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ABSTRACT
We propose a novel, semi-supervised approach towards domain

taxonomy induction from an input vocabulary of seed terms. Unlike

all previous approaches, which typically extract direct hypernym

edges for terms, our approach utilizes a novel probabilistic frame-

work to extract hypernym subsequences. Taxonomy induction from

extracted subsequences is cast as an instance of the minimum-

cost flow problem on a carefully designed directed graph. Through

experiments, we demonstrate that our approach outperforms state-

of-the-art taxonomy induction approaches across four languages.

Importantly, we also show that our approach is robust to the pres-

ence of noise in the input vocabulary. To the best of our knowledge,

this robustness has not been empirically proven in any previous

approach.

CCS CONCEPTS
• Computing methodologies→Artificial intelligence; Infor-
mation extraction; Ontology engineering; Semantic networks;

KEYWORDS
Knowledge acquisition; taxonomy induction; term taxonomies; al-

gorithms; flow networks; minimum-cost flow optimization;

1 INTRODUCTION
Motivation. Lexical semantic knowledge in the form of term

taxonomies has been beneficial in a variety of NLP tasks, including

inference, textual entailment, question answering and information

extraction [3]. This widespread utility of taxonomies has led to mul-

tiple large-scale manual efforts towards taxonomy induction, such

asWordNet [22] and Cyc [21]. However, such manually constructed

taxonomies suffer from low coverage [15] and are unavailable for

specific domains or languages. Therefore, in recent years, there has

been substantial interest in extending existing taxonomies auto-

matically or building new ones [4, 5, 19, 34, 38, 40].
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Approaches towards automated taxonomy induction consist of

two main stages:

(1) extraction of hypernymy relations (i.e., “is-a" relations
between a term and its hypernym such as apple→fruit)

(2) structured organization of terms into a taxonomy,
i.e., a coherent tree-like hierarchy.

Extraction of hypernymy relations has been relatively well-

studied in previous works. Its approaches can be classified into

two main categories: Distributional and Pattern-based approaches.

Distributional approaches use clustering to extract hypernymy

relations from structured or unstructured text. Such approaches

draw primarily on the distributional hypothesis [12], which states

that semantically similar terms appear in similar contexts. The main

advantage of distributional approaches is that they can discover re-

lations not directly expressed in the text. In contrast, Pattern-based
approaches utilize pre-defined rules or lexico-syntactic patterns to

extract terms and hypernymy relations from text [13, 26]. Patterns

are either chosen manually [13, 20] or learnt automatically via boot-

strapping [35]. Pattern-based approaches usually result in higher

accuracies. However, unlike the distributional approaches, which

are fully unsupervised, they require a set of seed surface patterns

to initiate the extraction process.

Early work on the second stage of taxonomy induction, namely

the structured organization of terms into a taxonomy, focused on

extending existing partial taxonomies such asWordNet by inserting

missing terms at appropriate positions [34, 39, 40]. Another line of

work focused on taxonomy induction fromWikipedia by exploiting

the semi-structured nature of the Wikipedia category network [7,

10, 24, 30, 31, 36]. Subsequent approaches to taxonomy induction

focused on building lexical taxonomies entirely from scratch, i.e.,
from a domain corpus or the Web [1, 2, 19, 25, 28, 38].

Automated taxonomy induction from scratch is preferred be-

cause it can be used over arbitrary domains, including highly

specific or technical domains, such as Finance or Artificial Intelli-

gence [25]. Such domains are usually under-represented in existing

taxonomic resources. For example, WordNet is limited to the most

frequent and the most important nouns, adjectives, verbs, and ad-

verbs [11, 23]. Similarly,Wikipedia is limited to popular entities [18],

and its utility is further diminished by slowed growth [37].

Past approaches to taxonomy induction from scratch either as-

sume the availability of a clean input vocabulary [28] or employ

a time-consuming manual cleaning step over a noisy input vocab-

ulary [38]. For example, Figure 1 shows the pipeline of a typical

taxonomy induction approach from a domain corpus [38]. An ini-

tial noisy vocabulary is automatically extracted from the domain

https://doi.org/10.1145/3132847.3133041


Figure 1: Traditional process for taxonomy induction from a domain-specific corpus [38].

corpus using a term extraction tool, such as TermExtractor [32], and
is further cleaned manually to produce the final vocabulary. This

requirement severely limits the applicability of such approaches

in an automated setting because clean vocabularies are usually

unavailable for specific domains.

To handle these limitations, we designed our approach to induce

a taxonomy directly from a noisy input vocabulary. Consequently,

it is the first work to fully automate the taxonomy induction process

for arbitrary domains.

Contributions. In this paper, we present a novel, semi-supervised

approach for building lexical taxonomies given an input vocabulary

of (potentially noisy) seed terms. We leverage the existing work on

hypernymy relations extraction and focus on the second stage, i.e.

the organization of terms into a taxonomy. Our main contributions

are as follows:

● We propose a novel probabilistic framework for extracting

longer hypernym subsequences from hypernymy relations,

as well as a novel minimum-cost flow based optimization

framework for inducing a tree-like taxonomy from a noisy

hypernym graph.

● We empirically show that our approach outperforms state-

of-the-art taxonomy induction approaches across four dif-

ferent languages, while achieving >32% relative improve-

ment in F1-measure over the Food domain.

● We demonstrate that our subsequence-based model is ro-

bust to the presence of noisy terms in the input vocabulary,

and achieves a 65% relative improvement in precision over

an edge-based model while maintaining similar coverage.

To the best of our knowledge, this is the first approach to-

wards taxonomy induction from a noisy input vocabulary.

