual
reinforcing relations betweenworkers and answers.

Aggregation with Partial Agreement. Depending on the
type of questions, different types of crowdsourcing tasks
are distinguished: In continuous tasks, objects are assigned
real values (e.g., scores) [10]. In partial-agreement tasks,
which define objects as rules [2] or evaluate matches/order-
ings between entities [11], [12].

In this paper, we focus on a special type of partial-agreement
tasks, where workers shall provide a set of labels per item.
Such tasks, also known as multi-label tasks, received much
attention recently in many crowdsourcing applications,
such as text categorization, image classification, and medi-
cal diagnosis [13], [14]. We use the term partial-agreement to
distinguish the respective tasks from multi-class, single-label
tasks [15], [16], in which tasks offer multiple choices/
labels, but workers only give a single answer/label. Rather,
the partial-agreement tasks considered in this work are a
generalization of multi-label tasks [17], [18], [19], which
usually decompose a multi-label problem into several
instances of a single-label problem, having each worker
giving a Boolean answer for each possible label.

The aforementioned aggregation methods have been
developed for single-label tasks only [8], [9] and are often
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extended to solve the single-label instances of multi-label
tasks. Only a few methods truly target the multi-label set-
ting, typically based on some form of majority voting [17],
[18] or by reusing worker information across several instan-
ces of an aggregation problem [19]. Yet, these methods still
consider each label separately.

Due to the freedom to choose multiple labels per item,
partial-agreement tasks allow a more fine-grained level of
aggregation.Worker answers are now partially-sound (some
given labels are incorrect) and partially-complete (some cor-
rect labels are missing). This is in contrast to the single-label
setting, where answers are either correct or incorrect. It also
goes beyond the predominant approach to trace back answer
aggregation for multi-label tasks to several instances of sin-
gle-label aggregation, since, in these cases, not providing a
label is implicitly taken as a negative answer. By exploiting
the partial agreement of answers, however, correctness and
completeness of answer aggregation can be improved.

Beside the general challenges of answer aggregation,
computing crowd consensus with partial-agreement is
inherently complex. The labels obtained as part of different
answers are often correlated. For example, in movie classifi-
cation, movies about a super-hero are often associated with
the genre action [20]. Identifying the correct set of labels
needs to deal with the exponential growth of combinations
of labels and dependencies between them. Also, workers no
longer either agree or disagree on an answer to a question,
but consensus becomes partial. Hence, it becomes difficult
to assess the reliability of workers since they may provide
supposedly correct and incorrect labels at the same time.

Approach. In this paper, we propose a Bayesian nonpara-
metric model in order to capture the distinct properties
of partial-agreement answer aggregation. That is, co-occur-
rence dependencies between labels are represented by the
notion of latent label clusters. This notion is motivated by
the observation that items can often be grouped together, if
they share similar labels. Furthermore, partial consensus
between workers is modelled by grouping together workers
with similar answers. This enables us to construct an aggre-
gated answer based on the consensus of groups of workers
instead of consensus among individuals. The resulting
model generalises the multi-label setting of answer aggrega-
tion and enables incremental learning using the principles
of stochastic variational inference.

Contribution and Structure. Our contributions along with
the structure of the paper can be summarized as follows:

Problem Setting (Section 2) We motivate the need for partial-
agreement answer aggregation and elaborate on types
of crowd workers. We further formalize the problem
setting, and outline requirements for partial-agreement
answer aggregation.

Novel Model for Partial-Agreement Answer Aggregation
(Section 3) We present a generative model for partial-
agreement answer aggregation, referred to as Generic
Crowdsourcing Consensus with Partial Agreement (CPA).
Specifically, we show how to perform model inference
(finding the probability distribution of model parame-
ters given information on worker answers or true
labels) and model instantiation (estimating item labels
based on the given information and the inferred param-
eter distributions).

Scalable Model Inference and Prediction (Section 4) Even a lin-
ear model inference algorithm becomes intractable for

very large datasets. Therefore, we propose (i) to exploit
incremental computation, so that model parameters are
updated based on new data instead of inferring a model
from scratch; (ii) to leverage parallelization to scale-out
and scale-up model inference and prediction.

Evaluation (Section 5) Experiments with real-world datasets
highlight the effectiveness of the proposed CPA model.
It outperforms baseline methods by up to 134 percent
in precision and recall. Also, when using our methods
for scalable model inference, we observe speed-ups of
up to 32� in runtime.

Finally, Section 6 reviews related work, before Section 7
concludes the paper.

2 PROBLEM SETTING

We first introduce a motivating example for partial-
agreement answer aggregation and elaborate on challenges
induced by different types of crowd workers. Then, we
present a problem statement and discuss requirements for
potential solutions.

2.1 Motivating Example
We consider an image tagging task, in which workers assign
one or more labels to a picture. For simplicity, these labels
are encoded by numbers from 1 to 5. Table 1 illustrates an
exemplary crowdsourcing result, in which five workers
(u1 - u5) provided their answers to four pictures (i1 - i4). The
correct, yet generally unknown, label assignment is shown
in a separate column.

Answer aggregation calculates a joint answer for each
item based on the input provided by workers. A common
method to derive an aggregated answer is majority vot-
ing [17], [18], which considers all labels separately. If the
ratio of ‘votes’ from workers for a label is larger than 0.5,
the respective label is included in the aggregation result.
Compared to the actually correct assignment, the result
obtained in this case has two issues, though: (i) it is partially
incorrect (label 4 is not correct for i1), and (ii) partially
incomplete (labels 1 and 3 shall also be assigned to i4).

These issues have twomain causes. First, workers are con-
sidered equally, whereas it is known that there are different
types of crowd workers [8], [21]: (1) Reliable workers have
deep knowledge about specific domains and provide correct
answers; (2) Normal workers tend to give correct answers,
but make mistakes occasionally; (3) Sloppy workers have lit-
tle knowledge and often givewrong answers unintentionally;
(4) Uniform spammers intentionally answer all question the
same; (5) Random spammers give random answers. In our
example, u3 is a uniform spammer, assigning one label to all
pictures. Yet, these answers are reflected in aggregated result,
while removing u3 yields the correct result for picture i1.
Worker u4 is a random spammer, whereas the remaining
workers can be classified as reliable (u5) or normal (u1 and u3).

TABLE 1
Answers Provided by Five Workers for Four Pictures

u1 u2 u3 u4 u5 Correct Majority [17], [18]

i1 {4,5} {4,5} {4} {1} {5} {5} {4,5}
i2 {2,3} {1,4} {4} {2} {3,4} {3,4} {4}
i3 {1,2} {4} {4} {3} {4,5} {4,5} {4}
i4 {1,2} {2,3} {4} {4} {1,2,3} {1,2,3} {2}

1: sky, 2: plane, 3: sun, 4: water, 5: tree
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However, existing worker models [21], [22], [23], [24]
cannot be applied directly in partial-agreement answer
aggregation, since worker answers may be partially over-
lapping. Moreover, interpreting a missing label as a nega-
tive answer is not always correct and thus shall be cross-
checked by answers from other workers.

A second cause for the issues observed in the example is
the neglect of dependencies between labels. For instance,
label 2 often co-occurs with labels 3 and 1. Such correlation
can be useful in the aggregation. If we also include label 1
and label 3 whenever label 2 has been assigned, for instance,
the obtained result would be correct for picture i4 when
using majority voting.

2.2 Problem Statement
We capture the setting of partial-agreement answer aggre-
gation by a set of workers U, identified by their indices,
U , f1; . . . ; Ug that provide answers for a set of items N ,
also identified by their indices, N , f1; . . . ; Ig. Z ,
f1; . . . ; Cg is the set of all possible labels for these items.
Each answer by a crowd worker is a subset of Z. Formally,
answers are modelled as an I � U answer matrix

M ,
x11 . . . x1U

. . . . . . . . .

xI1 . . . xIU

0
B@

1
CA;

where xiu � Z is the set of labels assigned to item i by worker
u, or xiu ¼ ; if worker u has not provided an answer for item i.

