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Abstract

We introduce a greedy non-intrusive reduced order method(ROM) for parameterized time-dependent

problems with an emphasis on problems in fluid dynamics. The non-intrusive ROM is based on two-

level proper orthogonal decomposition(POD) to extract temporal and spatial reduced basis from a set

of candidates and a radial basis function(RBF) model to be used to approximate the coefficients of

the reduced model. And instead of adopting uniform or random sampling strategies, the candidates

are determined using an adaptive greedy approach to minimize the overall computational offline cost.

Numerical studies are presented for a two-dimensional diffusion problem and a driven cavity problem

governed by incompressible Navier-Stokes equations. The results demonstrate that the greedy non-

intrusive ROM predicts the flow field accurately and efficiently.

Keywords: Greedy Approach, Two-level Proper Orthogonal Decomposition, Radial basis function,

Non-intrusive Reduced order method, Parameterized time-dependent PDEs, Fluid dynamics

1. Introduction

Even though the ability to computationally model complex phenomena continues to increase, it re-

mains challenging to many types of problems in optimization, design, control etc due to the need for

a high number of computations for various parameters. To address this problem, the development of

reduced-order method(ROM) [1, 2, 3, 4, 5, 6] that enables the approximated solutions with an acceptable

loss of accuracy has gained a substantial interest as a compromise to solving the full problems. In reduced

order models, the full problem is expressed by projecting the full system to a problem of specific subspace

with much smaller degree of freedoms(DOFs). When properly chosen, this reduced linear space can

adequately represent the dynamics of the full system under parameter variation at substantially reduced

cost. Examples of some of these recent developments include proper orthogonal decomposition(POD)

[7, 8], Harmonic Balance approach(HB)[9], and Volterra theory[10, 11].

Many ROMs extract a set of reduced basis from snapshots of the full solution and then project the

full system onto the linear subspace determined by those basis modes through a projection approach
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such as Galerkin projection[12, 13], called Projection-based ROMs. To approximate solutions, projection

coefficients are determined through the projection process, and thus approximations are made. Although

Projection-based ROMs are effective, it brings much inconvenience to compute projection coefficients,

especially for complex nonlinear problems. Certainly this is not what we expect. To address this concern,

there is a recent interest in non-intrusive ROMs[14] which seeks to develop ROMs based solely on access

to snapshots. In other words, governing equations only play the role of providing snapshots and has

nothing to do with the projection process. In the context of fluid dynamics, [15] presents a second order

Taylor series method and an approach based on a Smolyak sparse grid collocation method, and applies

these to simulate the flow past a cylinder with wind driven gyre. In [14], the authors explored the use of

empirical interpolation method [16] to recover a reduced model based on a non-intrusive approach.

And development of ROMs for parametrized time-dependent problems is another issue as most re-

searches are focused on parametrized steady problems. Compared to parametrized steady problems,

ROMs for time-dependent parametrized partial differential equations(PDEs) have to approximate solu-

tions as a function of time, spatial coordinates and a parameter vector, which turns out to be more

challenging especially when the boundary conditions vary with time. To solve unsteady parametrized

Navier-Stokes equations, [17] utilizes POD-Galerkin in patient-specific haemodynamics while [18] uses dis-

crete empirical interpolation method. Some other work on this topic is dealing with simple parametrized

time-dependent PDEs such as convection-diffusion problems [19] and boussinesq equations[20]. And in

this paper we prefer to adopt a ROM of two-level POD plus RBF proposed in [21] for approximating

parametrized time-dependent PDEs because of its non-intrusive and efficient feature.

Apart from the desire to develop ROMs of a non-intrusive nature, it is likewise important to ensure

the accuracy of the reduced models by carefully selecting the snapshots. Due to the variation of possible

solutions, it is not possible to determine the optimal candidates to generate snapshots. One approach is

to use a random strategy such as Latin Hypercube sampling or minimum discrepancy sequences[22, 23],

CVT[24], Monte Carlo methods[25], Sparse Grid[26] etc to generate snapshots and manipulate these to

recover a suitable basis, e.g., by the use of a singular value decomposition(SVD). However, to guarantee the

accuracy of the reduced model, an excessive number of snapshots may be required, leading to unacceptable

computational cost. To address this concern, recent work has been devoted to strategies for guiding the

selection of snapshots in a problem dependent manner, in spirit similar to adaptive sampling[27] used

in surrogate models. In [28], an algorithm that iteratively applies surrogate-model optimization in the

generation of snapshots is developed. A related approach is based on a greedy algorithm in which case

the snapshots are adaptively determined by finding the location in the predetermined parameter space

at which the error estimator in the reduced model is maximum, quantifying the quality of the ROM. In