The rest of the paper is organized as follows. In Section 2, we

describe our taxonomy induction approach. In Section 3, we discuss

our experiments and performance results. In Section 4, we discuss

related work. We conclude in Section 5.

2 TAXONOMY INDUCTION
Given a potentially-noisy vocabulary

1
of seed terms as an input,

we define our goal as inducing a taxonomy consisting of these

seed terms (and possibly other terms). This taxonomy is a directed

acyclic graph with terms as the nodes and the edges indicating a

hypernymy relationship between the terms. For our task, we assume

the availability of a database of candidate hypernymy relations.

1

In this work, we use terminology and vocabulary interchangeably.

Candidate hypernym Frequency

company 5536

fruit 3898

apple 2119

vegetable 928

orange 797

tech company 619

brand 463

hardware company 460

technology company 427

food 370

Table 1: Candidate hypernyms for the term apple.

Multiple such resources have been compiled and made available

publicly over the years. A prominent example of such a resource

is WebIsA [33], a collection of more than 400 million hypernymy

relations for English, extracted from the CommonCrawl web corpus

using lexico-syntactic patterns. However, such resources come with

a considerable number of noisy candidate hypernyms, typically

containing a mixture of relations such as hyponymy, meronymy,

synonymy and co-hyponymy. For example, WebIsA has more than

12,000 hypernyms for the term apple, including noisy hypernyms

such as orange, everyone and smartphone. A sample set of candidate

hypernyms and their occurrence frequencies for the term apple
taken from WebIsA is shown in Table 1.

Our approach to taxonomy induction consists of three main

steps:

(1) extracting hypernym subsequences for the given seed terms

(Section 2.1),

(2) aggregating the extracted subsequences into an initial hy-

pernym graph (Section 2.2),

(3) pruning the hypernym graph using a minimum-cost flow

approach to induce the final taxonomy (Section 2.3).

2.1 Hypernym Subsequences Extraction
Unsupervised or semi-supervised approaches to taxonomy induc-

tion typically aim to extract single hypernym edges among terms

from noisy candidate hypernyms [19, 28]. In contrast, our approach

consists of extracting hypernym subsequences (where a subse-
quence is a series of one or more individual hypernym edges).

Tomotivate this, we first note that Table 1 includes hypernyms of

apple at different levels of generality, such as fruit and food. In fact,

we observe this pattern in the candidate hypernyms of most terms.

This suggests that we can leverage such information to not only



Figure 2: Average rank and normalized frequency ofWordNet edges
vs. height of edge.

Figure 3: An exampleDAGbuilt using generalizations of term apple.

extract the direct hypernyms of apple, but to also extract longer

hypernym subsequences, such as apple→fruit→food.
This becomes even more important given the result by Velardi

et al. [38], who demonstrated that hypernym extraction becomes

increasingly erroneous as the generality of terms increases, mainly

due to the increase in term ambiguity. To further support this hy-

pothesis, we perform an experiment where we first randomly sam-

ple 100 paths from Wordnet. For each edge a→b in a sampled path,

we plot the normalized frequency
2
of “b as a candidate hypernym

for a” against the height of the edge, where frequencies are com-

puted using lexico-syntactic patterns (cf. Table 1). We also plot the

average rank of b among candidate hypernyms of a, where candi-
date hypernyms are ranked by their normalized frequencies in a

decreasing order. Results of this experiment are shown in Figure 2.

Since edges in WordNet are assumed to be ground truth, it is de-

sired that they have a higher normalized frequency and lower ranks.

This small-scale experiment demonstrates that as the height of the

edge increases, the normalized frequencies decrease whereas the

average ranks increase. Therefore, the accuracy of patterns-based

hypernymy detection decreases for more general terms that appear

higher in generalization paths. Hence, for such terms, it makes

sense to not solely base the hypernym selection on a noisy set of

candidate hypernyms. We can potentially improve the accuracy of

selected hypernyms for general terms (such as fruit) by relying on

extracted subsequences starting from more specific terms (such as

apple). Those subsequences would be evidenced by the less-noisy

candidate hypernyms of the specific terms.

In sum, extracting hypernym subsequences is both possible and
potentially beneficial. The remainder of this section describes our

model that realizes this intuition.

2

Normalization is performed by dividing frequency counts by the maximum.

Model. We now describe our model for extracting hypernym

subsequences for a given term. We begin with a general formu-

lation using directed acyclic graphs (referred to as DAG), and we

make simplifying assumptions to derive a model for hypernym

subsequences. We use the following notations:

● t0: a given seed term, e.g., apple;
● lt : lexical head of any term t , e.g., lt=soup for t=chicken soup;
● E: Hypernym Evidence, i.e., the set of all the candidate hyper-
nymy relations, in the form of 3-tuples (hyponym, hypernym,
frequency);
● Ek(t): Hypernym Evidence for term t , i.e., the set of top-k
candidate hypernyms for term t , having the highest frequency

counts (Table 1 shows a sample from Ek(t) for t=apple);
● Ek(t ,m): mth

ranked candidate hypernym from Ek(t), where
m ≤ k , and ranks are computed by sorting candidate hypernyms

in decreasing order of frequency counts;

● sim(ti , tj): A similarity measure between terms ti and tj esti-
mated using evidence E;
● Gt : a DAG consisting of generalizations for a term t (Figure 3
shows an example of a possible DAG for t=apple).