Problem 1 (Partial-Agreement Answer Aggregation).
Given a set of items N , a set of workers U , a set of labels Z, and
an answer matrixM, the problem of partial-agreement answer
aggregation is the construction of a deterministic assignment
d : I ! 2Z assigning a set of labels to each item.

A baseline solution to the above problem is to construct
the assignment d by majority voting, as illustrated above.
Yet, observing the issues that stem from the application of
majority voting, we derive requirements to be met by
answer aggregation in order to be useful for answers of
partial-agreement tasks.

(R1) Consideration of worker communities. In practice, there is
little control over the selection of crowd workers. Answer
aggregation, thus, shall captureworker characteristics, to assess
the likelihood of them providing correct answers and to justify
their effects in the aggregated result. The existence of different
worker types, as illustrated above, has been verified in various
studies [25], [26] aswell as in our experimental evaluation.

(R2) Support for partial answer validity. Against the back-
ground of diverse worker types and their distribution in
practice, see [27], the correctness of answers shall be assessed
in a fine-granular manner, i.e., at the level of individual
labels. This is a prerequisite to make efficient use of normal
and sloppy workers in particular. In the above example
(Table 1), u2 may be an expert for label 4 (two out of three
assignments are correct), but potentially lacks knowledge
related to label 1 (one incorrect and onemissing assignment).
The existence of worker communities for different labels can
indeed be observed in practice (see the Appendix, which can
be found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TKDE.2017.2750683.).

(R3) Exploitation of label dependencies. In many multi-label
settings, similar items are assigned overlapping sets of

labels. Such dependencies between labels, e.g., their co-
occurrence in the answers provided by crowd workers,
shall be exploited to improve the soundness and complete-
ness of answer aggregation. As an example, Fig. 1 illustrates
five representative labels of a multi-label dataset (discussed
in detail in our experimental evaluation) along with their
co-occurrence dependencies. We observe two clusters of
labels, {sky, birds, cloud} and {flower, road}. Such relations
between labels represent domain knowledge that can be
explored to characterize workers on a fine-granular level.
Moreover, for automatic classification it is well-known that
the neglect of label dependencies—treating a multi-label
problem as several instances of a single-label problem—
yields weak results [28], [29]. Moreover, asking workers to
confirm each label separately would incur higher time and
cost. While there are other types of label dependencies, such
as hierarchies [18], those require domain-specific knowl-
edge to be configured appropriately. Clusters can be consid-
ered as the most generic form of label dependencies, since
workers may still use the raw labels, rather than abstract
labels that represent a group of raw labels [13], [30].

(R4) Adaptivity of aggregation model. The characteristics of a
crowdsourcing application (e.g., the number of worker com-
munities) may vary across different domains or over time,
upon the arrival of new data. This requires dynamic adapta-
tion of the model to reflect the evolving relations between
the obtained answers. Again, the practical relevance of this
requirement is illustrated by our experiments in the Appen-
dix, available in the online supplemental material, which
illustrate the diversity of worker communities across real-
world datasets. Dynamic adaptation of the aggregation
model is needed to copewith such diversity.

3 PARTIAL-AGREEMENT ANSWER AGGREGATION

IN CROWDSOURCING

This section introduces our novel model for partial-
agreement answer aggregation, referred to as Generic Crowd-
sourcing Consensus with Partial Agreement (CPA). We first
give an intuitive overview of the model, before we turn to
its formalisation. Then, we outline the application of CPA
for answer aggregation: we derive a scalable inference
method with variational Bayes and show how to predict the
labels of non-grounded items.

3.1 Overview of the Approach
We approach answer aggregation by considering each ele-
ment of the given answer matrix as an observed random vari-
able. The true labels of items are also modelled as a random
variable. While a few of them may be observed (e.g., due to
test questions [31]), the vast majority of these variables are
unobserved. To predict the value of unobserved variables,
i.e., to estimate the labels for an item for which the true labels
are not available, we rely on a generative process based on a
Bayesian network. All random variables are generated from

Fig. 1. Co-occurrence of labels in the NUS-WIDE dataset [13]; vertex
sizes represent the occurrence cardinality and edge weights represent
the strength of the co-occurrence dependency.
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parametrised probability distributions and the respective
parameters are inferred from the observed variables. Here,
worker communities are represented by a clustering of work-
ers,modelled nonparametrically by aChinese Restaurant Pro-
cess. Then, values of the unobserved variables are predicted.

We address the outlined requirements regarding the con-
sideration of worker communities (R1) by a notion of
worker clusters that group together workers based on their
trustworthiness and domain knowledge. In contrast to
methods that evaluate individual workers, e.g., by means of
confusion matrices [32], models that rely on clusters of
workers are less prone to errors when data is sparse. This
makes them particularly suited for crowdsourcing where
each item is processed only by a fraction of the worker pop-
ulation due to budget constraints.

Since our approach is grounded in a nonparametricmodel,
the number of parameters is adjusted to the data, thereby
enabling adaptive aggregation (R4). The Bayesian property of
themodel helps to reduce over-fitting by inferring probability
distribution over random variables instead of singleton val-
ues. In addition, Bayesian models are well suited to copewith
online settings—new information can be encoded into poste-
rior distributions used in the inference andprediction process.

The specific challenges of answer aggregation for partial-
agreement tasks are addressed as follows. Dependencies
between labels (R3) are incorporated by clustering items
in the answer aggregation process. Items in a cluster are
assumed to be similar and, thus, be assigned the same set of
labels. The latter implicitly encodes dependencies between
labels in terms of co-occurrence.

To support partial answer validity (R2), we follow the
intuition that obtaining a label for an item can be seen as
randomly selecting labels of the respective item cluster,
given a worker community. Hence, we model the labels as
being generated from a multinomial distribution over the
item clusters and worker communities. Since this is a ran-
dom process, workers in a community may still provide dif-
ferent labels for items of the same cluster.

3.2 The Model of CPA
The input of partial-agreement answer aggregation (Prob-
lem 1) is a set of items N , f1; . . . ; Ig, a set of workers
U , f1; . . . ; Ug, a set of labels Z , f1; . . . ; Cg, all identified by
the indices of their elements, and an answer matrixM. We
define the model of Generic Crowdsourcing Consensus
with Partial Agreement (CPA) as follows (notations are

summarised in Table 2). All non-empty answers in M are
modelled as observed variables xx 2 ð2ZÞI�U , where xiu
denotes the set of labels assigned to item i by worker u. Fur-
ther, y 2 ð2ZÞI are random variables modelling the true
labels of all items. True labels may be known for some
items, which is captured by a set of observed variables
yy � y (yy may be empty). The values of variables xx and yy can
be represented as a C-dimensional vector, such that each of
its components is set to one, if the respective label is present.
Thus, observed values of xx and yy can be seen as samples
from a multinomial distribution.

Worker communities, item clusters, and label selection are
modelled as follows (Fig. 2 shows a graphical representation):

Worker Communities. There is a finite set of worker com-
munities p, identified by indices, p , f1; . . . ;Mg, that parti-
tion the set of workers and are not known in advance. The
(unknown) assignment of workers to communities is cap-
tured by a set of random variables z 2 pU , such that zu
denotes the community of worker u. We generate p non-
parametrically using a Chinese Restaurant Process (CRP),
which can be interpreted as the induced distribution over
the partition space by a Dirichlet Process [24], [33]. Techni-
cally, if p follows a CRP distribution, p � CRP að Þ, the sam-
ples from this prior follow the following distributions

p zu ¼ m j z�u;p;að Þ / n�um if 9 zu0 2 z�u : zu0 ¼ m

a otherwise;

�

where z�u ¼ z n fzug and n�um is the number of elements in
z�u with community m. Generatively, p can be constructed
using a stick-breaking process as follows. Let p0m; m ¼ 1;
2; 3; . . . be sampled from a Beta distribution Beta 1;að Þ.
Then, the community proportion pm is calculated using the
above sticks p0m, such that

p1 ¼ p01; . . . ;pm ¼ p0m
Ym�1
j¼1

1� p0j
� �

; . . . : (1)

When conducting inference, we will only estimate the
stick distribution p0, since the original distribution p is cal-
culated directly from p0 as above. Note that the nonparamet-
ric approach generalises the extreme cases. If M tends to
infinity, each worker is a single community (e.g., no two
workers provide similar answers). If M tends to zero, all
workers form a single community (e.g., only expert work-
ers) and the result is similar to majority voting.

