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Abstract

In the strong scaling limit, the performance of conventional spatial domain decomposition techniques for the parallel
solution of PDEs saturates. When sub-domains become small, halo-communication and other overheard come to dom-
inate. A potential path beyond this scaling limit is to introduce domain-decomposition in time, with one such popular
approach being the Parareal algorithm which has received a lot of attention due to its generality and potential scalabil-
ity. Low efficiency, particularly on convection dominated problems, has however limited the adoption of the method.
In this paper we introduce a new strategy, Communication Aware Adaptive Parareal (CAAP) to overcome some of
the challenges. With CAAP, we choose time-subdomains short enough that convergence of the Parareal algorithm is
quick, yet long enough that the overheard of communicating time-subdomain interfaces does not induce a new limit to
parallel speed-up. Furthermore, we propose an adaptive work scheduling algorithm that overlaps consecutive Parareal
cycles and decouples the number of time-subdomains and number of active node-groups in an efficient manner to
allow for comparatively high parallel efficiency. We demonstrate the viability of CAAP trough the parallel-in-time
integration of a hyperbolic system of PDEs in the form of the two-dimensional nonlinear shallow-water wave equa-
tion solved using a 3rd order accurate WENO-RK discretization. For the computational cheap approximate operator
needed as a preconditioner in the Parareal corrections we use a lower order Roe type discretization.

Time-parallel integration of purely hyperbolic type evolution problems is traditionally considered impractical.
Trough large-scale numerical experiments we demonstrate that with CAAP, it is possible not only to obtain time-
parallel speedup on this class of evolution problems, but also that we may obtain parallel acceleration beyond what is
possible using conventional spacial domain-decomposition techniques alone. The approach is widely applicable for
parallel-in-time integration over long time domains, regardless of the class of evolution problem.
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1. Introduction

The ongoing and rapid evolution of computers used to model physical phenomenons in the computational sciences
poses new challenges for algorithms. The growing number of cores, the increasingly convoluted cache hierarchies,
and the use of accelerators all seek to boost the computational capacity of individual nodes. At the same time, the
number of compute nodes in distributed memory machines has increased dramatically. The machine that currently
crowns the top500 list of supercomputer Sunway TaihuLight at NSCC Wuxi, China, has more than 40.000 compute
nodes, comprising a total of more than 10 millions cores. This ongoing development towards increasing hardware
parallelism exposes algorithmic shortcomings and requires a rethinking of the fundamental algorithms to maintain
scalability and enable efficient use of the computing platformDongarra et al. (2014). In this paper we show how the
Parareal method may be modified in such a way as to allow for parallel-in-time acceleration of a tsunami simulation
beyond what is possible using conventional spacial domain-decomposition techniques alone. The underlying PDE
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governing the dynamics of the model is the shallow water wave equation. The equation is a purely hyperbolic system
of coupled non-linear PDEs, the solutions of which typically contain both shocks and smooth regions interacting in a
non-trivial manor. We thus conjecture that the positive result, presented in section 6, is an indication that it is possible
for other similar systems to benefit from parallel-in-time acceleration.

1.1. Time-Domain Parallelism and Parareal
Solving time dependent PDEs is often done in a methods-of-line approach where the spatial components are

discretized in some appropriate manner and a numerical integration technique is applied to advance in time. The ap-
proach extends to distributed memory machines by applying some form of domain decomposition, letting independent
nodes communicate boundary information of their local sub-domains. The limitation to the approach lies in the strong
scaling limit, i.e. increasing the number of nodes for a fixed problem size to achieve a reduction in time to compute.

One might naively suspect that one may “run out of parallelism” - i.e. as the combined number of cores become
sufficiently high, there are simply not enough parallel degree’s of freedom for all cores to work all the time. But
consider this, solving a problem with upwards of a billion degree’s of freedom in space may today be done on a potent
workstation. Conversely, even the largest clusters available for researchers in the world has no more than a few million
cores, everything included. This scaling limit is therefore somewhat theoretical, and not yet of much relevance for
practitioners. So why does obtainable speed-up saturate in the strong-scaling limit? Consider what happens as spacial
sub-domains decrease in size, given a three dimensional domain in space divided into a number of quadratic sub-
domains with n elements spanning each dimension. The compute work in each sub-domain is proportional to n3. The
boundary information that needs to be exchanged with neighboring sub-domains is proportional to ∼ n2. As n → 1,
compute nodes will increasingly be spending time communicating boundary information rather than computing.

This particular limit is very much of practical concern. Moving a double between two individual compute nodes in
a cluster is many orders of magnitude more expensive than a compute operation in terms of both wall-time and energy
consumption. On large machines comprising thousands of nodes, this is a substantial bottleneck for scaling application
efficiently and new algorithmic developments are required. A potential new path in obtaining scaling beyond what
is possible with conventional methods, is to extract parallelism in the time integration procedure. Once a system of
partial differential equation has been reduced to a large system of ordinary differential equations to be integrated over
time, the problem is usually viewed as a sequential process. However, many attempts to extract parallelism do exists.
For a complete overview of research in the direction we refer to a recent paper Gander (2015).

The focus of this paper will be on the Parareal method that has received a lot of attention over the past decade.
The Parareal method, first proposed in Lions et al. (2001), borrows from ideas in spatial domain decomposition to
construct an iterative approach for solving the temporal problem in a parallel global-in-time approach. To present the
method, consider a problem on the form


du
dt +A (t,u) = 0
u (T0) = u0 t ∈ [T0,T ]

(1)

where A : R × V → V ′ is a general operator depending on u : Ω × R+ → V with V being a Hilbert space and V ′ its
dual. Now, assume there exists a unique solution u (t) to (1) and decompose the time domain into nt individual time
slices

T0 < T1 < · · · < Tnt−1 < Tnt = T. (2)

Let Tn = n∆T . We now define a numerically accurate solution operator F∆T that, for any t > T0, advances the solution
as

F∆T (Tn,u (Tn)) = UTn+∆T ≈ u (Tn + ∆T ) (3)

To solve (1) on [T0,T0 + nt∆T ], define the matrix of operators MF

MF =



1

−F T0
∆T

. . .

. . .
. . .

−F Tnt−1

∆T 1


(4)
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with Ū =
[
U0, . . . ,Unt

]
and Ū0 = [u (T0) , 0, . . . , 0]. The sequential solution procedure is then equivalent to solving

MF Ū = Ū0 (5)

by forward substitution for Ū so to recover U0 · · ·Unt as approximations to u(T0) · · · u(Tnt ). If we instead seek to solve
the system using a point-iterative approach, i.e., we seek the solution Ūk+1 = Ūk +

(
Ū0 − MF Ūk

)
, we observe that at

the beginning of each iteration, Ūk is known. In each iteration we may thus compute F T1
∆T · · · F

Tnt
∆T on all intervals in

parallel. Note that the computational complexity of every iteration is strictly larger than that of the sequential solution
procedure. Hence a reduced time to solution is possible only if the number of iterations kconv needed for convergence
is much smaller than the number of time sub-domains nt. To achieve this, a preconditioner is needed. Assuming the
existence of some MG ≈ MF , where MG is computationally cheap, we can solve a preconditioned system on the form

(
MG

)−1 MF Ū =
(
MG

)−1 Ū0 (6)

instead. A natural approach to construct the above preconditioner MG is to define a new operator G∆T as with F∆T

G∆T (Tn,u (Tn)) = UTn+∆T ≈ u (Tn + ∆T ) (7)

and relax the requirements on the accuracy of G∆T , by using a coarser grid or a different numerical model. Solving
the system (6) iteratively by a standard preconditioned Richardson iterations we have

Ūk+1 = Ūk +
(
MG

)−1
(
Ū0 − MF Ūk

)
(8)

which is equivalent to


1

−GT0
∆T

. . .

. . .
. . .

−GTnt−1

∆T 1





Uk+1
0

Uk+1
1
...

Uk+1
nt


=



1

F T0
∆T − GT0

∆T

. . .

. . .
. . .