For a given term t0, we define the goal of this step of our taxon-

omy induction approach as finding a DAG Ĝt0 , which maximizes

the conditional probability ofGt0 , given the evidence Ek(t0), for a
fixed k :

Ĝt0 = argmax

Gt
0

Pr(Gt0 ⋃︀Ek(t0))

= argmax

Gt
0

Pr(Ek(t0)⋃︀Gt0) × Pr(Gt0) (1)

Due to the combinatorial nature of the search space ofGt0 , finding

an exact solution to the above equation is intractable, even for a

small k . Therefore, we make the following simplifying assumptions,

which facilitate an efficient search through the search space of Gt0 :

● Gt0 can be approximated as a set of independent hypernym

subsequences with possibly repeated hypernyms. In other words,

Gt0 = ⋃bi=1 Sit0 where S
i
t0 is the i

th
subsequence and b is a fixed

constant. For example, the DAG shown in Figure 3 can be approx-

imated as a set of three subsequences: (i) apple→fruit→food, (ii)
apple→hardware company→company, and (iii) apple→technology
company→company. This assumption intuitively derives from

the fact that any DAG can be represented by a finite number of

subsequences.

● ∀i , the joint events (Ek(t0),Sit0) are independent. Intuitively,
this assumption implies that each subsequence independently

contributes to the evidence Ek(t0).
● ∀i , the direct hypernyms of t0 in S

i
t0 are unique. In other words,

for a candidate hypernym hc of given term t0, there is at most

one subsequence with the first edge t0→hc . Intuitively, this as-
sumption implies that a candidate hypernym hc uniquely sense-

disambiguates the term t0, thus resulting in a only one possible

generalization subsequence.

In conjunction, these assumptions imply that Gt0 is composed of b
hypernym subsequences, where each subsequence independently

attempts to generate Ek(t0). Given these assumptions, Equation 1



transforms into:

Ĝt0 = argmax

⋃bi=1 S
i
t
0

b
∏
i=1

Pr(Ek(t0)⋃︀S
i
t0) × Pr(S

i
t0) (2)

Estimation. We now describe the estimation of Pr(Ek(t0)⋃︀Sit0)
and Pr(Sit0) for a hypernym subsequence Sit0 . In order to motivate

the estimation of the conditional probability Pr(Ek(t0)⋃︀Sit0), we
start with an example. Consider a valid hypernym subsequence

apple→fruit→food→substance→matter→entity for the term apple
(whose candidate hypernyms are in Table 1). At first sight, it might

seem desirable for a candidate hypernym from Ek(t0) (e.g., fruit)
to have a high similarity with as many terms in the subsequence

as possible. However, since the similarity measure is based on the

hypernym evidence E, it is plausible that terms such as matter and
entity have a low similarity with the candidate hypernym fruit,
simply because they are at a higher level of generality. To avoid pe-

nalizing such valid subsequences, we let the conditional probability

Pr(Ek(t0)⋃︀Sit0) be proportional to the maximum similarity possible

between the candidate hypernym and any term in the subsequence

(e.g., for the candidate hypernym fruit, the similarity is 1 as fruit is
in the subsequence). We aggregate those similarity values across

the candidate hypernyms. More formally, assuming subsequence

Sit0 = t0→hi1→hi2. . .hin , where n is the length of Sit0 , we compute

the conditional probability as:

Pr(Ek(t0)⋃︀S
i
t0)∝

k
∑
m=1
(λ1)m max

j∈(︀1,n⌋︀
(sim(Ek(t0,m),hi j)) (3)

where λ1 (a fixed parameter) serves as a rank-penalty to penalize

candidate hypernyms with lower frequency counts.

We now proceed to compute Pr(Sit0), the other constituent of Equa-
tion 2. Towards that, we assume that Sit0 is a collection of indepen-

dent hypernym edges. Thus, Pr(Sit0) becomes the product of the

individual edges’ probabilities:

Pr(Sit0)∝ Pre(t0,hi1) × (λ2)
n
n−1
∏
j=1

Pre(hi j ,hi(j+1)) (4)

where Pre(x1,x2) is the probability of an individual hypernym edge

x1→x2 between terms x1 and x2; λ2 is a length penalty parameter.

Finally, we estimate Pre(x1,x2) as a log-linear model using a set of

features f, weighted by the learned weight vector w:

Pre(x1,x2) ∝ exp (w ⋅ f(x1,x2)) (5)

We also use this edge probability to compute the aforementioned

similarity function (sim) as:

sim(xi ,x j) = max (Pre(xi ,x j),Pre(x j ,xi)) (6)

Intuitively, Pr(Ek(t0)⋃︀Sit0) promotes subsequences containing a

larger number of candidate hypernyms fromEk(t0)whereas Pr(Sit0)
promotes subsequences consisting of individual edges with a larger

probability of hypernymy.

Subsequence Extraction. After inserting Equations 3 and 4 into
Equation 2 and taking logarithm, the objective function becomes:

Ĝt0 = argmax

⋃bi=1 S
i
t
0

b
∑
i=1
[︀ log

k
∑
m=1
(λ1)m max

j∈(︀1,n⌋︀
(sim(Ek(t0,m),hi j))

+ logPre(t0,hi1) + nλ2 +
n−1
∑
j=1

logPre(hi j ,hi(j+1))⌉︀

This objective function leads to the following search algorithm

for the extraction of subsequences:

(1) For a given term t0, iterate over all candidate hypernyms

in Ek(t0).
(2) For each hc ∈ Ek(t0), perform a depth-limited beam search

over the space of possible subsequences by recursively

exploring the candidate hypernyms of hc (i.e., Ek(hc)).
(3) For each hc ∈ Ek(t0), choose the subsequence S with the

highest score (i.e., log(Pr(Ek(t0)⋃︀S) × Pr(S))).
(4) Choose the top-b candidate hypernyms based on their cor-

responding subsequence scores.