Item Clusters. To model clusters of similar items, which
tend to get assigned the same sets of labels, we follow the
approach introduced for worker communities. There is a
finite set t of clusters, identified by indices, t , f1; . . . ; Tg,
that partition the set of items and are not known in advance.
The (unknown) assignment of items to these clustered is

TABLE 2
Overview of Notations

N Set of I items, identified by indices, N , f1; . . . ; Ig
U Set of U workers, identified by indices, U , f1; . . . ; Ug
Z Set of C possible labels, identified by indices,

Z , f1; . . . ; Cg
M I � U Answer matrix

p Set ofM worker communities, identified by indices,
p , f1; . . . ;Mg

t Set of T item clusters, identified by indices, t , f1; . . . ; Tg
zu Community of worker u
xiu Labels assigned to item i by worker u
ct

m Label assignment probabilities of workers in
communitym for items in cluster t

li Cluster of item i
yi True labels assigned to item i
ft Label assignment probabilities for items in cluster t

Fig. 2. Graphical Representation of the CPA Model.
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captured by random variables l 2 tI , such that li denotes the
cluster of item i. Again, t is generated nonparametrically by
a CRP, i.e., t � CRP �ð Þ. This avoids additional efforts to ask
for expert knowledge on the label information [34], [35].
Although it is beyond the scope of this paper, our model
can be extended by expressing the prior knowledge as con-
ditional probabilities and integrating them into the genera-
tive label selection of our model.

The assignment of sets of labels to item clusters is mod-
elled as a generation from a multinomial distribution. For
cluster t, this distribution is parameterised by ft , fft;1; . . . ;
ft;Cg, where ft;c is the probability that a given item in cluster
t will have the label c. Items in a cluster may have different
true labels as a result of the generating random process—
yet, being in the same cluster, they are similar and thus
share the labelling probabilities.

Label Selection. We model the labels obtained from work-
ers as being generated from a multinomial distribution over
the labels of an item cluster, given a worker community.
Each worker is characterised by a C � T confusion matrix
cm, where m is the community that the worker belongs to.
We denote by ct

m a column vector of C-dimensions, which
contains the probabilities that a worker in community m
assigns the respective labels given an item of cluster t. This
model has the advantage that, instead of considering expo-
nentially many subsets of labels, it is based on the number
of all possible item clusters, which is tractable in practice.

Consider a setting with four labels {1: girl, 2: boy, 3: dog,
4: cat}, two item clusters {1: people, 2: animal}, and two
worker communities {1: trustworthy, 2: problematic}. Then,
a confusion matrix column vector c1

1 ¼ ½0:5; 0:5; 0; 0� means
that workers of community 1 (trustworthy) assign an item
of cluster 1 (people) the labels 1 (girl), 2 (boy), 3 (dog), or 4
(cat) with probabilities 0.5, 0.5, 0, or 0, respectively.

Generative Process. Let Cat and Multi be categorical and
multinomial distributions, respectively. Then, the genera-
tive process for the CPA model is defined as follows:

(1) For each item inN (right-hand side of Fig. 2):
a) Generate the cluster for each item: li j t � Cat tð Þ
b) Generate the labels for each item from the clus-

ter: yi j li;f � Mult fli

� �
(2) For each worker in U (left-hand side of Fig. 2):

a) Generate the community for each worker:
zu jp � Cat pð Þ

b) Generate the set of assigned labels for each
worker and item from the labels of the item clus-
ter and the confusion matrix of the worker’s
community: xiu j zu; li;c � Multðcli

zu
Þ

Model Parameters. The CPA model is nonparametric since
the number of worker communities in p and the number of
item clusters in t are not known in advance—they change
with more observations (xx and yy) becoming available. In
particular, they grow when more and more different work-
ers and items are processed, avoiding any bias potentially
introduced by fixing these parameters before-hand.

In a Bayesian setting, we use the following priors for the
parameters related to the worker communities and item
clustering (Dir being a Dirichlet distribution):

p � CRP að Þ ct
m � Dir gt

m

� �
t � CRP �ð Þ ft � Dir htð Þ

with 1 � t � T and 1 � m �M. Here, T andM are the maxi-
mal number of worker communities and item clusters for

numerical purposes in later model inference, which can safely
be set to large values, e.g., 1000. Both t and p are unknown.

3.3 Inference
Inferring the parameters of the CPAmodel is, in fact, the esti-
mation of values of the above priors (a; �; g; h). This is equiva-
lent to inferring the posterior distribution of the unobserved
variables (p; t; z; l;c;f) under the observed variables (xx; yy),
which is p p; t; z; l;c;f jxx; yyð Þ, or p p0; t0; z;ð l;c;f jxx; yyÞ using
the stick-breaking representation for p and t (see Eq. 1).

Approaches for (approximate) inference for statistical
models can be classified into simulation methods and deter-
ministic variational methods. The use of simulation such as
Markov Chain Monte Carlo algorithms (such as Gibbs sam-
pling and random walk) is problematic when applied to
large-scale data sets since convergence is often slow and
unpredictable [36], [37]. Thus, we resort to variational infer-
ence and propose a novel scalable method that follows the
principles of variational Bayesian inference.

In variational inference, instead of computing the poste-
rior distribution directly, we infer an approximation q p0; t0;ð
z; l;c;fÞ, referred to as variational distributions

q p0; t0; z; l;c;fð Þ ¼ q p0 j rð Þq t0 j yð Þ
YU
u¼1

q zu j kuð Þ
YI
i¼1

q li j ’ið Þ
YM
m¼1

YT
t¼1

� q ct
m j�t

m

� �YT
t¼1

q ft j ztð Þ;

where q zu j kuð Þ and q li j’uð Þ are M-dimensional and
T -dimensional Multinomial distributions; and q ct

m j�t
m

� �
and q ft j ztð Þ are C-dimensional Dirichlet distributions.

For the variational distributions q p0 j rð Þ and q t0 j yð Þ, we
rely on a stick-breaking truncation representation for a Chi-
nese Restaurant Process similar to those in [37], which are
truncated toM and T , respectively. The variational distribu-
tions are

q p0 j rð Þ ¼
YM�1
m¼1

Beta p0m j rm1; rm2

� �

q t0 j yð Þ ¼
YT�1
t¼1

Beta t0t j yt1; yt2
� �

:

To approximate the posterior distributions p by varia-
tional distributions q, we use the KL-divergence between
them,KL q j pð Þ. With QQ , p0; t0; z; l;c;ff g, it is defined as

KL q j pð Þ , �
Z

q QQð Þ ln p QQ jxx; yyð Þ
q QQð Þ dQQ

¼ �
Z

q QQð Þ ln p QQ; xx; yyð Þ
q QQð Þ dQQþ ln p xx; yyð Þ

	 �
Z

q QQð Þ ln p QQ; xx; yyð Þ
q QQð Þ dQQ , � L QQð Þ:

L QQð Þ is called evidence lower bound (ELBO) and denotes
the variational objective function. Using variational the-
ory [36], taking derivatives of this lower bound with respect
to each variational parameter, we derive the following coor-
dinate ascent updates [37].

Local Updates. We first update local variables (connected
to a single data point), i.e., z and l in our model. We update
the respective distributions q zu j kuð Þ and q li j’ið Þ as follows
(details on the computation of these equations are given in
the appendix, which can be found on the Computer Society
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Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TKDE.2017.2750683)

kum / exp
XI
i¼1

XT
t¼1

’itE ln p xiu jct
m

� �� �þ E lnpm½ �
 !