F Tnt−1

∆T − GTnt−1

∆T 1


(9)

from this we recover the Parareal algorithm in the form that it is typically presented

Uk+1
n+1 = GTn

∆T Uk+1
n + F Tn

∆T Uk
n − GTn

∆T Uk
n with U0

n+1 = GTn
∆T U0

n and Uk
0 = u(T0) (10)

A comprehensive introduction to Parareal may be found in Nielsen (2012), whilst important early contributions on
the analysis of the method can be found in Staff and Rønquist (2005); Bal (2005); Gander and Vandewalle (2007).
The algorithm has been applied to a wide range of applications such as simulation of dynamic physical models in
automotive industry by Loderer et al. (2014), and pricing of American Options by Pages et al. (2016). Notably it
has also been applied to plasma simulation with some success as presented in Samaddar et al. (2010); Reynolds-
Barredo et al. (2012). Using various coarse operators the authors achieve parallel-in-time speed-up, although with
low parallel efficiency of single digit percent whilst using up to 400 processors in time. In Randles and Kaxiras
(2014), convergence of the Parareal algorithm on lattice Boltzmann applied to a laminar flow problem is presented. It
is demonstrated that parallel speed-up is possible, albeit again with low parallel efficiency, and no comparison with
conventional domain decomposition in space is supplied. Numerical experiments of parallel-in-time integration using
Parareal on the three-dimensional incompressible Navier-Stokes equations on a cavity problem is presented in Croce
et al. (2014). The authors report that the space-time-parallel method can provide speedup beyond the saturation of a
purely space-parallel approach. In the cavity test case, the performance saturates at a speedup of 18 with 32 cores in
space. Using another 16 time-subdomains they report a combined space-time parallel speed-up of 27 using a total of
512 cores. Their results are in line with previous results, reporting low parallel efficiency on a limited time-domain, but
nevertheless reaching higher speedup than what is possible with the purely space-parallel approach. Similar results
are reported in Minion (2011); Speck et al. (2012), on a space-time parallel version of the Barnes-Hut tree code.
The authors use PFASST for parallel-in-time integration, and report scaling up to 262,144 cores on the IBM Blue
Gene/P installation JUGENE, demonstrating that the space-time parallel code provides speedup beyond the saturation
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of the purely space-parallel approach. Low parallel efficiency due to slow convergence of the algorithm is a general
trend in the results being reported. In Steiner et al. (2015) the authors present numerical experiments measuring
the convergence of the Parareal algorithm applied to the two dimensional Navier-Stokes equations on a driven cavity
benchmark for different Reynolds numbers. They report that the problems of instability and slow convergence increase
with decreasing viscosity, i.e., when the flow becomes increasingly dominated by convection. The effect is found to
strongly depend on the spatial resolution of the problem. In Dai and Maday (2013) the authors presents an analysis
on the stability of Parareal applied to hyperbolic systems and convection dominated problems and they show that
the instabilities are related to the regularity of the solution over time. They propose a stabilization scheme that
modifies the iterative algorithm in such a way to avoid any transient phase of divergence before convergence. However
convergence is observed to still be slow for long time-subdomains and the genereralization of this approach is unclear.
Other stabilizing schemes has later been proposed Chen et al. (2014, 2015), but suffer from the same limitatins. An
important contribution to the understanding of how convergence is affected by the length of the time-interval to be
integrated in parallel was presented in Gander and Hairer (2014). The authors show that for Hamiltonian systems, for a
given problem with some coarse integrator, there exists a ”window” in which time parallel integration is possible, and
outside of which the method does not convergence. The author similarly shows that convergence speed increase with
smaller time-subdomains. In a recent paper Eghbal et al. (2016), it is conjectured that there exists an optimal time-
subdomain length at which convergence is quick, yet the time-subdomain is still long enough that the communication
of time-subdomain interfaces does not become a limiting factor to parallel speedup.

In this paper we explore this relationship, and in Section 4 we present theoretical considerations on how to a priori
estimate the optimal time-subdomain length for the time-decomposition. To effectively decouple the time-subdomain
length and the total time to be integrated with Parareal, we introduce an adaptive Parareal variant in Section 3 based
on the scheduler introduced in Aubanel (2011). The approach allows consecutive Parareal cycles to overlap in time to
balance processor utilization and convergence efficiently. Henceforth, we will denote the combination of the adaptive
work scheduler and an informed choice on the time-subdomain length as CAAP, an abbreviation of Communication-
aware Adaptive Parareal. The shallow water wave equation test case is introduced in Section 2 along with relevant
notation, and the numerical experiments and scaling tests that demonstrate the performance of our approach are
presented in Section 5.

2. Test case: 2D Shallow Water Wave Equation

The shallow water wave equation is used to model a wide array of wave phenomenons. Simulation of trans-ocean
waves, flows in rivers and coastal areas, hydraulic engineering, and atmospheric modeling are among the many ex-
amples of application. The system of coupled partial differential equations that constitutes the shallow water wave
equation is nonlinear and purely hyperbolic. The equation captures fundamental phenomena across different scales in
space and time involving shocks that may form during the solutions procedure even for perfectly smooth initial condi-
tions. The equation is therefore a challenging case for parallel-in-time integration and, as such, an excellent platform
for measuring to what extend time-parallel integration is possible for hyperbolic problems. The two dimensional
version of the equations may be written as



ht + (hu)x + (hv)y = 0
(hu)t +

(
hu2 + 1

2 gh2
)

x
+ (huv)y = −ghzx

(hv)t + (huv)x +
(
hv2 + 1

2 gh2
)

y
= −ghzy

(11)

where h := h (x, y, t) denotes the water height, u := u (x, y, t) and v := v (x, y, t) the velocity in x and y direction
respectively. z := z (x, y) denotes overland topography and underwater bathymetry whilst g denotes the gravitational
constant. The equation is often presented in conservation form as

qt + f (q)x + g (q)y = s (h, z) (12)

where q = (h, hu, hv)T , and the two flux functions f (q), g (q) are given by

f (q) =


hu

hu2 + 1
2 gh2

huv

 , g (q) =


hv

huv
hv2 + 1

2 gh2

 (13)
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The source term s (h, z) is needed for non-flat bathymetrys. For inundation modeling, the source term is often also
made to include Manning’s law, an empirically derived friction term that is added to better capture the physics of
land-overflow. In the code the be accelerated, a simple thin-layer mesh reduction technique is used for inundation
modelling, but no friction terms are added as hydrological studies is not the primary concern of this paper. We refer to
the works of Maidment and Mays (1988); Xing and Shu (2011) for an introduction to the shallow water wave equation
and inundation modelling. Finite volume schemes are a popular approach for solving hyperbolic conservation laws
as the underlying physics is represented in a natural way. Let Ii, j =

[
xi− 1

2
, xi+ 1

2

]
×

[
y j− 1

2
, y j+ 1

2

]
define a structured

rectangular uniform mesh. In a finite-volume scheme, we seek the cell average

Qi j (t) =
1

∆x∆y

∫

Ii, j

q (x, y, t) dxdy (14)

that approximates q (x, y, t) at every cell Ii, j for a given time-step t. The spatial derivatives must therefore be ap-
proximated using cell-averages. In the section that follows we give a short introduction to the Weighted Essentially
Non-Oscillatory (WENO) scheme for doing so. The scheme is used to discretize the equations in space, and the result-
ing system of coupled ODE’s may then be integrated using a Strong-Stability-Preserving type, explicit Runge-Kutta
scheme from some given initial condition, see Shu (1998) for a comprehensive introduction to the schemes.

2.1. The Test-Case
We present the test-case used to evaluate to what extend the original Parareal algorithm and CAAP can be used

to accelerate the process of finding a numerical approximation to the solution of (11). The test-case uses the radially-
symmetric elliptic paraboloid bathemetry as the classic test-case presented in Thacker (1981), but with a different
initial condition so that shocks develop as time progresses. In the model, a simulation of inundation is included. The
initial condition in the model proposed by Thacker is a standing half-wave in a radially-symmetric elliptic paraboloid
bathymetry. For the test case, Thacker presents an analytical solution. The case is excellent for testing correctness of
an implementation, but is insufficient in the context of time-parallel integration as the test-case contains no shocks. In
the numerical solution of hyperbolic systems of partial differential equations, an important aspect is the computational
challenges associated with handling shocks. It is not unreasonable to assume that the presence of shocks may have an
effect on the convergence rate of the Parareal method. Furthermore the complexity of the solution is limited. Using
the simple test-case of Thacker may thus lead to a false positive in the sense that observing a fair convergence rate on
this particular problem may not say much about the case for hyperbolic problems in general. Due to the limitations
of the classical test-case we instead propose a new shock-containing test-case which is more suitable to investigate
the extend to which Parareal is applicable for such a problem. We maintain the usage of a radially-symmetric elliptic
paraboloid to describe the bottom bathymetry of the basin, given by

z (x, y) = h0
r2

a2 (15)

with r =

√
(x − L/2)2 + (y − L/2)2 for (x, y) ∈ [0, L] × [0, L]. Here a is the radius of the basin and h0 the basin depth

at the center of the paraboloid. We define the perturbation hp to the water surface at rest as

hp (x, y) = A cos2 (ωθ) exp
(
− (r − R)2

2σ2

)
(16)

with θ = arctan
(

y−.5L
x−.5L

)
. The initial water height may then be written as

h (x, y, 0) =


h0 + hp (x, y) − z (x, y) if r (x, y) ≤ a
0 otherwise

(17)

with the discharges hu (x, y, 0) = 0 and hv (x, y, 0) = 0 for all (x, y) ∈ [0, L] × [0, L]. For the parallel integration tests
in Section 5, we let L = 1000km with a basin radius of a = 400km and a depth h0 = 1km. The waves peak Hp at
radius R = 300km from the center of the map, with an amplitude A = 500m, frequency ω = 4 and width σ = 10km.
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In Fig. 1 the initial condition is depicted on a 1600x1600 cells map. In Fig. 2 the solution, as computed by the
scheme introduced in Section 2.2.2, is presented in 10 minute intervals. Clearly the solution contains rich interaction
between smooth regions and shocks as well as wetting and drying. The complexity of the solution may be increased
by increasing ω.

1km

0
0

103km

103km

0

Figure 1: The initial condition, 17 for a wave amplitude of A = 500m, a frequency ω = 4 and width a σ = 10km with the bathymetry 15 using
L = 1000km, a basin radius of a = 400km, and a depth h0 = 1km. The solution of 11 with the initial condition depicted is given for 10 minute
intervals in Fig. 2.