[29, 30], a POD-Greedy approach is introduced to recover reduced order models, albeit in an intrusive

manner, with a discussion of convergence offered in [31, 32]. And Patera et al. has researched a lot on

Greedy sampling for POD-Galerkin method when approximating parametrized problems[33, 34, 35, 36].
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While Tan Bui-Thanh and Karen Willcox also proposed a model-constrained adaptive Greedy sampling

methodology for large-scale systems with high-dimensional parametric input spaces[37]. However, not

much work to develop greedy sampling has been done for non-intrusive methods.

In this work, our goal is to develop a greedy sampling for a non-intrusive ROM appropriate for

time-dependent parametrized PDEs. Based on an approach set forward in [21], we first develop the

non-intrusive ROM which employs a two-level approach for the construction of the spatial and temporal

basis functions and estimates the undetermined coefficients of the reduced model by using a radial basis

approximation(RBF). While the discussion has some degree of generality, we shall focus on problems

and examples in the context of fluid dynamics. In contrast to previous work in [21], the reduced model

adaptively generate snapshots based on a greedy approach to minimize the overall computational cost.

We shall demonstrate the quality and flexibility on problems in heat conduction and driven cavity flows.

What remains of the paper is organized as follows. In Section 2, we develop the non-intrusive ROM

including a two-level basis development and discuss the approximation based on the RBF. We also briefly

discuss the use of the RBF-QR method [38] in this context to overcome ill-conditioning in RBF as the

number of candidates increases. In Section 3, we develop a Greedy sampling approach to reduce the

computational cost of the generation of the reduced basis. This sets the stage for Section 4 which

contains several numerical verification cases, confirming the efficiency of the greedy non-intrusive ROM.

Section 5 contains a few concluding remarks and points to additional developments.

2. Construction of the non-intrusive reduced order model

In the following, we focus on the construction of the non-intrusive ROM for parametrized time-

dependent PDEs. The basic assumption is that the reduced basis solution can be expressed by the

biorthogonal decomposition(BOD)[39] as

ûθ(x, t) = v̂θ(x, t) +

K∑
k=1

M∑
m=1

αθ(k,m)ϕk(x)ξm(t). (1)

Here v̂θ(x, t) denotes the auxiliary term created to properly account for boundary and initial condition

and we return to the details of this shortly.

In (1), two types of basis functions are introduced: spatial basis functions ϕk(x) and temporal basis

functions ξm(t). The coefficients αθ(k,m)(k = 1, 2, · · · ,K;m = 1, 2, · · · ,M) denote the undetermined

coefficients in the approximation.

We begin the discussion by focusing on the approach proposed in [21] in which the basis is constructed

using a two-level POD. This is achieved in two parts of the method, resulting in both spatial and temporal

basis functions ϕk(x), ξm(t). These are subsequently combined with a RBF to estimate undetermined

coefficients αθ(k,m). In the following we outline this process in more detail.
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2.1. Basis creation by proper orthogonal decomposition

The proper orthogonal decomposition(POD), first developed to correlate statistical data[40], has been

widely used to recover eigenmodes for analysis of spatio-temporal problems in many fields, e.g., fluid

dynamics[41], aeroelastic dynamics[42] and so on. The central idea is to determine an optimal linear

basis from ensembles of statistical data with optimality measured in a least-square sense.

Let us consider a function Y θ(x)(a ≤ x ≤ b) and assume that we have snapshots yi(x)(i = 1, 2, · · · , n)

where n denotes the number of snapshots. We now seek an optimal basis Φi(i = 1, 2, · · ·K) such that

min
v1...vk

n∑
i=1

‖yi(x)− ŷi(x)‖22, ŷi(x) = y0(x) +

K∑
i=1

ai(θ) · Φi(x),

under the condition that

(Φi,Φj) = δij , (u, v) =

∫ b

a

uvdx,

and

y0(x) =
1

n

n∑
i=1

yi(x).