While, in theory, we can iterate over all candidate hypernyms in

Ek(t0), in practice, we employ an alternative two-stage execution

that significantly improves the running time as well as produces

more meaningful subsequences:

● Search phase: Proceed as in the aforementioned steps. However,

in the special case where a candidate hypernym hc is a compound

term and its lexical head lhc is also present in Ek(t0), skip hc in

step (1) of the algorithm
3
. For example, for t0 = apple, candidate

hypernyms tech company, software company and hardware company
are skipped in step (1) due to the presence of company in Ek(t0)
(cf. Table 1).

● Expansion phase: In this phase, we augment the subsequences

extracted in the search phase to account for skipped compound

terms. We focus on the case where the lexical head of the skipped

compound terms occurs in a subsequence. In that case, we ex-

pand the incoming edge of the lexical head with zero or more

of those compound terms. For example, in the subsequence ap-
ple→company→organization, a potential expansion of the edge

apple→company is: apple→American software company→software
company→company. However, special attention has to be taken

while generating these potential expansions. For example, the ex-

pansion apple→American software company→British software com-
pany→company is invalid due to the co-hyponymy edge American
software company→British software company. In contrast, the ex-

pansion apple→American software company→software company→
company is a valid expansion. To avoid invalid expansions, we

restrict the possible expansions to the case where the set of pre-

modifiers of a compound term is a superset of its hypernym’s

pre-modifiers (e.g., {American, software }⊃{software}).
We generate all possible expansions for each edge and rank them

by averaging a TF-IDF-style metric across the pre-modifiers of com-

pound terms in each expansion. Our aim in the ranking is two-fold:

i) promoting the pre-modifiers, which frequently appear in the evi-

dence Ek(t0), and ii) penalizing the noisy pre-modifiers unrelated

3

Lexical heads of terms have consistently played a special role in taxonomy induc-

tion [10, 31].



Initial subsequences

mortadella→sausage→meat→food
laksa→soup→dish→food
Expanded subsequences

mortadella→large Italian sausage→sausage→process meat→meat→food
laksa→spicy noodle soup→noodle soup→soup→dish→food

Table 2: Examples of hypernym subsequences found during the
search phase, and their expanded versions.

to t0 that frequently occur in compound terms (e.g., several, other,
etc.). Hence, we compute the TF score of a pre-modifier as its aver-

age frequency of occurrence in the candidate hypernyms Ek(t0).
We compute IDF as the average frequency of occurrences of the

pre-modifier in Ek(t) for a random term t . Finally, we choose the
top ranked expansion per edge.

To illustrate the result of the previous steps, we show in Table 2

an example of extracted subsequences along with their expanded

versions for the food domain. Intuitively, the two-stage execution

serves to distinguish between two fundamentally different forms

of generalization:

(1) type-based generalization, which provides core types as

generalizations (e.g., apple→company→organization).
(2) attribute-based generalization, which enriches type-based

generalization edges. For example, apple→american software
company→software company→company enriches the individ-

ual type-based edge apple→company.
In our experiments, models that distinguished between these two

different forms of generalizations consistently performed better

than models, which attempted to unify them.

Features. We now describe the edge features that we employ

for estimating the probability of a hypernymy relation between

two terms (cf. Equation 5):

● Normalized Frequency Diff (nd ): Similar to [28], this feature is

an asymmetric hypernymy score based on frequency counts. We

compute nd(xi ,x j) by first normalizing the frequency counts ob-

tained (i.e., the counts in Ek(xi)) for term xi as follows:nf (xi ,x j) =
freq(xi ,x j)

max

m
freq(xi ,xm)

, where freq(xi ,x j) is the frequency count of can-

didate hypernym x j in Ek(xi). Further, we subtract the score in
the opposite direction to downrank synonyms and co-hyponyms:

nd(xi ,x j) = nf (xi ,x j) − nf (x j ,xi).
● Generality Diff (дd ): We introduce a novel feature for explicitly

incorporating the term generality (or abstractness) in our model.

To this end, we first define the generality д(t) of a term t as the log
of the number of distinct hyponyms present in all candidate hyper-

nymy relations (E); i.e., д(t) = log(1+ ⋃︀x ⋃︀ x→t ∈ E⋃︀). We define the

generality of an edge as the difference in generality between the

hypernym and the hyponym: дe(xi ,x j) = д(x j) − д(xi).
Intuitively, we aim to promote edges with the right level of

generality and penalize edges, which are either too general (e.g.,

apple→thing) or too specific (i.e., edges between synonyms or co-

hyponyms, such as apple→orange). To realize this intuition, we first
sample a random set of terms and collect the edges with highest

nd for these terms (hereafter referred to as top edges). We compare

the distribution of generality (i.e., дe ) for the top edges vs. the dis-

tribution of generality for a set of randomly sampled edges. The

assumption is that it is more likely to sample the generality of a

correct edge (i.e., edge at right level of generality) from the distri-

bution of top edges as compared to random edges. Hence, given Dt
and Dr as the Gaussian distributions estimated from the samples of

generality for top edges and random edges respectively, we define

the feature as: дd(xi ,x j) = PrDt (дe(xi ,x j)) − PrDr (дe(xi ,x j)).

Parameter Tuning. We estimate the weights for features (w in

equation 5), using a support vector machine trained on a manually

annotated set of 500 edges. For beam search in the search phase,

we use a beam of width 20, and limit the search to subsequences of

maximum length 4. We set the rest of the parameters by running

grid-search over a manually-defined range of parameters using a

small validation set
4
. The final values of parameters are as follows:

k=10, b=4, λ1=λ2=0.95.