2.2. High order WENO for the shallow water wave equation

To solve the shallow water wave equation, a highly accurate and efficient WENO method to descritize derivatives
in space along with a Strong-Stability-Preserving Explicit Runge-Kutta Scheme for integration in time was used. This
scheme is 3rd order accurate in both space and time. To use Parareal, a “coarse” operator GδT is required that acts as
a preconditioner in the Parareal iteration matrix. To construct such a preconditioner, we use a simple finite volume
scheme with an approximate Riemann solver for a first order in time and space method. This coarse operator is
introduced in Section 2.2.1, followed by the introduction of the 3rd order WENO-SSPRK scheme in Section 2.2.2. In
both cases, the methods are presented in their complete form, but without derivation and analysis.

2.2.1. Roe’s Method
For the coarse operator G∆T to solve Eq. (11), we use a standard finite volume method method with an approx-

imate Riemann solver. The method is explicit, first order in time and space. The complete scheme is outlined in
equations (18)-(28). Here we omit any details on derivation and analysis and instead refer to LeVeque (2002) for a
comprehensive introduction to finite volume methods. Henceforth we will refer to the scheme as “Roe’s Method”
following the convention used in LeVeque (2002). To find Qn+1

i j from Qn+1
i j , one must evaluate

Qn+1
i j = Qn

i j −
∆t
∆x

(
Fn

i+ 1
2 , j
− Fn

i− 1
2 , j

)
− ∆t

∆y

(
Gn

i, j+ 1
2
−Gn

i, j− 1
2

)
+

1
∆t

s
(
Qn+1

i, j

)
(18)

where
Fn

i− 1
2 , j

=
1
2

(
f
(
Qn

i−1, j

)
− f

(
Qn

i, j

))
− 1

2

∣∣∣∣∣J̃
f
i− 1

2 , j

∣∣∣∣∣
(
Qn

i, j − Qn
i−1, j

)
(19)

Gn
i, j− 1

2
=

1
2

(
g
(
Qn

i, j−1

)
− g

(
Qn

i, j

))
− 1

2

∣∣∣∣∣J̃
g
i, j− 1

2

∣∣∣∣∣
(
Qn

i, j − Qn
i, j−1

)
(20)

Here s is the RHS function taking into account bathymetry. Note that due to the special structure of s (Q), the scheme
(18) may be evaluated explicitly, see (11). In the above, J̃ f

i− 1
2 , j

and J̃g
i, j− 1

2
are derived from the Jacobian matrices of

f (q) and g (q) respectively.
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103km

0
103km0

(a)

103km

0
103km0

(b)

103km

0
103km0

(c)

103km

0
103km0

(d)

103km

0
103km0

(e)

103km

0
103km0

(f)

103km

0
103km0

(g)

103km

0
103km0

(h)

103km

0
103km0

(i)

103km

0
103km0

(j)

103km

0
103km0

(k)

103km

0
103km0

(l)

Figure 2: Water height as a function of time for the test case (17) at 10 minute intervals from T0 = 0 to T = 110min. Beige and green colors are
used to indicate land whilst shades of blue indicate water depth. Light effects are added to highlight location of shocks.
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From (13) we see that

f ′ (q) =


0 1 0

−u2 + gh 2u 0
−uv v u

 , g′ (q) =


0 0 1
−uv v u

−v2 + gh 0 2v

 (21)

The matrices J̃ f
i− 1

2 , j
and J̃g

i, j− 1
2

are then defined as the Jacobian matrices (21) evaluated at the “Roe Averages” defined
by

ũi− 1
2 , j

=

√
hi−1, jui−1, j +

√
hi, jui, j√

hi−1, j +
√

hi, j
, ṽi− 1

2 , j
=

√
hi−1, jvi−1, j +

√
hi, jvi, j√

hi−1, j +
√

hi, j
, h̃i− 1

2 , j
=

1
2

(
hi−1, j + hi, j

)
(22)

ũi, j− 1
2

=

√
hi, j−1ui, j−1 +

√
hi, jui, j√

hi, j−1 +
√

hi, j
, ṽi, j− 1

2
=

√
hi, j−1vi, j−1 +

√
hi, jvi, j√

hi, j−1 +
√

hi, j
, h̃i, j− 1

2
=

1
2

(
hi, j−1 + hi, j

)
(23)

where c̃i− 1
2 , j

=
√

gh̃i− 1
2 , j

and c̃i, j− 1
2

=
√

gh̃i, j− 1
2
. The Jacobian matrices (21) have the following two eigensystem

decompositions

Λ f =



u
u − √

gh
u +

√
gh

 , R f =


0 1 1
0 u − √

gh u +
√

gh
1 v v

 (24)

Λg =



v
v − √

gh
v +

√
gh

 , Rg =


0 1 1
1 u u
0 v − √

gh v +
√

gh

 (25)

from which we define

Λ̃
f
i− 1

2 , j
=



ũi− 1
2 , j

ũi− 1
2 , j
− c̃i− 1

2 , j

ũi− 1
2 , j

+ c̃i− 1
2 , j

 , R̃ f
i− 1

2 , j
=



0 1 1
0 ũi− 1

2 , j
− c̃i− 1

2 , j
ũi− 1

2 , j
+ c̃i− 1

2 , j

1 ṽi− 1
2 , j

ṽi− 1
2 , j

 (26)

and

Λ̃
g
i, j− 1

2
=



vi, j− 1
2

ṽi, j− 1
2
− c̃i, j− 1

2

ṽi, j− 1
2

+ c̃i, j− 1
2

 , R̃g
i, j− 1

2
=



0 1 1
1 ũi, j− 1

2
ũi, j− 1

2

0 ṽi, j− 1
2
− c̃i, j− 1

2
ṽi, j− 1

2
+ c̃i, j− 1

2

 (27)

so we can express
∣∣∣∣∣J̃

f
i− 1

2 , j

∣∣∣∣∣ and
∣∣∣∣∣J̃

g
i, j− 1

2

∣∣∣∣∣ as

∣∣∣∣∣J̃
f
i− 1

2 , j

∣∣∣∣∣ = R f
i− 1

2 , j

∣∣∣∣∣Λ
f
i− 1

2 , j

∣∣∣∣∣
(
R f

i− 1
2 , j

)−1 ∣∣∣∣∣J̃
g
i, j− 1

2

∣∣∣∣∣ = Rg
i, j− 1

2

∣∣∣∣∣Λ
g
i, j− 1

2

∣∣∣∣∣
(
Rg

i, j− 1
2

)−1
(28)

which completes the scheme for computing Qn+1
i j from Qn

i j using only explicit evaluations.

2.2.2. WENO and Explicit SSP-RK
In simulation Fig. 2, a 3rd order accurate finite volume WENO discretization with a Strong Stability Preserving

Runge-Kutta is used to compute the numerical solution. We here present a very short overview of the method.
Integrating (12) over a cell Ii j one finds that

dQi j (t)
dt

= − 1
∆x∆y


∫ y j+ 1

2

y j− 1
2

f
(
q
(
xi+ 1

2
, y, t

))
dy −

∫ y j+ 1
2

y j− 1
2

f
(
q
(
xi− 1

2
, y, t

))
dy +

∫ x j+ 1
2

x j− 1
2

g
(
q
(
x, y j+ 1

2
, t
))

dx −
∫ x j+ 1

2

x j− 1
2

g
(
q
(
x, y j− 1

2
, t
))

dx −
∫

Ii, j

s (q, z) dxd



(29)
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where Qi j (t) is the cell average as defined in (14). We introduce the operator L as an approximation to the RHS of
(29) by the following conservative scheme

L
(
Qi j

)
= − 1

∆x

(
f̂i+ 1

2 , j
− f̂i− 1

2 , j

)
− 1

∆y

(
ĝi, j+ 1

2
− ĝi, j− 1

2

)
+

1
∆x∆y

∫

Ii, j

s (q, z) dxd (30)

where the numerical flux f̂i+ 1
2 , j

is defined as

f̂i+ 1
2 , j

=
∑

α

wαF
(
q−

i+ 1
2 ,y j+βα∆y

, q+

i+ 1
2 ,y j+βα∆y

)
(31)

Here βα and wα are Gaussian quadrature nodes and weights for approximating the integration in y as

f̂i+ 1
2 , j
≈ 1

∆y

∫ y j+ 1
2

y j− 1
2

f
(
q
(
xi+ 1

2
, y, t

))
dy (32)

and q±
i+ 1

2 ,y
are the WENO reconstructed values, computed as described in Shu (1998). F is the numerical flux as

defined in (19). The approximation of ĝi+ 1
2 , j

is defined in the same way, but using (20). With L
(
Qi j

)
as defined in

(30), we perform the integration using the optimal third order SSP Runge-Kutta scheme that reads

Q(1) = Qn + ∆tL (Qn)

Q(2) =
3
4

Qn +
1
4

Q(1) +
1
4

∆tL
(
Q(1)

)

Qn+1 =
1
3

Qn +
2
3

Q(1) +
2
3

∆tL
(
Q(2)

)
(33)