(2)

’it / exp E ln p yi jftð Þ½ � þ E ln tt½ �ð Þ (3)

Global Updates. Next, we consider the updates for global
(or outer) variables (connected to multiple data points), i.e.,
p; t;c, and f in our model. We update q p0 j rð Þ and q t0 j yð Þ
as follows:

rm1 ¼ 1þ
XU
u¼1

kum rm2 ¼ aþ
XU
u¼1

XM
l¼mþ1

kul (4)

yt1 ¼ 1þ
XI
i¼1

’it yt2 ¼ �þ
XI
i¼1

XT
l¼tþ1

’il: (5)

Here, a; � > 0 are ‘prior beliefs’ on the maximum number of
worker communities and item clusters. Yet, their effects are
marginal, as the updates are dominated by the observed infor-
mation (k and ’), so that a; � can safely be set to large values.
Distributions q ct

m j�t
m

� �
and q ft j ztð Þ are update bymeans of

�t
mc ¼ �t

m0 þ
XI
i¼1

’it
XU
u¼1

kumxiu (6)

ztc ¼ zt0 þ
XI
i¼1

’ityi: (7)

We summarise our inference algorithm to learn the
model parameters in Algorithm 1. It iteratively updates
local parameters (k;’) and global parameters (r; y; �; z). The
observed data (xx; yy) is used in the updates of these parame-
ters whenever their associated variables are connected to
the observed variables. Note that many updates of variables
are independent, which can be exploited to scale up the per-
formance. For instance, the individual updates of k parame-
ters and ’ parameters can be parallelised. The convergence
of variational inference is proved in [38].

Algorithm 1. Variational Inference for the CPA Model

Input:Worker answers xx and known true labels yy
Output: Estimated model parameters �; z; r; y; k;’
Random initialisation of �; z; r; y; k;’
while not converged do
// Update the local variables

for u 1; . . . ; U andm 1; . . . ;M doUpdate kum using Eq. 2
for i 1; . . . ; I and t 1; . . . ; T do Update ’it using Eq. 3
// Update the global variables

form 1; . . . ;M do
Update rm1 and rm2 using Eq. 4
for t 1; . . . ; T and c 1; . . . ; C doUpdate �t

mc using Eq. 6
for t 1; . . . ; T do
Update yt1 and yt2 using Eq. 5
for c 1; . . . ; C do Update ztc using Eq. 7

return �; z; r; y; k;’

Time Complexity. Our inference algorithm scales linearly
in terms of the size of data, i.e., the number of answers
(worker-item pairs that are answered). In each iteration, the
membership of each worker in worker communities (Eq. 2)
and the membership of each item in clusters (Eq. 3) are
updated, which is linear in the number of worker communi-
tiesM and the number of item clusters T , respectively. Next,

we update the worker distribution and confusion matrix of
each worker community. Again, given the bounded num-
bers of worker communitiesM, item clusters T , and possible
labels C, Eq. 4 and Eq. 6 are updated in linear time w.r.t. the
number of workers and the number of answers, respectively.
Finally, the item distribution and label assignment of each
item cluster is updated. Since the number of item clusters T
and possible labels C is bounded, updating Eq. 5 and Eq. 7
takes linear timew.r.t. the number of items.

From the above, it follows that the overall complexity is
linear w.r.t the number of answers scaled by the number of
iterations. Since variational methods require a small num-
ber of iterations (� 10 for 98 percent accuracy) [36], [37], our
inference algorithm scales with the number of actual data
points, which significantly saves computation cost due to
the sparseness of crowdsourcing.

3.4 Prediction
To solve the partial-agreement answer aggregation problem,
we construct a deterministic assignment d : I ! 2C using the
maximum likelihood principle (MAP) [39]. After approxi-
mating the values of model parameters P , fa; �; g; hg, we
predict the labels of non-grounded items. Technically, given
an item i, we denote by xxUi , xvi j v 2 Uif g the labels assigned
by the workers Ui who provided answers for this item. Fur-
ther,D , fxx; yyg denotes the assigned labels as well as known
labels as used in the inference. We now compute yi using
MAP estimation of the probability p yi jxxUi

;D;P� �
y
i ¼ argmax

yi
p yi jxxUi

;D;P� � ¼ argmax
yi

p yi; xxUi
j D;P� �

; (8)

since pðyi jxxUi
;D;PÞ ¼ pðyi; xxUi

j D;PÞ=pðxxUi
j D;PÞ, there is

no direct dependency between yi and xxUi
in the graphical

representation, and the divisor does not depend on yi. The
above formulation of the conditional probability of yi, i.e.,
p yi jxxUi

;D;P� �
, has the advantage that it covers diverse

crowdsourcing settings. For instance, the absence of known
true labels (yy ¼ ; in D ¼ fxx; yyg) or a separation of training
data and testing data (xxUi

~xx) can be directly encoded in
this formulation.

To compute p yi; xxUi
j D;P� �

, we factorise over all proba-
bilistic dependencies in the graphical model representation.
Using the derivation outlined in the appendix, available in
the online supplemental material, we arrive at

p yi; xxUi j D;P
� �
¼
XT
t¼1

’it

Y
u2Ui

XM
m¼1

kump xui jc tð ÞMAP
m

� � !
p yi jfMAP

t

� �
;

wherec tð ÞMAP
m and fMAP

t aremaximum a posteriori estimates
(akamodes) of the inferred distributions ofct

m and ft.
However, the maximization problem in Eq. 8 is a zero-one

integer problem, which is known to be NP-hard—the exhaus-
tive search needs to explore 2C � 1 combinations of labels.
Against this background, we may use a greedy search algo-
rithm to approximate the mode y
i of the above distribution.
Initially, all elements y
ic of the vector y



i are set as zeros. Then,

we proceed iteratively and, in each iteration, set to one the ele-
ment yic
 that leads to the largest increase of pðy
i ; xxUi

j D;PÞ.
This procedure terminates once pðy
i ; xxUi

j D;PÞ can not be fur-
ther increased. The final configuration of y
i will be the instan-
tiation value for the deterministic assignment. Note that this
instantiation can be done independently for all items, so that
this step can be parallelised.
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4 SCALABLE MODEL INFERENCE AND PREDICTION

Today’s crowdsourcing datasets are very large [26], [40], so
that answer aggregation becomes impractical even with a
linear inference algorithm. Interactive crowdsourcing appli-
cations [5] might require very fast response time. However,
simple divide-and-conquer methods such as matrix parti-
tioning [41] are not applicable, since a split-up of the answer
matrix causes information loss on worker communities and
item clusters.

This section proposes two levels of scaling model infer-
ence and prediction as introduced in Section 3.3. First, we
exploit incremental computation in the model inference to
achieve online learning, i.e., we avoid recomputation of the
whole model when new data arrives. Second, we leverage
parallelization to scale-out and scale-up inference and pre-
diction (see the Appendix, available in the online supple-
mental material). Finally, we discuss to which extent these
techniques reduce the runtime of answer aggregation.

4.1 Online Learning
The inference and prediction methods introduced above for
the CPAmodel solve the partial-agreement answer aggrega-
tion problem in a static setting. However, in many cases,
tasks are not answered immediately when posted on a
crowdsourcing platform. Rather, the set of worker answers
is gradually building up over time and intermediate aggre-
gation results are valuable from an application point of
view [5]. For instance, intermediate results may indicate that
a task is too difficult for workers, so that it shall be re-
designed. Also, if intermediate results are of high quality, the
crowdsourcing process can be terminated early to save cost.

We cater for such an online setting by means of incre-
mental computation for the CPA model. We present an
inference algorithm that incrementally updates the model
parameters based on new data, which are then used for pre-
dicting the true labels of all items. In each learning iteration,
we maintain only the most recent parameter values, thereby
avoiding the cost of repeatedly building the model from the
complete set of answers. While this approach comes with a
modest reduction in aggregation quality (explored in our
experiments), it greatly improves aggregation efficiency.