The optimization problem to achieve Φi(x) can be transformed into a new one:

max

n∑
i=1

||yi(x),Φi(x)||2 (2)

If we define the correlation matrix M ∈ Rn×n with the elements defined as

M(i, j) =

∫ b

a

yi(x)yj(x)dx, (3)

it is clearly seen that M is a symmetric positive semi-definite matrix and the eigensolutions

M · vi = λivi i = 1, 2, · · · , n (4)

yields the sought after basis, truncated at rank i. Then the reduced basis can be determined by

Φi(x) =

n∑
j=1

vi(j) · yj(x),

which are often referred to as the proper orthogonal modes. Defining the threshold 0 < ε < 1, the first

K eigenvalues λk(k = 1, 2, · · ·K), arranged in an descending order, are determined through

K = min{k ∈ [1, n]|
∑k
i=1 λi∑n
i=1 λi

≥ ε} (5)

which also quantifies the error of the truncation as

n∑
j=1

‖yi −
K∑
i=1

(yi, vi)vi‖22 ≤
∑n
j=K+1 λj∑n
j=1 λj

.
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The optimal basis can likewise be computed using an SVD of the matrix of snapshots. In this case, the

sum of the singular values of the matrix offers the error estimator for the accuracy of the truncated linear

space.

2.2. Problem statement

Let us now begin to consider the general parametrized time-dependent PDEs:
∂uθ

∂t + F (uθ) = fθ x ∈ Ω× t ∈ (0, T ]

uθ|t=0 = uθ0(x) x ∈ Ω

uθ(x, t) = gθ(x, t) x ∈ ∂Ω× t ∈ (0, T ]

(6)

where t ∈ [0, T ] denotes time, x ∈ Ω are the spatial coordinates, and Ω is the physical domain with a

boundary ∂Ω. Let also θ represents a vector of parameters with dimension p(p ≥ 1). We assume that

the parameters belong to the range B. Finally, we refer to uθ as the solution which depends on space,

time and θ. Initial and boundary conditions are likewise presented in (6).

The general problem includes three spaces to take into consideration: the temporal space, the physics

space, and the parameter space, respectively. To express this, we consider the ansatz:

ûθ(x, t) = v̂θ(x, t) +

K∑
k=1

M∑
m=1

αθ(k,m)ϕk(x)ξm(t) (7)

As already indicated, we consider the spatial basis functions ϕk(x) and the temporal basis functions

ξm(t). The auxiliary function v̂θ(x, t), is required to satisfy

 ϕk|∂Ω = 0

ξm(0) = 0
(8)


∂v̂θ

∂t −4v̂
θ = 0 x ∈ Ω× t ∈ (0, T ]

v̂θ|t=0 = uθ0(x) x ∈ Ω

v̂θ(x, t) = gθ(x, t) x ∈ ∂Ω× t ∈ (0, T ]

(9)

hence encoding the impact of the initial and boundary conditions.

In this paper we only consider problems with constant boundary conditions and setting v̂θ(x, t) =

u0(x) can be our choice in this case which satisfies (9). To see this, consider the initial condition,

ûθ(x, 0) = v̂θ(x, 0) +

K∑
k=1

M∑
m=1

αθ(k,m)ϕk(x)ξm(0) (10)

The second term on the right hand side in (10) vanishes because of the assumption that ξm(0)|m=1,2,··· ,M =

0. By introducing v̂θ(x, t) = u0(x), we have

ûθ(x, 0) = u0(x) (11)
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For the boundary condition, the term
∑K
k=1

∑M
m=1 α

θ(k,m)ϕk(x)ξm(0) can also be ignored with

ϕk|∂Ω = 0, thus

ûθ|∂Ω(t) = ûθ|∂Ω(t = t0) = gθ (12)

Therefore v̂θ(x, t) = u0(x) satisfies (9) and the boundary and initial conditions are satisfied.

2.3. Two-level basis development

To develop a reduced order model for the parametrized time-dependent PDEs (6), two-level approach,

based on POD, was adopted in [21] to construct both the temporal and the spatial basis. As the basis

generation for spatial and temporal variation is similar, we discuss just one.

We first define a coarse spatial grid χ = χj ∈ Ωh(j = 1, 2, · · · , Nx) and a coarse temporal one with

NT time instants as Υ = {tn|0 = t1 < t2 < · · · tNT = T} to generate snapshots. Furthermore, we define

a set of candidates θi(i = 1, 2, · · · , N) from the given parameter space.