A complete introduction to the numerical method is outside the scope of this paper, we refer to Shu (1998) for an
introduction to ENO and WENO based methods, and Xing and Shu (2011) for higher order WENO applied to the
shallow water wave equation with wetting and drying of cells.
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Figure 3: Profiling the parallel-in-space WENO based Tsunami simulation when solving the 1600x1600 cells test-case presented in Section 2.1.
As the number of cores increase, the halo-exchange between subdomains comes to dominate. Due to the small size of the test-case, the code already
effectively stops scaling with 128 cores. The code was profiled on the EPFL Bellatrix cluster. Each node in the cluster contains two 8-core Intel
Xeon E5-2660 CPUs and Inifiniband QDR 2:1 connectivity between nodes. Using a single core on a single node, the computation takes 11817
seconds to complete. Using 4 nodes for a total of 64 cores, the computation needs 278 seconds to complete.
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3. Space-Time Domain Decomposition

The simulation that we wish to accelerate uses an explicit numerical scheme as described in Section 2.2.2, no linear
systems needs to be solved so its parallel-in-space implementation is straightforward. Following each time-step of the
explicit Runge-Kutta scheme (33), a two-cell wide halo is exchanged between all adjacent spacial subdomains using
MPI with one rank per subdomain. The parallel-in-space implementation scales well up to 5 nodes (80 cores) on the
small 1600x1600 cell test-case using the EPFL Bellatrix cluser. With 6 nodes and above, the cost of communication
between subdomains becomes too large for further parallel acceleration as illustrated in the profiling measurements
in Fig. 3. For further parallel acceleration, we turn to time-parallel techniques. The efficient implementation of the
standard Parareal algorithm for combined space and time parallelism is more involved. In Fig. 4, the space-time
parallel implementation is conceptually depicted. White lines indicate division of spatial subdomains, and each image
indicate a time-subdomain. For Parareal, a coarse operator acting as a preconditioner in the solution of the system (9)
is needed, and this preconditioner must be parallel in space as well. Unlike the 3rd order WENO+SPP RK used to
solve equation (11) for the simulation, the preconditioner GδT , based on Roe’s method, only needs a single cell halo to
be exchanged between the subdomains in space. Whilst the coarse operator GδT is trivial to make parallel, efficiently
solving the recursive Parareal formulation (10) is not so. A number of schedulers for dividing the computational work
on clusters have been proposed in the literature. A direct approach for distributing the work is to apply the coarse
and fine operators in strictly separate phases, i.e., in each iteration, a number of worker node-groups each compute
the application of FδT in parallel. When done, data is collected on a manager node that performs the sequential
application of GδT , followed by the Parareal corrections, before distributing the data to the worker node-groups for
a new iteration. If GδT is computationally very cheap, the manager-worker approach may work sufficiently well. In
practice however, it has been observed repeatedly that this approach is too restrictive for Parareal to achieve speed-up
for anything but simple problems. In Aubanel (2011), a better scheduler was introduced, simple in design, yet near
optimal in terms of exploiting the dependencies that exists in the recursive tree that defines Parareal. The algorithm
introduced is equvilant to first executing Alg. 1 followed by a single execution of Alg. 2.

Parallel-in-time integration with long time-subdomains has certain advantages when using an appropriate sched-
uler. In that case the communication pattern becomes dominated by a few large time-subdomain interfaces that must
be communicated between node-groups. The potential of this latency tolerant communication pattern was investi-
gated in early papers by Srinivasan and Chandra (2005); Xiao and Aubanel (2012). Unfortunately convergence is
slow for most problems when using parallel-in-time integration of long intervals with the standard Parareal algorithm
as has been demonstrated in many early papers, see Nielsen (2012) for an overview, and later established rigorously
in Gander and Hairer (2014). To achieve faster convergence one must therefore yet again divide the interval to be
integrated into smaller intervals onto where we can apply multiple cycles of Parareal. This could be done as outlined
in Fig. 5 with Alg. 3, using multiple consecutive cycles of Parareal implemented with the scheduler proposed by
Aubanel (2011). In Berry et al. (2012), an ”event-based” Parareal scheduler was proposed. Here a data-dependency
driven approach is taken to scheduling such that when all dependencies are satisfied for a time-subdomain, the work
is scheduled to an available node.

∆Tn ∆Tn+1 ∆Tn+2 ∆Tn+3 ∆Tn+4
Time

Figure 4: Domain decomposition in space and time of the WENO based solver introduced in Section 2. White lines indicate division of spatial
subdomains, and each image indicate a subdomain spanning ∆T in time.

10



In the scheduler we present here, we combine the simplicity of the scheduler introduced in Aubanel (2011),
with the scalability of Berry et al. (2012), whilst introducing a parameter to tune the trade-off between node-group
occupancy and speed of convergence.

We denote this proposed work scheduler as ”adaptive Parareal”. The fundamental approach is to let adjacent
cycles of parareal overlap in execution time. When a node-group completes its work on a time-subdomain in a given
cycle, it will immediately begin working on the closest inactive time-subdomain in the next cycle. This may happen
in one of two ways. The node-group may commence working on the time-subdomain on the next cycle using the most
recent iteration available on the preceding time-subdomain, or it may wait for the next iteration on the preceding time-
subdomain to become available. Which choice is better is not obvious and will be situation and problem dependent. If
a recent iterate is soon to be available, it may be better waiting. If on the other hand the preceding time-subdomain has
just commenced work on a new iteration, it may be better initiating work on the most recent iteration available rather
than waiting for the preceding time-subdomain to complete it’s current work. We introduce a parameter β ∈ [0, 1]
that controls how patient the node-groups shall be. When a node-group receives a signal that the next time-subdomain
has become active, it will immediately return a solution state if the progress on the application of FδT is less than
β. The progress indicator on FδT could for example be on the time that has been integrated relative to the total
time-subdomain length. Thus, if β is small, the scheduler is patient and if β is large the scheduler is impatient, and
will value minimizing idle nodes over convergence in a small number of iterations. The communication pattern in
this model is asynchronous. The iteration and time at which the convergence criteria is satisfied is unknown for all
time-subdomains, it is therefore not possible a priori to predict the communication pattern. To enable node-groups to
signal their status, and potentially send a time-subdomain interface, whilst they are in the process of computing FδT ,
a separate signal thread is needed. Each signal thread will receive nc − 1 signals, each time a signal is received it
indicates that next time-subdomain has become active. When receiving a signal, it will set the status of the flag that
indicates if the next time-subdomain is active to true, After doing so, the thread checks if the progress indicator on
FδT is smaller than β. If it is, it will send the most recent iterate of the time-subdomain interface that it is computing.
In our implementation, Posix Threads was used to create the signal threads needed in the adaptive scheduler.

Schematic examples for β = 0 and β = 1 are presented in Fig. 6a and in 6b, respectively. In the figures, black dots
and arrows indicate the sending and receiving of time-subdomain interfaces. The blue arrows indicate the message
to signal that a time-subdomain has become active. Pseudo code for the proposed adaptive scheduler is given in
Alg. 5 along with Alg. 4 for the corresponding signal thread. Separate communicators are created for each spatial-
subdomain, and all communication of time-subdomain interfaces happens trough dedicated inter-communicators.
Doing so provides encapsulation of application code already written, whilst providing a natural distinction between
the parallelism in computing derivatives in space and parallelism in the time integration procedure.

Algorithm 1 Initialization procedure for a parareal cycle

1: k ← 0
2: if FirstNodeGroup then
3: Ũ0

id∆T
← G∆T Uk

id∆T−1

4: U0
id∆T
← Ũ0

id∆T

5: Send Converge and U0
id∆T

on forw intercomm
6: tag send = tag send + 1;
7: ConvergeNext ← TRUE
8: else
9: Recv Converge and U0

id∆T−1 on back intercomm
10: Ũ0

id∆T
← G∆T U0

id∆T−1

11: U0
id∆T
← Ũ0

id∆T

12: if !LastNodeGroup then
13: Send Converge and U0

id∆T
on forw intercomm

14: tag send = tag send + 1;
15: end if
16: end if
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Figure 5: Multiple consecutive executions of the standard fully distributed Parareal by Aubanel (2011). Each time-subdomain is handled by a
unique node-group, possibly parallel-in-space. Dark gray indicate that a node-group is computing the preconditioner GδT , light gray indicate that
a node-group is computing FδT . Drawn for nt = 8, nc = 3. Shorter time-subdomains may lead to faster convergence, but this comes at the cost
of more frequent communication of the solution-states at time-subdomain interfaces. In each cycle, the tolerance is satisfied by the 3rd correction.
The direction of information flow shifts with each cycle to reduce the number of time-subdomain interface states sent.
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(a) Adaptive scheduler with β = 0
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(b) Adaptive scheduler with β = 1

Figure 6: Schematic representation of a proposed “Adaptive” Parareal scheduler. The scheduler lets multiple cycles of Parareal overlap in execution
time. Drawn here for nt = 8, nc = 3. Dark gray indicate that a node-group is computing the preconditioner GδT , light gray indicate that a node-
group is computing FδT . Black dots and arrows indicate the sending and receiving of time-subdomain interface solution state. Blue arrows indicate
a signal being sent to inform a the node-group working on a time-subdomain that the next time-subdomain has become active. Each node-group has
such a boolean flag that indicates if the next time-subdomain is active or not. (a) β = 0 for a fully patient model where node-groups that finished a
time-subdomain in a cycle will wait for a correction to be made before receiving a new state to commence their work. (b) β = 1 for a fully impatient
model where node-groups that finished a time-subdomain in a cycle will receive a new state to commence their work immediately.
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Algorithm 2 A single parareal cycle.