2.2 Aggregation of Subsequences
Up till now, we have described our methodology to generate hyper-

nym subsequences starting from a given term. In this section, we

aggregate the hypernym subsequences obtained for a set of seed

terms, in order to construct an initial hypernym graph. For that,

we undertake the following steps:

Domain Filtering. Given a term t0, the usual case is that mul-

tiple hypernym subsequences corresponding to different senses

of the term t0 are extracted. For example, apple can be a company
or a fruit, thus resulting in subsequences apple→fruit→food and

apple→software company→company. However, many of these sub-

sequences will not pertain to the domain of interest (as determined

by the seed terms). To eliminate the irrelevant ones, we estimate a

smoothed unigram model
5
from all extracted subsequences, and we

remove those with generation probabilities below a fixed threshold.

Hypernym Graph Construction. We now aggregate the fil-

tered subsequences into an initial hypernym graph. We construct

this graph by grouping the edges with the same start and end nodes

together from the filtered subsequences. The weight of each edge

is computed as the sum of the scores of subsequences it belongs

to (i.e., log( Pr(Ek(t)⋃︀S) × Pr(S))). To increase the coverage for

compound seed terms that do not yet have a hypernym, we simply

add an hypernym edge to their lexical head with weight=∞ (i.e, a

very large value) whenever the lexical head is already present in

the hypernym graph. Finally, for each cycle in the hypernym graph,

we remove the edge with the smallest weight, hence resulting in a

DAG. This DAG contains many noisy terms and edges, which are

pruned in the next step of our approach.

2.3 Taxonomy Construction
In this step, we aim to induce a tree-like taxonomy from the hyper-

nym DAG obtained in the previous step. We cast this as an instance

of the minimum-cost flow problem (MCFP).

MCFP is an optimization problem, which aims to find the cheap-

est way of sending a certain amount of flow through a flow network.

4

Validation set is excluded from the test set.

5

We used a weighting function (i.e., step function with cut-off at 50% of the height of the

subsequence) to favor terms at lower heights as they are usually more domain-specific.



(a): Noisy hypernym graph (H).
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Figure 4: Execution of the minimum cost flow algorithm starting from our hypernym graph.

It has been used to find the optimal solution in applications like

the transportation problem [17], where the goal is to find the cheap-

est paths to send commodities from a group of facilities to the

customers via a transportation network. Analogously, we cast the

problem of taxonomy induction as finding the cheapest way of

sending the seed terms to the root terms through a carefully de-

signed flow network F . We use the network simplex algorithm [27]

to compute the optimal flow for F , and we select all edges with

positive flow as part of our final taxonomy. We now describe our

method for constructing the flow network F . In what follows, we

refer to Figure 4 at the different steps.

Flow Network Construction. LetV be the vocabulary of input

seed terms (e.g., apple, orange, and Spain in Figure 4); H is the noisy

hypernym graph constructed in Section 2.2 (cf. Figure 4(a));w(x ,y)
is the weight of the edge x→y in H ; Dx is the set of descendants

of term x in H (e.g., apple is a descendant of food); R is the set of

given roots
6
(e.g., food in Figure 4). The construction of the flow

network F proceeds as follows (cf. Figure 4(b)):

i) For an edge x→y inH , add the edge x→y in F . Set the capacity
(c) of the added edge as c(x ,y) = ⋃︀Dx ∩V ⋃︀. Set the cost (a) of that
edge as a(x ,y) = 1⇑w(x ,y).
ii) Add a sentinel source node s . ∀v ∈ V , add an edge s→v with

c(s,v) = a(s,v) = 1.
iii) Add a sentinel sink node t . ∀r ∈ R, add edge r→t with c(r , t) =
⋃︀Dr ∩V ⋃︀ and a(r , t) = 1.

Minimum-cost Flow. Given a demand d of the total flow to

be sent from s to t , the goal of MCFP is to find flow values (f )
for each edge in F that minimize the total cost of flow over all

edges: ∑
(u,v)∈F

a(u,v) ⋅ f (u,v). In our construct, demand d repre-

sents the maximum number of seed terms that can be included in

the final taxonomy. Figures 4(c) and 4(d) show the minimum-cost

flow for demand d=3 and d=2 respectively. In both cases, the edge

apple→food receives f =0 due to the presence of edges apple→fruit
and fruit→food with lower costs. For d=2, the edge source→Spain
has f =0, implying that the noisy term Spain would be removed

from the final taxonomy. Intuitively, demand d serves as a parame-

ter for discarding potentially noisy terms in the input vocabulary.

More formally, d can be defined as α ⋃︀V ⋃︀, where α , a user-defined
parameter, indicates the desired coverage over seed terms. If the

vocabulary contains only accurate terms, α is set to 1. For a given

α , we run the network simplex algorithm with d=α ⋃︀V ⋃︀ to compute

6

If roots are not provided, a small set of upper terms can be used as roots [38].

the minimum-cost flow for F . The final taxonomy consists of all

edges with flow > 0.

3 EVALUATION
The aim of the empirical evaluation is to address the following

questions:

● How does our approach compare to the state-of-the-art ap-

proaches under the assumption of a clean input vocabulary?

● How does our approach perform on a noisy input vocabulary?

● What are the benefits of extracting longer hypernym subse-

quences compared to single hypernym edges?

To this end, we perform two experiments. In Section 3.1, we com-

pare our taxonomy induction approach against the state of the

art, under the simplifying assumption of a clean input vocabulary.