Stochastic Variational Inference (SVI). The deterministic vari-
ational inference (VI) presented in the previous section for the
static setting maximises the EBLO function LðQQÞ using coor-
dinate-ascent for each of the parameters of variational distri-
butions. To realise incremental learning, we rely on stochastic
variational inference [42] and apply stochastic optimization to
the EBLO function based on newly received data. By relying
on stochastic gradient descent (SGD) in Algorithm 1, we do
not need all available data, but only a small subset of it, to
update the parameters in each iteration.More precisely, while
VI needs many epochs to converge (each epoch corresponds
to an iteration scanning the entire datasets), SVI is designed to
converge in one epoch, which is why it is favoured in an
online setting where each answer is used once. The conver-
gence of stochastic variational inference is proved in [42].

Technically, data is received as a series of batches
b ¼ 1; 2; . . .. Each batch b contains the answers of a fixed
number of workers Ub (with Ub being the cardinality of Ub)
for a set of itemsN b. We consider new answers as a subsam-
ple and, based thereon, derive a stochastic gradient. Specifi-
cally, we compute the difference r between old and new
values of each parameter. Following [42], [43], we classify

variational distributions as being global or local. In our set-
ting, qðli j’iÞ, qðp0 j rÞ, qðt0 j yÞ, qðct

m j�t
mÞ, and qðft j ztÞ are

global, whereas qðzu j kuÞ is local (’ now becomes global as
we consider multiple items in one update).

Natural Gradients. For the local distribution, we reuse the
update formulation given for VB inference (i.e., Eq. 2). The
respective distribution is connected to a single data point,
which can be computed directly from the new data. In con-
trast, for the global distributions, natural gradients are
obtained for each variable over all u 2 Ub as follows (see the
appendix, available in the online supplemental material, for
a detailed derivation)

r�tm
Lu ¼

��t
m þ gt

m þ U
P

i2N b
’itkumxiu

U
(9)

rztLu ¼
�zt þ hþPi2N b

’ityi

U
(10)

rrm1
Lu ¼ �rm1 þ 1þ Ukum

U
(11)

rrm2
Lu ¼

�rm2 þ aþ U
PM

l¼mþ1 kum
U

(12)

ryt1Lu ¼
�yt1 þ 1þPi2N b

’it

U
(13)

ryt2Lu ¼
�yt2 þ �þPT

l¼tþ1
P

i2N b
’il

U
: (14)

The natural gradient for q li j’ið Þ is difficult to compute
since the mean-parameterisation requires the constraintsPT

t¼1 ’it ¼ 1 and 0 � ’it � 1 to be satisfied. Hence, we prefer
to work with a minimal canonical parameterisation in expo-
nential family form, parametrising the distribution by m
instead of ’

q li jmið Þ ¼ exp mi; S lið Þh i �B mið Þð Þ:
In the above distribution, mi ¼ ½mi1; . . .mðT�1Þ�T is a

T � 1-dimensional vector parameter, B mmið Þ ¼ 1þPT�1
t¼1 exp

mitð Þ is a normalisation function, and S lÞ ¼ ½Iðl� 1Þ; . . . ;ð
Iðl� T þ 1Þ�T is a sufficient statistic function. The idea of
sufficient statistics is to only maintain the minimal/suffi-
cient information instead of all data points to compute the
probability distribution. In our case, the sufficient function
is defined as a T � 1-dimensional binary vector, containing
a value of one only at position l. That is, IðxÞ is an indicator
function, IðxÞ ¼ 1 if x ¼ 0; and IðxÞ ¼ 0, otherwise. The nat-
ural gradient for parameter m is

rmit
Lu ¼ �mit þ E �t½ � � E �T½ � þ U ait � atTð Þ

U
; (15)

where ait ¼
PM

m¼1 kumE ln p xiu jct
m

� �� �
for t ¼ 1; . . . ; T . To

derive ’ from m, we use the following transformation

’it ¼
exp mitð Þ

1þPT�1
t¼1 exp mitð Þ for t ¼ 1; . . .T � 1 (16)

’iT ¼
1

1þPT�1
t¼1 exp mitð Þ : (17)

Learning Rate. In incremental learning, a learning rate vb

needs to be specified as a function of the batch index b. To
ensure the convergence of the gradients, vb shall satisfy two
conditions
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X1
b¼1

vb ¼ 1 and
X1
b¼1

v2
b < 1:

The learning rate depends on r, aka the forgetting rate. If r
is large, vb becomes small, and the old parameter values are
only slightly changed. Finding a good value for r is specific
to a dataset. Yet, any value of r 2 ð0:5; 1� leads to conver-
gence [42]. Larger values of r often lead to higher learning
quality and faster convergence (but not monotonically). We
varied r in our experiments and found out that fixing r to
½0:85; 0:9� achieves good results.

Online Updates. Using the above gradients, the updates of
all necessary parameters in the online setting become

�� ��þ vb
U

Ub

X
u2Ub
r��Lu zz zz þ vb

U

Ub

X
u2Ub
rzzLu (18)

rr rrþ vb
U

Ub

X
u2Ub
rrrLu yy yyþ vb

U

Ub

X
u2Ub
ryyLu (19)

mm mmþ vb
U

Ub

X
u2Ub
rmmLu (20)

The algorithm for incremental learning for the CPA model
is illustrated in Algorithm 2. In each iteration, a pre-defined
number of answers are collected from the crowd. Based on
the new data, we compute the natural gradients and update
the model parameters.

Algorithm 2. Stochastic Variational Inference for the
CPA model

Input: Continuously updated worker answers xx and known
true labels yy

Output: Estimated model parameters �; z; r; y; k;’
Random initialisation of �; z; r; y; k;’
b 1 // The batch index

while more answers are available do
Fetch the bth batch of answers of users Ub for items N b and
set b bþ 1
// Update the local variables

for u 2 Ub andm 1; . . . ;M do Update kum using Eq. 2.
// Update the global variables

Compute the natural gradients using Eq. 9 to 15.
Set learning rate vb ¼ ð1þ bÞ�r
Update �; z; r; y;m using Eq. 18 to 20.
Compute ’ using Eq. 16 to 17.

return �; z; r; y; k;’

Online Prediction.Online prediction enables us to perform
the instantiation of labels incrementally, upon the arrival of
new answers. Different from the inference procedure for
incremental learning, online prediction does not compute
the difference between the old and new labels assignments.
The reason is that the most recent parameter values consti-
tute the probability distributions of all data obtained so far.
Each time new answers are obtained, the parameter values
are updated and their values can be used to generate the
corresponding approximated posterior distributions of
model variables required for instantiation, i.e., qðbÞ li j’ið Þ,
qðbÞðzu j kuÞ, q bð Þ ct

m j�t
m

� �
, q bð Þ ft j ztð Þ, q bð Þ p0 j rð Þ and qðbÞðt0 j yÞ,

where b ¼ 1; 2; . . . is the batch index. These posteriors are
approximations of their offline counterparts and, thus, are
used as input of the instantiation procedure in Section 3.4.

5 EVALUATION

We evaluated our approach to partial-agreement answer
aggregation along several dimensions. We first elaborate on
our experimental setup (Section 5.1), before evaluating the
following aspects:

� The effectiveness of our CPA model for answer
aggregation in crowdsourcing (Section 5.2).

� The effectiveness and efficiency of CPA when using
online learning and parallelization (Section 5.3).

� The importance of representing worker communities
and item clusters in the CPA model (Section 5.4).

As mentioned in Section 2.2, we further verify the existence of
worker communities in real-world datasets. However, this is
not the focus of our work, so that these results can be found in
the Appendix, available in the online supplemental material.

5.1 Experimental Setup
Task Design. Aiming at a realistic evaluation setup, we fol-
low best practices on task design for crowdsourcing:

Batch processing: Each task consists of multiple items that
are to be labelled by a single user. To mediate the trade-off
between the overhead of switching tasks and the cognitive
load of a single task, we follow recent studies on crowdsourc-
ing effectiveness [45], suggesting a task size of 10 items.