1: while !Converge do
2: k ← k + 1
3: Ûk−1

id∆T
← F∆T Uk−1

id∆T−1
4: if ConvergeNext then
5: Converge← TRUE
6: Uk

id∆T
← Ûk−1

id∆T

7: if !LastNodeGroup then
8: Send Converge and Uk

id∆T
on forw intercomm

9: tag send = tag send + 1;
10: end if
11: break
12: end if
13: Recv Converge and Uk

id∆T−1 on back intercomm
14: Ũk

id∆T
← G∆T Uk

id∆T−1

15: Uk
id∆T
← Ũk

id∆T
+ Ûk−1

id∆T
+ Ũk−1

id∆T

16: if Converge & |Uk
id∆T
− Uk−1

id∆T
| > ε then

17: Converge← FALSE
18: ConvergeNext ← TRUE
19: end if
20: if !LastNodeGroup then
21: Send Converge and Uk

id∆T
on forw intercomm

22: tag send = tag send + 1;
23: end if
24: if Converge then
25: break
26: end if
27: end while

Algorithm 3 Pseudocode for a parareal implementation running nc consecutive cycles of parareal, each with nt

time-subdomains. The direction of information flow shifts with each cycle to reduce the number of time-subdomain
interfaces solution states to be sent. Schematical example in Fig. 5.

1: id∆T ← idng, U0
0 ← u0

2: back intercomm← intercomm between node-groups idng and idng − 1
3: forw intercomm← intercomm between node-groups idng and idng + 1
4: for i = 1 to nc do
5: tag send = tag send + 1;
6: id∆T ← (i − 1)nt + idng

7: converge, convergeNext, FirstNodeGroup, LastNodeGroup← FALSE
8: if ( idng = 1 and mod i = 1 ) or ( idng = nt and mod i = 0 ) then
9: FirstNodeGroup← TRUE

10: end if
11: if ( idng = 1 and mod i = 0 ) or ( idng = nt and mod i = 1 ) then
12: LastNodeGroup← TRUE
13: end if
14: procedure Algorithm 1
15: procedure Algorithm 2
16: procedure Swap back intercomm and forw intercomm
17: end for
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Algorithm 4 Signal thread for asynchronous communication in the adaptive parareal Alg. 5. The values k, Converge,
U, LastNodeGroup and tag send are shared with the main work thread.

1: for i = 1 to nc − 1 do
2: Recv LastNodeGroup on forw intercomm
3: if k > 0 and status (F∆T ) < β and tag send = 0 then
4: Converge← FALSE
5: Send Converge and Uk−1

id∆T
on forw intercomm.

6: tag send = tag send + 1;
7: end if
8: end for

Algorithm 5 Pseudocode for an adaptive parareal implementation with nc cycles each with nt simultaneously active
time-subdomains. Schematical examples of the scheduler is given in figure 6a for β = 0 and 6b for β = 1.

1: procedure: Initiate algorithm 4 on separate thread
2: back intercomm← intercomm between node-groups idng and idng − 1
3: forw intercomm← intercomm between node-groups idng and idng + 1
4: Converge,ConvergeNext, FirstNodeGroup, LastNodeGroup← FALSE
5: id∆T ← idng, U0

0 ← u0, i← 0
6: if idng = 1 then
7: FirstNodeGroup← TRUE
8: end if
9: if idng = nt then

10: LastNodeGroup← TRUE
11: end if
12: procedure Algorithm 1
13: while i < nc do
14: id∆T ← i · nt + idng

15: procedure Algorithm 2
16: i← i + 1, k ← 0, tag send ← 0
17: if i < nc then
18: Send LastNodeGroup on back intercomm
19: LastNodeGroup← TRUE
20: ConvergeNext ← FALSE
21: Recv Converge and Uk

id∆T−1 on back intercomm
22: if Converge then
23: Converge← FALSE
24: ConvergeNext ← TRUE
25: end if
26: Ũk

id∆T
← G∆T Uk

id∆T−1

27: Uk
id∆T
← Ũk

id∆T

28: k ← 1
29: if !LastNodeGroup and tag send = 0 then
30: Send Converge and Uk−1

id∆T
on forw intercomm

31: tag send = tag send + 1;
32: end if
33: end if
34: end while
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4. Choosing the time-subdomain length

In the previous section we introduced a scheduler for efficiently executing multiple consecutive Parareal cycles.
It does so by letting adjacent cycles overlap in execution time, and by adaptively choosing what previous iteration to
initiate a new cycle from. This means that that we are effectively free to choose whatever time-subdomain length we
wish, regardless of the number of active subdomains in time to use. Given some IBVP problem, and a fixed number
of nodes nt at our disposal to do parallel-in-time integration of some fixed (long) time-interval [0,Tend]. The question
arises of what time-subdomain length δT should one choose?

Since the question is posed for some fixed nt and Tend, it is equivalent to asking: How many cycles of Parareal
should we split our time domain of length Tend into? The purpose of this section is to develop an approach that allows
for an informed choice on δT before running the code. The original Parareal algorithm was presented as parallel-
in-time integration of a fixed time interval with the time-subdomain δT =

Tend
nt

. In practice, with this approach,
there is a limit to how long Tend may be. Therefore, for integration over a long time interval, one must decouple
the number of independent time-subdomains from the total time-domain to be integrated. This can be done either
trough a simple stop-start strategy of multiple consecutive “cycles” of plain Parareal, as depicted in Fig. 5 for nc = 3
cycles, or with a more advanced approach were consecutive cycles are allowed to overlap in execution time across
nodes, as introduced with the adaptive scheduler Alg. 5 and visualized schematically in Fig. 6. Decoupling the time-
subdomain length δT from nt and Tend, in addition to allowing for integration of long time-domains, also induces the
freedom to choose the time-subdomain length as one deem appropriate for achieving high parallel efficiency. When
choosing a time-subdomain length, one makes a fundamental trade-off between how often to run the coarse operator
and communicate the full solution-state sequentially across all active time subdomains, and the speed at which the
algorithm will converge. If the time-subdomain δT is chosen to be very short, one can expect fast convergence in
few iterations k. But, the algorithm may fail to provide any parallel acceleration because the preconditioner GδT will
be applied more frequently, and because all the intermediate solution-states Un

k also has to be communicated across
nodes more often. Conversely, if one choose a “very long” time-subdomain δT , up to δT ≤ Tend

nt
, although we may not

be limited by the sequential execution of GδT and communication of solution states Un
k , but the algorithm may instead

need many iterations to convergence, limiting the extent to which parallel acceleration is possible. Ideally, we want
to choose δT so that these effects are balanced in such a way that we achieve the highest possible speed-up. Finding
such a δT is made complicated by the fact that we do not know in general how k depends on nt and δT . As we shall
see, this does however not mean that we must make an uninformed random choice on δT .

4.1. Single Cycle Analysis

Before embarking on an analysis of the multi-cycle Parareal algorithm presented in Section 3, we consider the
standard “single cycle” Parareal algorithm. Henceforth we will refer to the collection of CPU’s and possible co-
processors that compute the application of FδT and GδT to Un

k as a node-group. With this notation we abstract away
whatever (spacial) domain-decomposition that may have been applied in constructing FδT and GδT . The parallel
speed-up of a single cycle of length ∆T = ntδT = Tend as presented in Fig. 5 can be written as

ψ =
ntCF δT

nt

(
CGδT + T w

C
)

+ κ (nt, δT )
(
CF δT + CGδT + T w

C
) (34)

Here nt denotes the number of time-subdomains, i.e. the number of node groups that may be used. T w
F and T w

G denotes
the wall-time it takes for the two operators FδT and GδT to be applied to a state Un

k when computed on a node-group.
Both T w

F and T w
G are assumed proportional to δT with some constants CF , CG so that

T w
F = CF δT, T w

G = CGδT + T w
C (35)

Here T w
C denotes the wall-time it takes to communicate a solution state from one node-group to another. T w

C is
included in the complete execution time of the preconditioner GδT since for every application of GδT there will be
one state Un

k that must be communicated from one node-group to another. The function κ : N+ × R+ → N+ is the
number of iterations needed before the convergence criteria is satisfied. It is important to note here that the only
unknown is κ (nt, δT ). δT and nt are known, and the rest are constants that can be measured for a specific cluster
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on a given problem. Let us first explore the limit as the time-subdomain length δT becomes small. Assuming that
limδT→0 κ (nt, δT ) = 1, from (34) one finds that

lim
δT→0

ψ =
nt

(nt + 1)

T w
F

T w
C
δT (36)

becomes an upper bound for achievable speed-up. This is not surprising, as by Amdahls law, T w
F /T

w
G must be an upper

limit to speed-up for the Parareal algorithm. The above simply states that for small δT , the cost T w
C of communicating

the solution states Un
k sequentially across nodes becomes the dominating term that limits parallel speedup. Whilst