By executing the accurate solver we recover shifted spatial snapshots Ψ = {uθi(·, tj) − vθi(·, tj), j =

1, 2, · · ·NT }. For each parameter point θi, we adopt the POD onto the temporal snapshots to recover Ki

eigenvectors rk,i(k = 1, 2, · · ·Ki). The corresponding spatial modes are finally recovered as

ϕk,i(x) =

NT∑
n=1

(rk,i)n(uθi(x, tn)− vθi(x, tn)) (13)

From the efforts above, we get a total of
∑N
i=1K

i spatial basis. And by applying an SVD, we finally

compress those eigenfunctions and retain K Spatial modes ϕk(k = 1, 2, · · ·K).

Temporal snapshots are given by {uθi (χj , ·) − vθi (χj , ·), j = 1, 2, · · ·Nx}. Using the similar approach,

we recover M temporal modes ξm(m = 1, 2, · · ·M).

2.4. RBF approximation

The final challenge is to estimate the coefficients αθ at any parameter point in (7) while retaining a

good approximation accuracy. For this, we employ a RBF method to compute αθ.

At first, we express (7) as

ûθ = v̂θ + ϕαθξT (14)

A least square approach[43] is adopted to determine coefficients for candidates θi(i = 1, 2, · · ·N),

namely αθi(i = 1, 2, · · ·N)

min
α∈µKM

(||ûθ − v̂θ − ϕαθξT ||22 + µ||αθ||22) (15)

where µ ≥ 0 is a penalized parameter to avoid overfitting and || · ||2 represents the 2-norm for a matrix

with the definition ||A||2 = tr(ATA).

By substituting shifted snapshots ui − vi, coefficients αθi corresponding to θi can be computed by

(ϕTϕ)αθi(ξT ξ) + µαθi = ϕT (ui − vi)ξ (16)
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For fixed values of k, m, we expand αθ(k,m) for θ as follows:

αθ(k,m) =

N∑
i=1

γkmi φ(||θ − θi||2) (k = 1, 2, · · ·K;m = 1, 2, · · ·M) (17)

where φ(r) is the chosen RBF kernal function and γkmi denotes the undetermined coefficients, which are

independent on θ.

By substituting θj into (17) and relating αθj in (16), γkmi (i = 1, 2, · · ·N ; k = 1, 2, · · ·K;m =

1, 2, · · ·M) are computed as

αθj (k,m) =

N∑
i=1

γkmi φ(||θj − θi||2) (i = 1, 2, · · ·N ; k = 1, 2, · · ·K;m = 1, 2, · · ·M) (18)

Finally from γkmi (i = 1, 2, · · ·N ; k = 1, 2, · · ·K;m = 1, 2, · · ·M), we can recover α for arbitrary θ

value in parameter space though (17).

In this work we use a Gaussian radial basis function[44], defined as :

φ(r) = exp

(
− r

2

2σ

)
,

with a parameter σ > 0. We define a matrix

Φi,j = φ(||θi − θj ||2) (i, j = 1, 2, · · ·N) (19)

When σ is very small, Φ defined in (19), used in RBF, will be ill-conditioning. As a result, the approxi-

mation will break down. On the contrary, if σ is very large, the approximation accuracy gets affected.

To address this problem, which becomes particularly problematic when the number of candidates in-

creases or an unstructured sampling pattern in parameter space is used, we adopt the RBF-QR, proposed

in [38]. In this approach, one eliminates the effect of σ by QR decomposition and restored high accuracy

even for very small values of σ.

At first, the standard RBF is transformed into

φ(r) = C ·D · T (r) (20)

where T (r) is a matrix consisting of Chebyshev splines, D is a diagonal matrix of σ’s increasing powers,

o(σ2j)(j = 1, 2, · · ·∞), and C is a matrix with elements o(1), only dependent on design variables r.