Evaluations are performed automatically by computing standard

precision, recall and F1 measures against a gold standard.

We then drop the simplifying assumption in Section 3.2, where

we show that our taxonomy induction performs well even under the

presence of significant noise in the input vocabulary. Evaluation is

performed both manually as well as automatically against WordNet

as the gold standard. We also demonstrate that the subsequences-

based approach significantly outperforms an edges-based variant,

thus demonstrating the utility of hypernym subsequences.

In the remainder of this section, we use SubSeq to refer to our

approach towards taxonomy induction (cf. Section 2).

3.1 Evaluation against the State of the Art
Setup. We use the setting of the SemEval 2016 task for taxon-

omy extraction [5]. The task provides 6 sets of input terminologies,

related to three domains (food, environment and science), for four

different languages (English, Dutch, French and Italian). The task

requires participants to generate taxonomies for each (terminology,

language) pair, which are further evaluated using a variety of tech-

niques, including comparison against a gold standard. Except for a

few restricted resources used to construct gold standard, the partici-

pants are allowed to use external corpora for hypernymy extraction

and taxonomy induction. Participants are compared against each

other and against a high-precision string inclusion baseline.

We compare SubSeq with TAXI, the system that reached the

first place in all subtasks of the SemEval task [28]. TAXI harvests

candidate hypernyms using substring inclusion and lexico-syntactic

patterns from text corpora. It further utilizes an SVM trained with

individual hypernymy edge features, such as frequency counts and



TAXI SubSeq

P R F1 P R F1

EN 33.2 31.7 32.2 44.9 31.9 37.2
NL 48.0 19.7 27.6 42.3 20.7 27.9
FR 33.4 24.1 27.7 41.0 24.4 30.5
IT 53.7 20.7 29.1 49.0 21.8 29.9

Table 3: Precision (P), Recall (R) and F1 Metrics for TAXI vs. SubSeq
across different languages. Results are aggregated over all domains
per language.

substring inclusion to classify edges as positive and negative. The

positive edges are added to the taxonomy. Panchenko et al. [28]

also report that alternate configurations of TAXI with different

term-level and edge-level features as well as different classifiers

such as Logistic Regression, Gradient Boosted Trees, and Random

Forest fail to provide improvements over their approach.

In contrast to SubSeq, which discovers new hypernyms for the

seed terms, SemEval task provides the additional assumption that

all the terms in the gold standard taxonomies (i.e., including leaf

terms and non-leaf terms) are present in the input vocabulary. This

would unfairly lower the performance of SubSeq, as SubSeq would

find hypernyms, which are possibly correct but not present in the

gold standard. Hence, to ensure a fair comparison, we restrict the

subsequence extraction and hypernym graph construction step of

SubSeq (cf. Section 2) to candidate hypernyms present in the input

vocabulary. Furthermore, since candidate hypernymy extraction

is orthogonal to our work, we reuse the candidate hypernymy

relations made available by TAXI. As a consequence, TAXI and

SubSeq are identical in input data conditions as well as evaluation

metrics, and only differ in the core taxonomy induction approach.

Evaluation Results. Table 3 shows the language-wise preci-

sion, recall and F1 values computed against the gold standard for

SubSeq and TAXI. Aggregated over all domains, SubSeq outper-

forms TAXI for all four languages. It achieves >15% relative im-

provement in F1 for English and 7% improvement overall. Both

methods perform significantly better for English, which can be

attributed to the higher accuracy of candidate hypernymy relations

for English. Figure 5 shows the performance of SubSeq compared

to TAXI and the SemEval baseline across different domains and

languages. SubSeq performs best for food domain, where it out-

performs TAXI across all the languages. SubSeq performs best for

English, where it outperforms TAXI across 3/4 domains.

In our experiments, we noticed that SubSeq achieves the largest

improvements when a greater number of hypernym subsequences

are found during the subsequence extraction step. For example,

SubSeq achieves an average 32.23% relative improvement in F1 over

TAXI for the food domain, where on an average 0.67 subsequences

are found per term, compared to only 0.44 for the other domains.

Similarly, SubSeq performs best for English datasets, where, on an

average, 1.09 subsequences are found per term, compared to only

0.32 for other languages. The variation in the number of extracted

subsequences per term can be attributed to two factors: (i) number

of terms in the input vocabulary, and (ii) number of candidate hyper-

nymy relations available. Due to the assumption that all candidate

Figure 5: Relative improvement % in F1 for SubSeq, compared to
TAXI (TX) and the SemEval Baseline (BL), for different domains
and languages. N is the average number of terms in the input vo-
cabulary for that domain. Science eurovoc datasets are shown sepa-
rately, as they have significantly fewer input terms than other sci-
ence datasets.

hypernyms belong to the input vocabulary, larger vocabularies of

food domain make it more likely for a candidate hypernym to be

found, and hence for a subsequence to be extracted. In a similar

fashion, the larger set of available candidate hypernyms for English

(∼65 million vs. < 2.2 million for other languages) makes it more

likely for a subsequence to be extracted for English datasets.

Overall this experiment shows that under the assumption of a

clean input vocabulary, SubSeq is more effective that TAXI for most

domains in English, and domains with large vocabularies such as

food in other languages.

3.2 Evaluation with Noisy Vocabulary
In the previous experiment, we performed taxonomy induction

under the simplifying assumption that a clean input vocabulary

of relevant domain terms is available. However, as explained in

Section 1, in practice, this assumption is rarely satisfied for most

domains. Hence, in this experiment, we evaluate the performance of

SubSeq in the presence of significant noise in the input vocabulary.