(36) may be descriptive, it does not let us choose δT in any meaningful way. Our goal is to find the δT that maximize
equation (34), so let us frame the problem in the form of an optimization problem

δTopt = arg max
δT∈R+

ψ (δT ) (37)

For the optimization, the derivative of ψ (δT ) w.r.t. δT is given as

∂

∂ (δT )
ψ (δT ) =

∂

∂ (δT )
ntCF δT

(
nt

(
CGδT + T w

C
)

+ κ (nt, δT )
(
CF δT + CGδT + T w

C
))−1

= ntCF
(κ (nt, δT ) + nt) T w

C −
(
CF + CG

)
κ′ (nt, δT ) δT 2

(
ntCGδT + (κ (nt, δT ) + nt) T w

C +
(
CF + CG

)
κ (nt, δT ) δT

)2

(38)

The optimization problem is not solvable as we do not know κ (nt, δT ), nor do we know it’s derivative κ′ (n, δT ). We
can, however, still gain insight from the above. We assume that limδT→0 κ (nt, δT ) = 1 and that limδT→∞ κ (nt, δT ) = nt.
In addition we know that κ′ (nt, δT ) = 0 for all but a select few δT when κ (nt, δT ) changes abruptly as the convergence
criteria is accepted. For some fixed κ∗ ∈ [1, nt] with κ′ (nt, δT ) = 0, as δT → 0, ∂

∂(δT )ψ increases and the speed-up
ψ → 0. Conversely, as δT → ∞ then ∂

∂(δT )ψ → 0 asymptotically. So the maximum exists in the limit δT → ∞.
With κ′ (nt, δT ) = 0 it follows that

(
CF + CG

)
κ′ (nt, δT ) δT 2 = 0. The denominator does not change sign, so for any

fixed κ∗, there are no inflection points δT ∈ R+, i.e., we can not hope to find any point where the speedup decreases
particularly fast as we decrease δT , even for some fixed κ∗. Because of these limitations, we take another approach at
finding some approximate solution δT̂opt ≈ δTopt to (37). While we might not be able to quantify the gain in speed-up
from κ (nt, δT ) becoming smaller as we let δT → 0, we can quantify the associated cost of doing so in terms of added
wall-time spent communicating Un

k across node-groups. Let εc ∈ (0., 1) be a parameter that denotes the fraction of the
decrease, due to communication, in speedup that we are willing to accept. The optimization problem is then recast in
the following form

δT̂opt = min
δT∈R+

δT s.t.ψ (δT ) ≥ εcψmax (39)

with some prior guess κ∗ ≈ κ (nt, δT ). The above stated problem is now to find the smallest δT for which the reduced
speed-up due to communication is less than εc fraction of the maximal speedup ψmax. The above problem is much
simpler to solve. Writing out the inequality (39) using (34) one arrives at the following criteria

ntCF δT

nt

(
CGδT + T w

C
)

+ κ∗
(
CF δT + CGδT + T w

C
) ≥ εc lim

δT→∞
ntCF δT

nt

(
CGδT + T w

C
)

+ κ∗
(
CF δT + CGδT + T w

C
) (40)

to be satisfied. We may derive an explicit expression for δT̂opt by evaluating the r.h.s limit and manipulating the
inequality to find

δT̂opt =
εc

1 − εc

(κ∗ + nt) T w
C(

κ∗
(
CG + CF

)
+ ntCG

) (41)

as an approximate solution to (39). In what sense does the problem (39) with solution (41) relate to the original
optimization problem (37)? Equation (41) is not a solution to the optimization problem (37), rather it is a intended as
a rough estimate of δT̂opt, that could possibly also be used over several iterations of running the algorithm to improve
the estimate. The above analysis, however interesting, is somewhat artificial. Solving (37), we seek to optimize
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parallel speed-up over a domain Tend = ntδT that varies in size with δT . For parallel-in-time speedup when solving
(11) on some (long) fixed time-domains Tend, we are interested in the multi-cycle Parareal introduced in the previous
section. In that case Tend = nc∆T = ncntδT . We consider the number of simultaneously active time-subdomains nt to
be a fixed parameter and wish to find the optimal time-subdomain length δT to use. In what follows we build on the
insight gained.

4.2. Multi Cycle Analysis
We seek an approach to estimate δTopt for Parareal with multiple cycles, as introduced in Section 4.1. For the

stop-restart Parareal as drawn in Fig. 5, the parallel speed-up may be written as

ψ (δT ) =
ncntTF

ncntTG +
∑nc

i=1 κi (nt, δT )
(
TF + TG

)

=
ncntCF δT

ncnt

(
CGδT + T w

C
)

+
∑nc

i=1 κi (nt, δT )
(
CF δT + CGδT + T w

C
)

(42)

Note that the above is technically an upper bound estimate as the Parareal correction and other overhead is ignored. As
in the previous section, κi (nt, δT ) is unknown, and it is therefore not possible to solve the optimization problem (37)
to find δTopt a priori. As before we take the approach of solving an optimization problem on the form (39) instead.
We first let 〈κ∗〉 = 1

nc

∑nc
i=1 κi and assume 〈κ∗〉 ≈ κ

(
Tend
nt
, nt

)
to recover

ncntCF δT

ncnt

(
CGδT + T w

C
)

+ nc 〈κ∗〉
(
CF δT + CGδT + T w

C
) ≥ εc lim

δT→ Tend
nt

ψ (δT )

=
εcntCF Tend

nt

(
CGTend + ntT w

C
)

+ 〈κ∗〉
(
CF Tend + CGT + ntT w

C
)

(43)

With nc =
Tend
ntδT

, the solution to (39) becomes

ˆδT β=0
opt =

εc (nt + 〈κ∗〉) T w
CTend

(nt + 〈κ∗〉) ntT w
C + (1 − εc)

(
ntCG +

(
CF + CG

) 〈κ∗〉) Tend
(44)

In the case of the Adaptive Parareal as drawn in Fig. 6, consecutive cycles are allowed to overlap in execution time
across nodes. For the case of the “impatient” algorithm, β = 1, this will ideally hide the initialization cost of the zeroth
iteration for all but the first cycle. In this case we may approximate the speed-up as

ψ (δT ) =
ncntCF δT

nt

(
CGδT + T w

C
)

+
∑nc

i=1 κi (nt, δT )
(
CF δT + CGδT + T w

C
) (45)

Note that (45) is no longer equivalent to (34) for the single cycle case. We take another look at the derivative for ideas
on how to solve (37).

∂

∂ (δT )
ψ (δT ) = −TendCF

ntCG + T
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T w
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As before we assume 〈κ∗〉′ = 0, from the above it is clear that if
√
〈κ∗〉TendT w

Cn−2
t C−1

G = δT ≤ Tend
nt

then the derivative

ψ (δT ) changes sign somewhere in
(
0, Tend

nt

]
, e.g., the largest value of ψ (δT ) is not necessarily in the limit δT → Tend

nt
.

With ∂
∂(δT )ψ (δT ) = 0, it is easy to see that only a single maxima exists for δT in R+

ˆδT max =

√
〈κ∗〉TendCC

n2
t CG

(47)
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Inserting (47) into (45) and using that nc =
Tend
ntδT

, the associated speedup is

ψmax =
ncntCF δTmax

nt

(
CGδTmax + T w

C
)

+ nc 〈κ∗〉
(
CF δTmax + CGδTmax + T w

C
)

=
ntCF Tend
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)

+ n2
t T w
C + 2

√
n2

t CC 〈κ∗〉CGTend

(48)

With ψmax as above, the constraint (39) to be satisfied may be written as

ncntCF δT

nt

(
CGδT + T w

C
)

+ nc 〈κ∗〉
(
CF δT + CGδT + T w

C
) ≥ εcψmax (49)

Inserting (48) in (49) and manipulating the inequality we recover

εcn2
t CGδT 2 + εc 〈κ∗〉T w

CTend ≤
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√
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CCGTend + (1 − εc)
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)
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))
δT (50)

from which one may show that the smallest δT satisfying the above quadratic inequality is