And the ill-conditioning problems mainly stem from the diagonal matrix D. [38] proposed to adopt QR

decomposition on C, and then multiply φ(r) with D−1
N R−1

N QT , forming a new RBF:

ψ(r) = D−1
N ·R

−1
N ·Q

T · φ(r) = D−1
N ·R

−1
N ·Q

T ·Q ·R ·D · T (r) = D−1
N ·R

−1
N ·R ·D · T (r) (21)

D−1
N and R−1

N is the first N ×N submatrix of D and R respectively. It is predicted in [38] that the matrix

D−1
N ·R

−1
N ·R ·D is well conditioned in most cases, leading to ψ(r) more stable than φ(r). And we shall

discuss RBF-QR’s advantage in our scheme further in Section 4.
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2.5. Overview

Once the spatial and temporal basis functions are determined and the coefficients αθ are expressed

through the expansion of RBF, the solution can be approximated at any θ in parameter space through

(7). Algorithm 1 outlines the steps of the non-intrusive ROM.

Algorithm 1 Reduced-order method approach

1: Generate snapshots with an appropriate numerical solver.

2: for each θi(i = 1, 2, · · · , N) do

3: set a threshold ε1 and apply POD to extract a set of temporal modes ϕk,i and spatial modes ξm,i;

4: end for

5: Collect all the temporal and spatial basis functions, and then apply SVD to determine the final

required reduced basis ϕk(k = 1, 2, · · ·K) and ξm(m = 1, 2, · · ·M) with another threshold ε2.

6: Utilize the reduced basis, snapshots and appropriate RBF φ(r) to compute γkmi .

7: Detemine coefficients αθ at any condition using (17) and then approximate the solution with (7).

3. A greedy approach for model development

The main shortcoming with the algorithm discussed so far is the selection of the samples in parameter

space. In [21] this was done in a simple manner, having the potential for computing a large number of

samples when only few are needed to ensure an approximation of the required accuracy. While in this

paper we pursue the development of a greedy algorithm to enable an optimal sampling in parameter

space.

3.1. Greedy Sampling

The core idea of the greedy algorithm is to adaptively selecting samples iteratively by locating the

new sample at each iteration where the estimated error in the reduced model reaches the maximal in

parameter space. The sampling initiates from N0 candidates. Directly from the ROM presented above,

we propose the error estimator at the iter-th iterative step as

∆(iter) = ||uθ(·)− ûθ(·)||2 = ||uθ(·)− vθ(·)− ϕeαθξeT ||2 (22)

where ϕe and ξe represents basis functions at current greedy iterative step. Here || · ||2 still denotes

the squared norm for a matrix with ||A||2 = tr(ATA). And θ in parameter space which satisfies ||(uθ −

vθ −ϕeαθξeT )||2 corresponds to the new candidate to be added, denoted by θs. However, as uθ and vθ is

undetermined except when the numerical solver is used, we cannot determine θs directly with this error

estimator (22),otherwise it is very expensive.
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To develop an efficient alternative, let us recall the process of computing αθ using the least square

as well as RBF approximation in Section 2. To recover the undetermined matrix γkmi , we substitute αθl

computed by (16) for the corresponding θl into (17) as

αθl =

Ne∑
i=1

γkmi

(
φ

(
|θl − θi|

σ

))
l = 1, 2, · · ·Ne (23)

Where Ne = iter +N0 denotes the candidate number at current step. From this, it is easy to solve γkmi

and αθ can be computed for any θ using (17). Finally, we recover the approximation solution ûθ by using

(7) and αθ. It is clear that the approximated solution for any θ is recovered similarly to the interpolation

of snapshots in parameter space. The difference is that it interpolates the coefficients αθ(k,m) of each

candidate, instead of interpolating the snapshots directly. Therefore we suggest to take the point where

the mean distance between αθ and αθl is the biggest as the new candidate.

The distance between αθl and αθ can be expressed by

Dl = αθ − αθl =

Ne∑
i=1

γkmi (φ(
|θ − θi|
σ

)− φ(
|θl − θi|

σ
)) l = 1, 2, · · · , Ne (24)

.

Thus we propose an alternative for error estimator on the form in 2-norm sense based on α distance.

∆1(iter) =

∑Ne

l=1 ||
∑K
k=1

∑M
m=1[(αθ(k,m)− αθl(k,m))ϕk(x)ξm(t)]||2

Ne

=

∑Ne

l=1 ||
∑K
k=1

∑M
m=1[(

∑Ne

i=1γ
km
i (φ( |θ−θi|σ )− φ( |θl−θi|σ )))ϕk(x)ξm(t)]||2

Ne

=

∑Ne

l=1 ||
∑Ne

i=1(φ( |θ−θi|σ )− φ( |θl−θi|σ ))(
∑K
k=1

∑M
m=1(γkmi )ϕk(x)ξm(t))||2

Ne

(25)

where
∑K
k=1

∑M
m=1(γkmi ϕk(x)ξm(t)) is independent on θ and considered as coefficients.