Pricing: We vary the price for a task over the datasets
based on the difficulty of the respective tasks. Considering
that a simple task would take five minutes to complete and
that the average wage of workers is around 2.00$/h [46], we
set the task price to 0.1$, 0.2$, and 0.3$ for simple, medium,
and difficult tasks, respectively.

Datasets.Our experiments have been conducted using five
real-world datasets, spanning diverse application scenarios:

(1) Image annotation,
(2) Topic annotation,
(3) Aspect extraction,
(4) Entity extraction,
(5) Movie tagging.
We employed workers to perform item labelling using

the CrowdFlower platform1. In total, we spent a budget of
8,772 tasks for all datasets and ended up having a repository
of 87,720 label annotations for 10,610 items from 2,664 users,
see Table 3.

The resulting datasets cover diverse crowdsourcing sce-
narios: the distribution of worker answers is skewed in
datasets (1) and (5), whereas it is normal in (3); tasks in data-
sets (2), (3), and (4) require understanding of unstructured
text, which is more difficult than the tasks in (1) and (5);
labels in (1), (2), and (4) are strongly correlated, whereas
there is little correlation between labels in (5).

TABLE 3
Statistics for the Real-World Datasets

Quantity Dataset

(1) image (2) topic (3) aspect (4) entity (5) movie

# Items 269,648 16M 3,710 2,400 500
# Labels 81 49 262 1,450 22
# Questions 2,000 2,000 3,710 2,400 500
# Workers 416 313 482 517 936
# Answers 22,920 15,080 19,780 15,510 14,430
Unit Price ($) 0.01 0.02 0.03 0.02 0.01

1. http://www.crowdflower.com/
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Large-Scale Simulation. To evaluate the scalability of our
approach in the context of very large crowdsourcing datasets
as described in [26], [40], [49], we rely on simulation. To this
end, we adapt existing tools [8] for the multi-label setting.
When simulating large crowds, we vary several parame-
ters in the data generation to obtain datasets that exhibit
similar characteristics as real-world data: (i) the number
of objects, (ii) the number of workers, and (iii) the number
of labels. Moreover, we follow the guidelines described
in [8] to simulate worker characteristics. Specially, we dis-
tribute the worker population into a% reliable workers,
b% sloppy workers and g% spammers (g=2% random
spammers and g=2% uniform spammers). For example,
random spammers and uniform spammers are simulated
by setting their confusion matrix column vector to the
same value for all labels or to 1 for one random label,
respectively. Based on insights in worker populations of
real-world crowdsourcing services [21], we select the fol-
lowing default parameters: a ¼ 43, b ¼ 32 and g ¼ 25. In
the simulation experiments, the ground truth is generated
based on a multinomial distribution.

Metrics. In partial-agreement answer aggregation, results
can be partially correct. We therefore rely on the set-based
definition of precision and recall to evaluate the individual
correctness of each item. Per item i, individual precision Pi is
the ratio of correctly predicted labels and the total number of
predicted labels, whereas individual recall Ri is the ratio of
correctly predicted labels and the total number of true labels.
For a complete dataset, precision P and recallR are the respec-
tive averages over all items. With Yi ,

S
j2Z fj j yij ¼ 1g and

Y 
i ,
S

j2Zfj j y
ij ¼ 1g, themeasures are defined as

Pi ,
jYi \ Y 
i j
jY 
i j

Ri ,
jYi \ Y 
i j
jYij P ,

XI
i¼1

Pi

I
R ,

XI
i¼1
¼ Ri

I

Baselines. We compare CPA against several state-of-the-
art answer aggregation methods. Unlike our approach,
most existing methods target single-label tasks. For a com-
parative analysis, therefore, we regard the multi-label prob-
lem as several instances of a single-label problem (each
worker giving a Boolean answer for a given label) when
applying the respective methods. In the end, each item is
assigned with a probability of accepting or rejecting a given
label. If this probability is larger than 0.5, the respective
label is included in the aggregation result. All experiments
work without knowledge on true labels (yy ¼ ;).
� Majority voting (MV) is the most applicable aggrega-

tion method for multi-label tasks [17], [18], even
though it still considers all labels separately. The
probability to accept a label for an item is computed
as the ratio of ‘votes’ from workers who provided an
answer for an item.

� Expectation Maximization (EM) is an answer aggrega-
tion model that implicitly captures worker commu-
nities in the joint estimation of the items’ true labels
and the workers’ reliability [39]. This model is fur-
ther refined by penalising each worker with an extra
mislabelling cost [15].

� Community-based Bayesian Classifier Combination
(cBCC)is a recently proposed extension of Bayesian
Classifier Combination (BCC), the latter being the
nonparametric version of the EM model [50]. cBCC
extends BCC by explicitly modelling worker com-
munities [23], [24]. Recent studies illustrate that

cBCC outperforms BCC in general, providing prom-
ising results in particular for sparse data [23], [24].

The above baselines enable us to perform a generic com-
parison. While there are further aggregation methods for
single-label tasks, they are either subeffective or require
domain-specific knowledge [8], [9]. Other methods for
multi-label tasks, e.g., [19], [51], [52], are not directly com-
parable, since they either consider labels independently
(similar to MV), utilize content-based features of items,
consider only 2-subsets of labels (which is biased), or con-
sider all subsets of possible labels (which is intractable).

Experimental Environment. Most experimental results
have been obtained on an Intel Core i7 system (3.4 GHz,
12 GB RAM). To mitigate the effect of randomness on model
inference, we take the average result of 10 runs, in which the
dataset is shuffled randomly. For the scalability experi-
ments, we relied on an implementation of our approach
in Apache Spark running on Intel Xeon 2.6 GHz system
(16 cores, 16 GB RAM).

5.2 Effectiveness of CPA
Accuracy. We first evaluate the accuracy of our approach
based on the CPA model against the baseline methods in a
static setting. That is, we measure precision and recall of the
aforementioned five datasets. Table 4 shows precision and
recall obtained by our CPA with the three baseline methods
(MV, EM, cBCC).

An interesting finding is that for the datasets with strong
label correlations (image, topic, entity), the accuracy of com-
plex methods (EM, cBCC) is similar to majority voting. Spe-
cifically for entity dataset, the EM and cBCC methods are
even worse than MV (0.57 and 0.60 compared to 0.63 at pre-
cision, 0.50 and 0.53 compared to 0.55 at recall). For these
datasets, our CPAmodel, significantly outperforms all base-
line methods. This is because these methods neglect the
dependencies between labels. For example, the correctness
probability of two correlated labels might be larger than the
individual probability of each label when considered sepa-
rately; thus the existing models might predict only one of
the two labels or none as the correct answer.

For datasets with little label correlations (aspect, movie),
our CPA model still consistently outperforms the baseline
methods. Taking the movie dataset as an example, cBCC
achieves precision and recall values of 0.78 and 0.68, respec-
tively, whereas CPA yields 0.80 precision and 0.73 recall.
This difference can be attributed to the fact that an instance
of a multi-label problem is not equivalent to the union of
several instances of a single-label problem. A single worker
in the multi-label setting will be considered as different enti-
ties in single-label settings, which could lead to misclassifi-
cation of worker types across different labels even if the
labels are not correlated.

TABLE 4
Overall Accuracy

Dataset Precision Recall

MV EM cBCC CPA MV EM cBCC CPA

image 0.65 0.66 0.7 0.81 0.57 0.62 0.63 0.74
topic 0.57 0.60 0.62 0.79 0.54 0.54 0.55 0.70
aspect 0.52 0.61 0.65 0.74 0.53 0.56 0.6 0.64
entity 0.63 0.57 0.60 0.79 0.55 0.50 0.53 0.70
movie 0.61 0.74 0.78 0.80 0.56 0.68 0.7 0.73
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Robustness against Sparsity. In crowdsourcing scenarios, the
answer matrix is typically sparse: most workers process only
a few of the items of a particular application. We investigate
the effect of sparsity on aggregation accuracy by randomly
removing a certain share of the answers, in the step of leaving
10 percent of the data per dataset (i.e., the sparsity level
increases from 0 to 100 percent). We then measure precision
and recall, averaged over 100 runs.