TAXI is inapplicable in this setting, as it assumes a clean input

vocabulary consisting of both leaf and non-leaf terms. Instead, we

compare SubSeq against a baseline, which is an edges-based variant

of SubSeq.

Setup. We first build a corpus of relevant documents for the

food domain by collecting all English Wikipedia articles with titles

matching at least one seed term (post lemmatization) in the SemEval

food vocabulary. In total, 1,344 matching Wikipedia articles are

found from the initial set of 1,555 seed terms. We run TermSuite [6],
a state-of-the-art term extraction approach to extract an initial

terminology of 12,645 terms. All terms with occurrence counts < 5
in the corpus are removed, thus resulting in a final terminology of

3,977 terms. The final terminology contains numerous noisy terms

that are not food items, such as South Asia and triangular.
We now describe the edge-based baseline, hereafter referred to as

TopEdge, which extracts individual hypernym edges for terms in the

vocabulary. TopEdge is identical to SubSeq, except that rather than

extracting hypernym subsequences, it extracts direct hypernyms



Figure 6: Term precision for SubSeq vs.
TopEdge.

Figure 7: Edge precision for SubSeq vs.
TopEdge.
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Figure 8: A section of SubSeq taxonomy (α=0.9).

Figure 9: Precision/Recall vs. subsequence
length (n).

Figure 10: Precision/Recall vs. number of
hypernyms used (k ).

Figure 11: Precision/Recall vs. rank
penalty (λ1).

for terms with the highest hypernym probability Pre(x1,x2) (cf.
Equation 5). It starts with the seed terms, and recursively extracts

hypernyms for terms that do not yet have a hypernym until a fixed

number of iterations. The aggregation and taxonomy construction

steps are identical to SubSeq (cf. Sections 2.2 and 2.3). Since the

only difference between SubSeq and TopEdge is the extraction of

hypernym subsequences compared to individual hypernym edges,

this experiment also serves to evaluate the utility of extracting

hypernym subsequences.

Evaluation Results. We compare the quality of the taxonomies

induced by TopEdge and SubSeq against the sub-hierarchy of Word-

Net rooted at food as the gold standard. More specifically, we com-

pute two metrics, i.e., term precision and edge precision. Term preci-

sion of a taxonomy is computed for the set of the input vocabulary

terms retained by the taxonomy as: the ratio of the number of

terms in the food sub-hierarchy of WordNet to the total number of

terms present in WordNet. Edge precision is computed as the an-

cestor precision: all nodes from the taxonomy that are not present

in the WordNet are removed, and precision is computed on the

hypernymy relations from the initial vocabulary to the root
7
.

Figures 6 and 7 show the term precision and edge precision for

TopEdge and SubSeq taxonomy induction methods for varying

values of required coverage, i.e., α (cf. Section 2.3). Both Term

and edge precision scores for SubSeq are significantly higher than

TopEdge across all values of α , hence demonstrating the utility

of hypernym subsequences. For both methods, precision scores

7

Trivial edges t →food are ignored for all terms t .

decrease with increase in α . This behavior is expected, because as
α increases additional potentially-noisy seed terms are included

in the output taxonomies. Figure 8 shows a section of the SubSeq

taxonomy for α=0.9.
We also performed a manual evaluation to judge the quality of

the taxonomic edges that are not present in the WordNet. Two au-

thors independently annotated 100 such edges each of TopEdge and

SubSeq taxonomies for α=0.5. The precision for SubSeq was found

to be 86% compared to 52% for TopEdge, with a high inter-annotator

agreement (0.68). Both evaluations show that the precision of Sub-

Seq taxonomies is quite high, thus demonstrating the efficacy of

SubSeq in inducing taxonomies from noisy terminologies.

When α=1, i.e., all input terms are included in the final taxon-

omy, term precision is 30%, indicating that only 30% of the terms

extracted by the terminology extraction algorithm belong to the

WordNet food sub-hierarchy. In contrast, the term precision for the

original seed terms provided by SemEval is 75.8%, hence confirming

the presence of significant noise in the output of the terminology

extraction approach.

Overall, this experiment demonstrates that SubSeq is an effective

approach towards taxonomy induction under the presence of sig-

nificant noise in input terminologies. It also shows that extraction

of hypernym subsequences is beneficial and results in significantly

more accurate taxonomies.

Parameter Sensitivity. We now discuss the effect of parame-

ters on the efficacy of subsequence extraction. To this end, we first

construct a gold standard by sampling a set of 100 terms from the

food domain randomly and extracting their generalization paths



from WordNet. For a set of parameters, we run subsequence extrac-

tion and compute the precision and recall averaged over the top-5

paths per term. The parameters we focus on are the: subsequence

length (n), number of hypernyms used (k), and rank-penalty (λ1)
(cf. Equations 3 and 4).

Figure 9 shows the precision/recall values for varying values

of subsequence lengths (before the expansion phase). Precision

decreases and recall increases as the subsequence length increases.

This can be intuitively explained by the observation that candidate

hypernyms (cf. Table 1) usually only contain hypernyms up to 3/4

levels. Hence, longer subsequences would typically drift from the

original term, thus causing loss of precision. Figure 10 shows the

effect of the number of candidate hypernyms used (k) for subse-
quence extraction. As k increases, both precision and recall increase

initially, but drop afterwards. This shows the benefit of utilizing

lower-ranked hypernyms for subsequence extraction. However, it

also illustrates the significant noise present in candidate hypernyms

beyond a certain k . Figure 11 shows the effect of rank-penalty (λ1),
the parameter used to penalize candidate hypernyms with lower

frequency counts. Both precision and recall are low for lower values

of λ1 and peak at λ1=0.95.
We also evaluated the sensitivity to other parameters. We found

out that subsequence extraction is fairly stable across different val-

ues of beam width and length penalty (λ2). Moreover, we observed

that the number of subsequences per term (b in Equation 3) is also

inconsequential beyond a value of 4 as irrelevant subsequences are

filtered out by domain filtering (cf. Section 2).