ˆδT β=1
opt = ˆδT ε −

√
(δTε)2 − ˆδT 2

max (51)

where
ˆδT ε =

1
εc

ˆδT max +
1 − εc

2εc

(
CC
CG

+
1

CC
ˆδT 2

max
(
CF + CG

))
(52)

and ˆδT max as defined in (47). This yields a rough estimate of ˆδT β=1
opt that ensures that the choice of δT is not too

long so that communication bandwidth is “wasted”, while also making sure that moving data does not become a new
significant limitation to parallel acceleration. In deriving ˆδT β

opt for the adaptive scheduler with β → 1, i.e. impatient,
it was assumed that the initialization procedure of the zeroth iteration was perfectly hidden by the adaptive scheduler
for all but the first cycle as depicted in Fig. 6b. This is unlikely to be the case for all cycles, and we therefore suspect

that the optimal δT will lie somewhere in the interval
[

ˆδT β=0
opt , ˆδT β=1

opt

]
spanned by (51) and (51). In Section 5, parallel

scaling is measured and presented for the test-case using each scheduler with a time-subdomain length as estimated
from (44) and (51).
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Figure 7: Parallel speedup and efficiency measured as a function of number of consecutive Parareal cycles nc used when solving the complex wave
ODE (53) on nt = 20 processors parallel-in-time and letting CF = 10000ms, CG = 100ms, T w

c = 100ms. The square, circle and triangle markers
indicate the estimates for the optimal number of cycles to use as computed using (44), (51) and the average of the two respectively.
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Measuring the speedup as a function of time-subdomain length for all possible time-subdomain lengths for the test-
case introduced in Section 2.1 is computationally intractable. Instead we perform a test on a smaller numerical
experiment by computing an approximation to the scalar complex initial value problem

d
dt

u (t) = λu (t) , u0 = 1, λ = i (53)

with FδT , and preconditioner GδT given by

FδT Uk
n = (1 − λdt)−

δT
dt Uk

n, GδT Uk
n = (1 − λdT )−

δT
dT Uk

n (54)

using dt = 10−5 and dT = 10−3 in FδT and GδT respectively. Parallel-in-time integration until Tend = 100 with nt = 20
simultaneously active time-subdomains on 20 processors. The test is performed using from nc = 1 to nc = 100 cycles,
corresponding to time-subdomain lengths from δT = 10−3 to δT = 10−1. The tolerance on the residual is set to
ε = 0.01 for convergence. Since here the application of both FδT and GδT only require 6 floating point operations,
the wall-time used by a processors is set manually to CF = 10000ms, CG = 100ms, and communication of a time-
subdomain interval to T w

c = 100ms. The numerical experiments are presented in Fig. 7. The estimates for the number
of cycles that will result in the highest are indicated by the square, triangle and circle markers. Computed with the a
priori guess 〈κ∗〉 = 2 and limit εc = 95%. We observe good agreement between the predictions and the actual optimal
time-subdomain lengths for large speedup.
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Figure 8: Error of Uk
n with respect to the analytical solution to (53) as a function of t for parallel-in-time integration of (11) with time-steps and

tolerance ε = 0.01 as used for the measurements in Fig. 7. (a) Standard Parareal, nc = 1. (b) Standard Parareal, nc = 5. (c) Adap. Parareal, nc = 5,
β = 0. (d) Adap. Parareal, nc = 5, β = 0.8. The black dashed line indicate accuracy of the fine operator with respect to the analytical solution, and
the black dotted line indicate the accuracy of Ukconv

n obtained at the iteration for which the convergence criteria was satisfied.
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In particular we note how the δT resulting in the highest speedup for the adaptive scheduler was measured to be very
close to the arithmetic average of nc from the estimates (44) and (51) which indicate that the estimates may indeed be
useful for approximating the optimal choice of time-subdomain length a priori.

4.3. Convergence Measurements

The convergence properties of a single cycle of the Parareal algorithm have been well studied both theoretically
Bal (2005); Gander and Vandewalle (2007); Gander and Hairer (2008); Wu (2015) and experimentally by Ruprecht
(2014); Steiner et al. (2015) among many others. The convergence properties of multiple consecutive cycles of
Parareal and, in particular, when consecutive cycles are allowed to overlap, as in the proposed adaptive scheduler,
might be very different. In Fig. 8 convergence for the test equation (53) is presented with nc = 5 cycles. Since an
analytical solution to (53) exists for all times t, we can measure the error as a function of t for each iteration so to gain
insight into how the algorithm converges. One notes that convergence happens in substantially fewer iterations when
using nc = 5 time-subdomains in Fig. 8b than when only using a single cycle as in Fig. 8a. The convergence of the
adaptive scheduler with β = 0 and β = 0.8 is presented in Fig. 8c and Fig. 8d respectively.

5. Numerical Experiments: Parallel Scaling

Numerical experiments using time-parallel integration on the test case introduced in section 2.1 is presented in
the following. For all numerical experiments, the EPFL Bellatrix general purpose cluster consisting of 424 compute
nodes, each with two 8-core Intel Xeon Sandy Bridge processors and infiniband QDR 2:1 network has been used. The
adaptive work scheduler combined with the approach of estimating the time-subdomain length that optimally balances
communication cost and convergence speed, is collectively denoted as CAAP. In all cases, an approximation to (11) is
being computed on an interval of length Tend = 60min. A tolerance of ε = 10−4 on the residual between consecutive
iterations is used as a convergence criteria. To evaluate if the solution found iteratively trough Parareal or CAAP is as
accurate as the sequential WENO-RK solution, we define two errors measurements.
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Figure 9: Water surface at T = 60min starting with the initial condition described in Section 2.1 at T = 0min as computed when using (a) Roe’s
method (b) WENO-RK (c) CAAP with tolerance ε = 10−4 on the residual.
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The relative error with respect to the sequential WENO-RK solution

ε̃
(
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ntnc

)
=
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∣∣∣Ukconv
ntnc − F ntnc

δT u (·,T0)
∣∣∣2 dΩ

∫
Ω
F ntnc
δT u (·,T0) dΩ

(55)

and the relative error with respect to the true solution

ε̂
(
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ntnc

)
=

√∫
Ω

∣∣∣Ukconv
ntnc − u (·,Tend)

∣∣∣2 dΩ
∫

Ω
u (·,Tend) dΩ

(56)

No analytical solution is known to exists for our test-case. We therefore approximate the ”true” solution using a very
fine mesh with 14400x14400 cells. The relative error ε̂ between the WENO-RK approximation and the true solution is
3.7 · 10−3. For Roe’s method, used here as a preconditioner in Parareal and CAAP, the relative accuracy ε̂ is 1.2 · 10−2.
Ideally the error of the Parareal solution and the CAAP solution with respect to the true solution should be very close
to that of the sequential WENO-RK solution. In the numerical experiments presented in Table 1, we measure ε̂ to be
between 3.7 · 10−3 and 3.9 · 10−3 for CAAP, and between 4.0 · 10−3 and 4.1 · 10−3 for the standard Parareal algorithm.

To estimate the number of Parareal cycles to use in CAAP, i.e. the time-subdomain length δT , we need to measure
the constants CF , CG and T w

F on the EPFL Bellatrix cluster on which we will run our numerical experiments. We run
the code over the full interval of 60 minutes so to estimate the two ratios CF and CG. Doing so we find that we need
roughly 4000ms to compute 1 minute of simulation time when using 5 nodes in space. For the coarse operator, we
need roughly 300ms.

CF = 4018.3ms/min, CG = 309.4ms/min, T w
F = 75ms (57)

Measuring the time-consumption of transferring a complete solution state across a time-subdomain interface from one
group of nodes to another, denoted T w

F , proved quite difficult as the number fluctuates substantially depending on the
load of the cluster and of the location of the nodes. Doing multiple runs on different node locations, we settled on
75ms on average when using 5 nodes in each group. In comparison it takes around 15ms to exchange the halo on the
1600x1600 cell test-case mesh. We let εc = 0.95 and 〈k∗〉 = 2, and use these measured quantities with (44) and (51)
to estimate the optimal number of cycles nc to split the time domain into. The values are listed in Table 1, the high
estimates computed using (51) and the low using (44) , the estimates are rounded. The parallel speed-up of the average
number of cycles between the two estimates is also tested. As can be seen from the numbers in the table, it appears
to generally give the highest speed-up to use the average of the two estimates. In Fig. 10, the equivalent scaling
measurements of the space+time parallel code is presented. The maximum attainable speed-up for the conventional
parallel-in-space WENO-RK implementation is 49.0 using 5 nodes (80 cores). Using 6 nodes and above, no further
speedup is possible. Adding CAAP with β = 0.5 and nt = 24, we measure a speedup of 228.6 using 1920 cores. The
factor 4.5 reduction in time to solution of the test-case is substantial and may be critical in cases where a simulation
is expected to take days. It is also worth noticing that for CAAP with β = 0.5 and nt = 8, we measure a parallel-
in-time efficiency of almost 35%. To the knowledge of the author, this is the highest parallel efficiency that has
been demonstrated for parallel-in-time integration of a purely hyperbolic PDE system using domain decomposition
in time. We conjecture that for less challenging problems, e.g. diffusion dominated, still higher efficiency may be
possible using the proposed method.