As illustrated in Fig. 3, precision and recall decrease if
answers are removed (sparsity is visualised in decreasing
order). However, answer aggregation based on our CPA
model is affected less by data sparsity compared to the base-
line methods. For instance, for image tasks, when removing
half of the input data (sparsity level 50 percent), the precision
of our method is already 86 percent of the precision obtained
using all answers. The baselines achieve at most 78 percent
of the precision obtained using all answers in this case. This
effect is due to the notion of worker communities in the CPA
model that helps to identify consistent answers for an item
even if it was processed only by a fewworkers.

Robustness to Spammers. As discussed in Section 2, crowd-
sourcing applications suffer from faulty workers, such as
random and uniform spammers, which can account for up
to 40 percent of the worker population [22]. Even though
we may be able to detect different types of workers (based
on their characteristics), the predicted labels may be incor-
rect, since faulty answers can be dominating. We investigate
this aspect by adding answers of spammers to the datasets,
such that they account for 20 or 40 percent of the data. The
cBCC method turns out to yield the best results of all base-
lines, so that report it as the baseline for comparison.

As expected, the results in Fig. 4 show that precision and
recall decrease when spammers are included. However, our
approach is less affected by spammers as is the baseline
method, in particular for large amounts of spammers (40 per-
cent). For example, for the aspect dataset, the precision ratio
of the baseline method decreases from 0.65 to 0.51, whereas
it stays nearly constant with our approach, achieving 0.81
and 0.80, respectively. This highlights that our approach can
not only detect communities of spammers, but also limits
their influence on the aggregation result. Although cBCC has
been designed to capture worker communities [23], [24], it
does not perform well in a multi-label setting, which needs
a more fine-grained level of assessing worker types. There

may be cases in which the baseline wrongly classifies work-
ers. For example, if a spammer gives only a single label as
an answer, they may be considered reliability if the label
appears in the correct answer.

Effects of Label Dependencies. Next, we study the effects of
label dependencies in partial-agreement answer aggregation.
Since baseline methods solve the multi-label problem as sev-
eral instances of a single-label problem, they often treat miss-
ing correct labels in worker answers incorrectly. We study
whether adding these missing correct labels into worker
answers will improve their performance. If so, this is equiva-
lent to the information losswhen considering each label sepa-
rately. For this experiment, we use the entity dataset as it
shows the strongest correlations between labels. We simulate
the effects of label dependencies in worker answers by ran-
domly adding missing labels from the ground truth to
worker answers that contain at least one correct label, varying
from the amount of total missing labels between 10 and 30
percent. Again, we consider report solely on cBCC as the base-
line since it yielded the best results over all baselinemethods.

The result is depicted in Fig. 5, where precision and recall
are reported in reverse ratios compared to the original per-
formance of each method. Here, the baseline incurs a lot of
information loss when ignoring the label dependencies,
whereas our CPA model preserves such dependencies. For
example, at dependency level 30 percent, the baseline loses
nearly a half of precision and more than a half of recall. This
result verifies that existing methods for the single-label
problem cannot directly be used for the multi-label prob-
lem, as the information about label dependencies will be
lost. As a result, these methods commonly do not predict
the full set of labels for each item.

5.3 Scalable Model Inference and Prediction
Accuracy. Incremental computation for the CPA model as
introduced in Section 4.1 aims at increasing the efficiency of
computation. Yet, it may come at the expense of decreased
effectiveness, i.e., lower accuracy in terms of precision and
recall. We therefore compare the accuracy of the CPA model,
oncewith the inferencemechanisms for a static setting (offline)
and once with the approach with incremental learning
(online). Since both algorithms are approximation methods
that might converge to local optima, we follow an empirical

Fig. 3. Effects of sparsity.

Fig. 4. Effects of spammers (compared to performance at spammer ratio = 0% as ratio).

Fig. 5. Effects of label dependency.

10 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 30, NO. 1, JANUARY 2018



approach [42] to evaluate the performance boundaries
between them. We simulate an online setting by randomly
selecting new worker answers to represent newly arriving
data, in steps of 10 percent of the dataset size. The forgetting
rate of incremental learning r is varied in ð0:5; 1�, with the best
values observed for r falling into ½0:85; 0:9�. For the non-incre-
mental setting, this setup corresponds to a step-wise increase
of the sparsity level from 90 to 0 percent and the prediction is
always based on the complete set of answers received so far.

The result for the image dataset is shown in Fig. 6. We
notice that indeed, precision and recall are worse when
using incremental computation for the CPA model. Yet,
even with incremental computation, the results are signifi-
cantly better than those of the baselines (see previous
experiments). This underlines that the summarised infor-
mation about item clusters and worker communities main-
tained by our incremental inference method still enables
competitively accurate aggregation.

The result for the image dataset in Fig. 6 is representative
for all datasets. Table 5 shows precision and recall obtained
after all answers have been processed, including the deviation
when shuffling data and varying the forgetting rate.
The incremental computation based on the CPAmodel incurs
a competitive accuracy compared to the non-incremental
approach.

Efficiency. Turning to the efficiency of our methods for scal-
able model inference and prediction, wemeasure the runtime
for the static setting (offline) and of the incremental inference,
without parallelization (online) or with parallelization using 4
or 16 cores (online-4 and online-16), respectively, in relation to
the size of the input data.We also include the runtime of base-
line methods for comparison purposes. Since they run on
multiple instances of single-label problem, we normalize all
runtimemeasurements by the number of labels.

Using the setup for large-scale simulation described in
Section 5.1, we generate a synthetic dataset, comprising 104

items and 104 workers and 10 labels per item. Taking this
worker pool, we vary the number of workers per item from
10 to 100 to randomly generate the answer matrix as input.
Non-incremental inference is said to converge, if all model
parameter differences in two consecutive inference iterations
are below 10�3. For incremental inference, we set the batch
size to 100 answers and the forget rate to 0.875. We average
results of 100 experiment runs.

As shown in Fig. 7, the scalable model inference and pre-
diction is indeed much more efficient than the offline ver-
sion, up to 32� faster. This speed-up is achieved mainly by
scalable inference, which is performed on a fixed number of
newly received answers as well as parallelization over the
number of answers. Moreover, our methods outperform
other baselines except MV , which is also efficient since it
maintains only the number of positive and negative
answers to decide the majority for each label.

5.4 Importance of Model Requirements
Finally, we assess the importance of explicitly capturing
worker communities (R1) and item clusters (R3) by compar-
ing the accuracy of our CPA model with two simplified ver-
sions: No_Z removes the community structure (variable z)
from the model, i.e., each worker is a singleton community;
No_L removes the item cluster structure (variable l), i.e.,
each item represents a singleton cluster. Note that No_L sol-
ves the same problem as CPA, yet needs to compute the
probability for all 2C possible subsets of labels to then return
the most probable subset. However, the No_L model turned
out to be intractable for all except the movie dataset, which
has a total of 22 possible labels.

Fig. 8 shows that the CPA model consistently achieves
the highest precision and recall. Improvements over the
No_Z model are particularly large for the more difficult
datasets (topic and aspect), since differentiation of workers is
effective in these cases.

We further note that theNo_Lmodel achieves higher preci-
sion, but lower recall than the No_Z model. This highlights
that worker communities help to improve correctness by
identifying faulty workers, whereas item clusters improve
completeness by exploiting label co-occurrence dependencies.

6 RELATED WORK

Having discussed the context of answer aggregation in
crowdsourcing in Section 1 and Section 2, below, we now
review the state-of-the art techniques and discuss further
related areas.