4 RELATEDWORK
Taxonomy induction is a well-studied task, and multiple different

lines of work have been proposed in the prior literature. Early

work on taxonomy induction aims to extend the existing partial

taxonomies (e.g., WordNet) by inserting missing terms at appro-

priate positions. Widdows [39] places the missing terms in regions

with most semantically-similar neighbors. Snow et al. [34] use a

probabilistic model to attach novel terms in an incremental greedy

fashion, such that the conditional probability of a set of relational

evidence given a taxonomy is maximized. Yang and Callan [40]

cluster terms incrementally using an ontology metric learnt from a

set of heterogeneous features such as co-occurrence, context, and

lexico-syntactic patterns.

A different line of work aims to exploit collaboratively-built

semi-structured content such as Wikipedia for inducing large-scale

taxonomies. Wikipedia links millions of entities (e.g., Johnny Depp)
to a network of inter-connected categories of different granularity

(e.g. Hollywood Actors, Celebrities). WikiTaxonomy [29, 30] labels

these links as hypernymy or non-hypernymy, using a cascade of

heuristics based on the syntactic structure of Wikipedia category

labels, the topology of the network and lexico-syntactic patterns

for detecting subsumption and meronymy, similar to Hearst pat-

terns [13]. WikiNet [24] extends WikiTaxonomy by expanding non-

hypernymy relations into fine-grained relations such as part-of,
located-in, etc. YAGO induces a taxonomy by employing heuristics

linking Wikipedia categories to corresponding synsets in WordNet

[14]. More recently, Flati et al. [7] and Gupta et al. [9] propose ap-

proaches towardsmultilingual taxonomy induction fromWikipedia,

resulting in taxonomies for over 270 languages. However, as pointed

out by Hovy et al. [16], these taxonomy induction approaches are

non-transferable, i.e., they only work for Wikipedia, because they

employ lightweight heuristics that exploit the semi-structured na-

ture of Wikipedia content.

Although taxonomy induction approaches based on external

lexical resources achieve high precision, they usually suffer from

incomplete coverage over specific domains. To address this issue,

another line of work focuses on building lexical taxonomies au-

tomatically from a domain-specific corpus or Web. Kozareva and

Hovy [19] start from an initial set of root terms and basic level terms

and use hearst-like lexico-syntactic patterns recursively to harvest

new terms from the Web. Hypernymy relations between terms are

induced by searching the Web again with surface patterns. The

graph of extracted hypernyms is subsequently pruned using heuris-

tics based on the out-degree of nodes and the path lengths between

terms. Velardi et al. [38] extract hypernymy relations from textual

definitions discovered on the Web, and further employ an optimal

branching algorithm to induce a taxonomy. More recently, Bordea

et al. [4, 5] introduced the first shared tasks on open-domain Tax-

onomy Extraction, thus providing a common ground for evaluation.

INRIASAC, the top system in 2015 task, uses features based on

substrings and co-occurrence statistics [8] whereas TAXI, the top

system in 2016 task, uses lexico-syntactic patterns, substrings and

focused crawling [28].

In contrast to taxonomy induction approaches which use ex-

ternal resources, taxonomy induction approaches from a domain

corpus or Web typically face two main obstacles. First, they as-

sume the availability of a clean input vocabulary of seed terms.

This requirement is not satisfied for most domains, thus requiring

a time-consuming manual cleaning of noisy input vocabularies.

Second, they ignore the relationship between terms and senses. For

example, taxonomies induced from WordNet or Wikipedia produce

different hypernyms for each sense of the term apple (e.g., apple
is a fruit or a company). To tackle the second obstacle, taxonomy

induction approaches from a domain corpus employ domain fil-

tering to perform implicit sense disambiguation. This is done by

removing hypernyms corresponding to domain-irrelevant senses of

the terms [38]. Although taxonomies should ideally contain senses

rather than terms, term taxonomies have shown significant efficacy

in a variety of NLP tasks [2, 3, 38].

To put it in context, our approach is similar to the previous at-

tempts at inducing taxonomies without using external resources

such as WordNet or Wikipedia. One key differentiator, however,

is that it is robust to the presence of significant noise in the input

vocabulary, thus dealing with the first obstacle above. To deal with

the second obstacle, our approach performs implicit sense disam-

biguation via domain filtering at two different steps: (i) domain

filtering of subsequences (cf. Section 2.2); (ii) assigning lower cost

for likely in-domain edges when applying the minimum-cost flow

optimization (cf. Section 2.2 & 2.3).

5 CONCLUSIONS
In this paper, we proposed a novel probabilistic framework for

extracting hypernym subsequences from individual hypernymy



relations. We also presented a minimum cost-flow optimization ap-

proach to taxonomy induction from a noisy hypernym graph. We

demonstrated that our subsequence-based approach outperforms

state-of-the-art taxonomy induction approaches that utilize indi-

vidual hypernymy edge features. Unlike previous approaches, our

taxonomy induction approach is robust to the significant presence

of noise in the input terminology. It also provides a user-defined

parameter for controlling the accuracy and coverage of terms and

edges in output taxonomies. As a consequence, our approach is

applicable to arbitrary domains without any manual intervention,

thus truly automating the process of taxonomy induction.
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