The cost of computing (25) directly remains too high to be practical in the Greedy method if θ is

considered as a continuous variable vector. Thus we select a series of θ∗ii(ii = 1, 2, · · ·N∗) discrete points

in parameter space, and identify the new candidate from those points. Subsequently, we compute ∆1

for each sample point, and search for the one with the maximum value, which is regarded as the new

candidate.

Without further simplifications, the computational cost of the greedy approach still remains high since

the cost of evaluating ϕ and ξ is not small and N∗ is very big. To overcome this, we propose a simpler

one which ignores basis function:

∆2(iter) =

Ne∑
i=1

||
Ne∑
i=1

γkmi (φ(
|θ − θi|
σ

)− φ(
|θl − θi|

σ
))||2 (26)

Strictly speaking, ∆1 and ∆2 doesn’t belong to error estimators but could be an estimator for us to

find points with large error. In concrete application we find that compared to (25), (26) performs very

similar but is much less time-consuming. Going forward, we use (26) to drive the greedy selection in θ.
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For problems with more than one state variable u(q)(q = 1, 2, · · ·Q), we use (26) to compute ∆2 for

each variable, denoted by ∆2(q, iter), and define the error estimator for this problem denoted by ∆mul

as

∆mul(iter) =

√√√√ Q∑
q=1

w(q) ∗∆2(q, n)2 (27)

where w(q) is a weight that represents the importance of each variable. Naturally, often this is subjective

and problem dependent.

To terminate the growth of the reduced basis, we can employ different strategies. For example, we can

just set the number of iterative steps to a constant, or base it on the decrease of the approximation error

below a certain threshold. As we seek to reduce the overall approximation error, our criterion includes

the following three steps:

At first, we set an appropriate step number Npre to run the Greedy ROM’s iteration. Our experience

is 15 for 1-parameter problem and 35 for 2-parameter problems.

Secondly, at every iterative step, we have to make an judgement: once an approximation error between

the solver and Greedy ROM is less than a preset value, the Greedy ROM system terminates. As to which

kind of error to focus on, we would prefer to use the 2-norm of errors on a set of test points as the error

indicator. However, in concrete application, this often results in substantial computational cost. As an

alternative, the mean error on the determined new candidates is chosen as the indicator.

Finally, if the iteration terminates because of the indicator, there is no need to add additional can-

didates. If not, we have to make a decision based on the error. If the error is below a threshold or has

remained constant for a few iterations, we terminate the process. Otherwise, the iteration continues.

3.2. Summery of Greedy ROM Approach

As presented above, we propose two alternatives for error indicators to decide sampling, however both

are heuristic and it is difficult for us to provide a rigorous bound for them. But for numerical cases in

section 4, the ROM performs well with candidates determined by the indicator, demonstrating that those

may not be optimal but at least very good samples for building reduced basis.

By adopting the error indicator as well as the criterion for termination, we can express the whole

Greedy ROM scheme, summarized in Algorithm 2.
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Algorithm 2 Greedy ROM Scheme

1: Choose few snapshots as a start.

2: for iter = 1; iter ≤ Npre; iter + + do

3: Apply two-level POD to extract reduced basis ξe and ϕe, and adopt RBF to compute γkmi .

4: Use the error indicator to determine new candidate in the whole parameter space.

5: Add the determined candidate to the existing snapshots.

6: Once the 2-norm of errors on a set of test points is less than a preset value, terminate the Greedy

sampling iteration.

7: end for

8: Make a judgement whether to add additional steps or not based on the error variation trend.

9: Use the ROM in section 2 to extract basis from the snapshots determined above and approximate

solutions we need.

4. Numerical test-case

In the following, we consider two different cases to demonstrate the efficiency and accuracy of the

proposed method. It is, however, worth emphasizing that the proposed algorithm is generic and applicable

to general problems.

4.1. Two-dimensional heat diffusion

We consider the time-dependent diffusion equation.