State-of-the-Art in Answer Aggregation. Taking the require-
ments outlined for partial-agreement answer aggregation
outlined in Section 2.2 as a starting point, it turns out that
most existing algorithms for aggregating crowd answers are
inapplicable, see [7], [8] for a comprehensive evaluation. The
vast majority of aggregation methods do not collectively

TABLE 5
Effects of Data Arrival (at 100 percent)

Dataset Precision Recall

online offline online offline

image 0.76 � 0.02 0.81 0.70 � 0.02 0.74
topic 0.71 � 0.03 0.79 0.65 � 0.01 0.70
aspect 0.67 � 0.01 0.74 0.59 � 0.03 0.64
entity 0.70 � 0.02 0.79 0.64 � 0.01 0.70
movie 0.74 � 0.03 0.80 0.68 � 0.02 0.73

Fig. 6. Effects of data arrival. Fig. 7. Runtime of CPA inference and prediction mechanisms.

Fig. 8. Effects of model aspects.
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incorporate diverse characteristics of workers and their
implications for answer correctness, and thus fail to address
requirement (R1). For example, the two-coin model [53] cap-
tures the sensitivity (true positive rate) and specificity (true
negative rate) of the worker, which is applicable for binary
answers only. EM-based models [15], [39], [54] associate
eachworkerwith a confusionmatrix; however, they are error
prone to user-chosen initialization and data sparsity. One of
the latest optimization-based methods is the one presented
by Das Sarma et al. [55], which achieves a global optimum
rather than a local optimum by reducing the item-label con-
figuration space. Yet, the method assumes uniform quality
of workers (which is problematic especially when the num-
ber of workers per item is high). More severely, the method
clusters items with the same answers, which makes the
method inapplicable for the multi-label problem where
different items can have overlapping but different answers.

A notable extension of the EM model has been proposed
by Kim et al. [50]. Based thereon, the models in [23], [24]
incorporate worker communities. As our CPA model, these
approaches are based on a Bayesian nonparametric genera-
tive model [33]. Yet, they have been developed for a single-
label problem and thus neither support partial answer valid-
ity (R2) nor exploit label dependencies (R3). As shown in our
experimental evaluation that considered this line of work as
one of the baselines, addressing these requirements is crucial
to obtain accurate results. We further note that our problem
setting is different from the one of top-k algorithms for crowd-
sourcing tasks [12], as each itemmay have a different number
of labels.

Scalable Crowdsourcing. Most answer aggregation algo-
rithms operate in batch mode; hence, the aggregated answers
would be recomputed from scratch every time a new worker
answer arrives. There are only a few approaches on incremen-
tal answer aggregation, such as online EM [56]–which targets
incremental updates when a new answer arrives and
i-EM [41]–which targets incremental updates whenever the
ground truth is extended. However, tailoring such incremen-
tal methods for our setting is non-trivial due to the depen-
dency between labels and the community modelling of
workers and items, e.g., a single new answer can be propa-
gated to change the whole model, resulting in inefficient exe-
cution. Matrix partitioning [41] may also be used to reduce
the computational effort, yet this incurs the loss of information
about the dependencies between workers, which is essential
for modelling the worker community. CPA provides a first
method for answer aggregation for multi-label tasks, which
scales not only in the number of possible labels, but also in the
number of possible answers (subsets of possible labels).

Worker Modeling. The existence of workers with diffe-
rent characteristics calls for models that capture these charac-
teristics in crowdsourcing. Traditional techniques model
worker types implicitly as a part of answer aggregation, via
prior-knowledge, via known difficulty of questions, or textual
analysis of crowdquestions [8], [31], [57], [58]. However, these
approaches are domain-specific, sensitive to data and do not
provide a meaningful description of the worker population.
Recent work tackles this issue by explicitly introducing the
concept of worker community [21], [22]. However, defining a
fixed number of worker communities is error-prone since dif-
ferent domains exhibit different numbers and distributions of
worker communities. Our work follows a nonparametric
approach that allows the formation of worker communities to
be adaptive to the considered data. Dynamically modelling of

worker communities was also considered in [23], [24]. How-
ever, these approaches are tailored to a single-label problem,
where each worker belongs to a single community. Our CPA
model supports workers being in different communities per
label and also enables propagation of community information
across different labels via the dependencies between labels.

Multi-label Problems. Multi-label problems have been
solved in related research fields, such asmulti-label classifica-
tion [59], ordinal classification [60], and data streams classifi-
cation [61]. Multi-label classification aims at learning
classifiers to associate each itemwith a set of labels. Yet, differ-
ent from the crowdsourcing setting, it is based on the features
of the data itself, such as image pixels or textual indicators [59].
Ordinal classification studies a similar setting, but assumes a
natural ordering among labels. It can be traced back to multi-
label classification through membership functions [60]. Our
work considers a more generic relation between labels in
terms of co-occurrence dependencies. Data streams classifica-
tion aims atmulti-label classification in an online setting, proc-
essing data in real-time [61]. Despite the differences in the
underlying classification problem (answer aggregation is not
based on features of the items to be labelled), this setting is
similar to the online setting in crowdsourcing.

Multi-label problems have been studied in the context of
crowdsourcing before, yet the focus has been primarily on
minimizing cost when posting tasks, see [62]. Another exam-
ple is work on optimising the cost of hiring workers when
generating training data for classifiers [51]. However, these
approaches assume labels to be independent and consider all
workers equally—adopting some form of majority voting to
aggregate answers or unifying all single-label aggregation
results [17], [18], [51]. Other techniques utilize the content-
based features of each item [19], which is not generally avail-
able; consider only 2-subsets of labels [51], which is biased; or
consider all subsets of possible labels, which is intractable in
practice [52]. Answer aggregation formulti-label crowdsourc-
ing that takes into account the worker communities, partial
answer validity, label dependencies, and adaptivity of the
aggregationmodel, in turn, has not been addressed before.

BayesianModels.Graphical probabilistic models have been
successfully applied in various domains, such as image proc-
essing, video encoding, and machine learning [63]. Their
main benefit is the ability to explicitly capture dependencies
between random variables, e.g., in terms of factor graphs.
While graphical models have been applied in crowdsourcing
with similar tools (e.g., probabilistic distributions, generative
functions), their customizations to specific requirements and
applications often lead to significant difference [23], [24],
[50]. Most attempts to use graphical models for multi-label
answer aggregation, e.g., [19], [51], [52], [64], show three
major limitations: (1) the models are parametric or use exter-
nal knowledge, which enforces assumptions on the true dis-
tribution of crowdsourcing data and is domain-dependent,
even though ground truth is commonly not available; (2)
they ignore worker communities, even though spammers
may have a huge impact on the aggregation result, see [27];
(3) they neglect or are limited to simple (e.g., pair-wise) or
intractable (all possible subsets) dependencies between
labels. Our CPA model overcomes these limitations by cap-
turing worker communities and item clusters explicitly in a
Bayesian nonparametric model.

Relations between labels may stem from external expert
knowledge [34], [35], instead being learned from the data
itself, as done with our approach in a domain-independent
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manner. However, such expert knowledge is orthogonal,
meaning that it could be incorporated in our approach.
Prior knowledge could be expressed as conditional proba-
bilities, which are then integrated in the label selection, i.e.,
step 2b of the generative process of the CPA model.

7 CONCLUSION

In this paper, we presented a novel Bayesian nonparametric
approach to aggregate partial-agreement crowdsourcing
answers. The key features of the proposed CPAmodel are its
ability to capture worker characteristics (by worker commu-
nities) and dependencies between the labels assigned to
items (by item clusters). The former improves precision
by separating answers of faulty workers from those of reli-
able workers; the latter improves recall by exploiting co-
occurrence dependencies to complete results. We further
presented inference and prediction mechanisms for the CPA
model. In particular, aiming at answer aggregation for very
large datasets, we proposed scalable model inference and
prediction based on incremental computation and paralleli-
sation. Our experimental results showed that answer aggre-
gation based on the CPA model outperforms state-of-the-art
methods for answer aggregation by up to 134 percent in pre-
cision and recall, while being robust against spammers and
answer sparsity. In future work, we intend to lift our model
to other types of crowdsourcing tasks (e.g., assignment of
continuous labels), and incorporate domain-specific infor-
mation, such as question difficulty and label hierarchies.
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