In our application the Roe’s method that we use as a coarse operator is roughly 13 times faster than the WENO-
RK solver that we wish to accelerate. This means that no matter how many simultaneously active time-subdomains
we use, we will never gain more than a factor 13 reduction in time to solution with respect to the purely space
parallel WENO-RK implementation. We did attempt using a cheaper coarse operator, the Lax-Friedrichs method
with a diffusion term for stability. With this operator the ratio in question was roughly 40:1, potentially allowing for
much create parallel-in-time speed-up. Unfortunately we observed that in order for the algorithm to convergence, the
length of the time-subdomain had to be as short as a single time-step, otherwise the algorithm would diverge for a
couple of iterations before eventually converging, leading to no, or very little, speedup. With a time-subdomain length
equivalent to a single time-step, little parallel-speed-up was possible because the full spatial solution state had to be
transfered from one group of nodes to another in between every timestep.
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Type, nt = 8 nc δT [s] ε̃ ε̂ P. Eff.[%] P. Eff.[%] P. Speedup
Stnd. Parareal 1 450 1.4 · 10−3 4.1 · 10−3 14.9 9.1 58.4
Mltpl. Parareal 5 90 1.4 · 10−3 3.9 · 10−3 18.3 11.2 71.8
CAAP, β = 0.0 5 90 1.4 · 10−3 3.9 · 10−3 25.5 15.6 100.1
CAAP, β = 0.5 5 90 1.5 · 10−3 3.9 · 10−3 22.2 13.6 87.2
CAAP, β = 1.0 5 90 1.5 · 10−3 3.9 · 10−3 22.0 13.5 86.4
Mltpl. Parareal 20 22.5 1.4 · 10−3 3.9 · 10−3 27.1 16.6 106.4
CAAP, β = 0.0 20 22.5 1.4 · 10−3 3.9 · 10−3 27.9 17.1 109.5
CAAP, β = 0.5 20 22.5 1.5 · 10−3 3.9 · 10−3 34.1 20.9 133.8
CAAP, β = 1.0 20 22.5 1.5 · 10−3 3.8 · 10−3 31.7 19.4 124.4
Mltpl. Parareal 40 11.25 1.4 · 10−3 3.9 · 10−3 24.8 15.2 97.0
CAAP, β = 0.0 40 11.25 1.4 · 10−3 3.9 · 10−3 25.8 15.8 101.2
CAAP, β = 0.5 40 11.25 1.4 · 10−3 3.8 · 10−3 31.8 19.5 125.1
CAAP, β = 1.0 40 11.25 1.5 · 10−3 3.8 · 10−3 29.4 18.0 115.1
Type, nt = 16 nc δT [s] ε̃ ε̂ P. Eff.[%] P. Eff.[%] P. Speedup
Stnd. Parareal 1 225 1.4 · 10−3 4.1 · 10−3 11.1 6.8 86.8
Mltpl. Parareal 3 75 1.5 · 10−3 4.0 · 10−3 8.7 5.3 67.3
CAAP, β = 0.0 3 75 1.5 · 10−3 3.9 · 10−3 11.9 7.3 93.7
CAAP, β = 0.5 3 75 1.5 · 10−3 3.9 · 10−3 12.1 7.4 95.0
CAAP, β = 1.0 3 75 1.5 · 10−3 3.9 · 10−3 11.6 7.1 90.3
Mltpl. Parareal 15 15 1.5 · 10−3 3.8 · 10−3 15.5 9.5 120.9
CAAP, β = 0.0 15 15 1.6 · 10−3 3.8 · 10−3 23.8 14.6 187.4
CAAP, β = 0.5 15 15 1.6 · 10−3 3.8 · 10−3 23.8 14.6 186.7
CAAP, β = 1.0 15 15 1.7 · 10−3 3.9 · 10−3 21.2 13.0 166.9
Mltpl. Parareal 15 7.5 1.5 · 10−3 3.9 · 10−3 17.1 10.5 134.0
CAAP, β = 0.0 30 7.5 1.7 · 10−3 3.8 · 10−3 22.4 13.7 175.8
CAAP, β = 0.5 30 7.5 1.6 · 10−3 3.7 · 10−3 23.3 14.3 182.5
CAAP, β = 1.0 30 7.5 1.7 · 10−3 3.9 · 10−3 22.5 13.8 176.9
Type, nt = 24 nc δT [s] ε̃ ε̂ P. Eff.[%] P. Eff.[%] P. Speedup
Stnd. Parareal 1 150 1.5 · 10−3 4.0 · 10−3 10.1 6.2 118.6
Mltpl. Parareal 3 50 1.5 · 10−3 3.9 · 10−3 7.3 4.5 85.6
CAAP, β = 0.0 3 50 1.6 · 10−3 3.9 · 10−3 9.0 5.5 106.0
CAAP, β = 0.5 3 50 1.6 · 10−3 3.9 · 10−3 8.5 5.2 98.8
CAAP, β = 1.0 3 50 1.6 · 10−3 3.9 · 10−3 8.5 5.2 99.3
Mltpl. Parareal 15 10 1.5 · 10−3 3.9 · 10−3 13.1 8.0 153.7
CAAP, β = 0.0 15 10 1.7 · 10−3 3.8 · 10−3 18.6 11.4 218.0
CAAP, β = 0.5 15 10 1.7 · 10−3 3.9 · 10−3 19.4 11.9 228.6
CAAP, β = 1.0 15 10 1.7 · 10−3 3.9 · 10−3 17.1 10.5 201.0
Mltpl. Parareal 25 6 1.6 · 10−3 3.7 · 10−3 11.4 7.9 151.3
CAAP, β = 0.0 25 6 1.8 · 10−3 3.7 · 10−3 17.1 10.5 201.7
CAAP, β = 0.5 25 6 1.7 · 10−3 3.8 · 10−3 18.6 11.4 218.4
CAAP, β = 1.0 25 6 1.9 · 10−3 3.8 · 10−3 14.7 9.9 189.4

Table 1: Parallel acceleration as measured using nt = {8, 16, 24} simultaneously active time-subdomains. Within each time-subdomain, 5 nodes
(80 cores) are used parallel in space, for a total of {640, 1280, 1920} cores, respectively. The first parallel efficiency column indicate the efficiency
of the parallel-in-time integration procedure, the second column indicates the combined space-time parallel efficiency. The relative error ε̂ between
the WENO-RK approximation and the correct solution is 3.7 · 10−3. The maximum attainable speed-up for the conventional parallel-in-space
WENO-RK implementation is 49.0 using 5 nodes (80 cores). Adding CAAP with β = 0.5 and nt = 24, we measure a speedup of 228.6 using 1920
cores.
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Figure 10: Speedup as a function of number of cores used in the space-time parallel code for solving the test case introduced in Section 2.1 as
measured on the EPFL Bellatrix cluster. The cluster consists of 424 compute nodes, each with two 8-core Intel E5-2660 CPUs and an Infiniband
QDR 2:1 network. Tend = 60min, and nc = {20, 15, 15} for nt = {8, 16, 24} respectively. Tolerance ε = 10−4 on the residual was used as the
convergence criteria.
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6. Summary

The Parareal algorithm is one among several new algorithms that seek to introduce parallelism in time. Unlike
other proposed models, Parareal has the distinct advantages of being potentially highly scalable and minimally inva-
sive. The algorithm may to a large extent simply be wrapped around existing simulation code in combination with
the introduction of some coarse operator. The parallel efficiency of the method, particularly for hyperbolic problems
and for integration of long time domains has however been a major concern. In this paper we have demonstrated
parallel-in-time efficiency of upwards of 35% for long time integration of a purely hyperbolic problem using CAAP.
This is more than double of what we could achieve using the standard Parareal approach using a scheduler presented in
Aubanel (2011). With CAAP, we achieved a speedup of 228 in our space-time parallel tests, compared to a maximum
speedup of 49 for the original code. The factor 4.5 reduction in time to solution of the test-case is substantial and may
be critical in cases where a simulation is expected to take days.

For the coarse operator GδT we used a lower order discretization that operates on the same mesh as the original
WENO-RK solver. The choice was motived by experience gathered testing multiple different coarse operators on a
simpler 1D problem. In our experience, for fast convergence, one should avoid if possible to introduce a coarsened
mesh as the interpolation or projection between grids appear to adversely affect convergence speed. In addition, we
observed during these preliminary tests that designing a coarse operator in such a way that it is as accurate as possible
under the constraint that CF /CG > nt is satisfied seems to lead to the highest overall speedup.

While we consider our findings to be substantial progress in the understanding of how to move past the strong
scaling saturation limit of classical spatial domain-decomposition methods, there are potential improvements to be
made. Using CAAP we have observed small load imbalances arise due to the nature of the test-case used. In the
nonlinear shallow water wave equation solver for which we implemented time-parallel integration, time-steps are
adaptive. In between each integration step of (33), the longest possible next timestep is computed and therefore
some time-subdomains end up using a different number of time-steps than others. This in turn creates small load
imbalances which may only be partially hidden by the adaptive scheduler. We speculate that a better approach may
be to use the proposed optimal time-subdomain estimates derived in Section 4 to compute an optimal wall-time and
from it set a fixed number of time-steps to use in a time-subdomain during the zeroth iteration by the preconditioner,
i.e., the decomposition in time is not fixed, but computed dynamically and set during the zeroth iteration for each
time-subdomain as the parallel-in-time integration procedure progresses. In this way one may achieve significantly
better load-balancing for problems with an adaptive timestep integrator, and in doing so the proposed scheduler would
be adaptive not only in balancing utilization and convergence, but also in setting the length of each time-subdomain
dynamically during the integration procedure.

Finally, we note that Parareal and CAAP as methods for domain-decomposition in time are different from classical
(spatial) domain decomposition in the sense that several copies of the solution states at time-subdomain interfaces
must be stored. This extra use of memory is not of primary concern since Parareal is of interest in the strong scaling
limit. In Nielsen and Hesthaven (2016) it was, however, demonstrated how these extra states may be used to make the
algorithm in Aubanel (2011) tolerant to node failures, even when the underlying operators FδT and GδT themselves
are not. Since the adaptive scheduler proposed in Section 3 is based on overlapping cycles of the same scheduler, we
expect that it too may be made tolerant towards node failures in a similar manner.
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