∂u

∂t
= υ4u in Ω = [0, 1]2, t ∈ [0, T ] (28)

where T=5.0s, and viscosity coefficient υ = 1. And the time-step dt = 0.004 seconds thus Nt = 1251.

The problem is solved using a second order finite difference method with a uniform spatial grid of 41×41

points. For the generation of snapshots, we select NT = 51 points uniformly in [0,T] to generate spatial

snapshots, and a coarse spatial mesh of 11× 11 points is used to generate temporal snapshots.

A. Single parameter case

Let us first consider the case with just one parameter introduced in the boundary condition

gθ(x, t) = sin(
πt

2T
)(1− θsin(2π(x− 0.5))) +

θt

T
(29)

where θ ∈ [0.5, 1.5].

Initial solution variables are set 0 everywhere in Ω = [0, 1]2,

uθ0(x) = 0 (30)
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The threshold ε1 to recover temporal and spatial modes are both set 10−9. When applying the SVD

on these different sets of modes, thresholds ε2 for temporal modes are set to 10−3, and ε2 for spatial

modes equals to 10−4. And Gaussian radial basis functions with σ = 0.005 is adopted.

The greedy approach is initiated from two candidates θ = 0.5, 1.5 and at each iteration it provides a

new one. In Table 1 we list the samples determined in the iterative approach, using the standard RBF

approximation as well as the RBF-QR technique and we note that the results are different, in particular

as the iteration count increases. This is explained by the increasing dominance of the ill-conditioning of

the standard RBF approximation as the number of samples increases.

Table 1: θ of chosen candidates at each iteration

Iteration 1 2 3 4 5 6 7 8 9 10

RBF OLD 1 1.25 0.75 1.44 1.19 0.94 0.7 0.55 1.47 1.41

RBF QR 0.89 1.19 0.69 1.34 1.04 0.79 0.6 0.96 1.11 1.26

Iteration 11 12 13 14 15

RBF OLD 1.49 1.43 1.39 0.36 1.34

RBF QR 1.41 1.47 0.63 1.49 0.61

To evaluate the accuracy, we choose N∗ = 51 points θ∗ uniformly in the parameter space as test

samples and measure the maximum error, the mean error over time and the mean error at t = 1s, defined

as

Maximal error : Error1 = max
tn∈[0,T ]

||ûθ(x, tn)− uθ(x, tn)|| (31)

Mean errors at T ≥ t ≥ 0 : Error2 =
1

Nt

Nt∑
n=1

||ûθ(·, tn)− uθ(·, tn)|| (32)

Mean error at t=1s : Error3 = ||ûθ(·, t = 1)− uθ(·, t = 1)|| (33)

Figure 1 shows the trend of the errors defined above for the test samples in greedy system scheme

using both the standard RBF approximation and the improved RBF-QR. The results clearly confirm the

importance of using improved technique to ensure the accuracy. Going forward, we will only consider

solutions with RBF-QR. In Figure 2, the errors for each test sample all drop when iterative step n grows,

demonstrating a global error reduction achieved.

12



(a) standard RBF (b) RBF-QR

Figure 1: Errors between solution approximated by reduced model and solutions calculated directly by

the solver. In (a) we use the standard RBF in the reconstruction while in (b) the RBF-QR is used.

(a) Maximal error (b) Mean error at T ≥ t ≥ 0 (c) Mean error at t=1s

Figure 2: Errors(Eq. (31-33)) in log10 scale for test points θ∗

To further evaluate efficiency, approximations of the intrusive reduced model presented in Section

2 with 17 samples uniformly distributed in the parameter space is considered as a comparison. We

recall that this is the same number with candidates provided by Greedy sampling. The errors of both

approximation are compared in Table (2). From the table, the errors of the Greedy ROM are almost

identical with that of the ROM with uniform points, illustrating that in this case Greedy ROM does not

present much advantage over the uniformly sampled case. The reason is partly due to the simplicity of

the boundary condition and the single parameter in this case.

Table 2: Comparison of errors between Greedy ROM and the ROM with uniform snapshots

Maximal error Mean error at T ≥ t ≥ 0 Mean error at t=1s

Greedy ROM -1.257 -2.537 -2.96

ROM with uniform snapshots -1.257 -2.552 -3.021
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m = 1 m = 2 m = 3 m = 4 m = 5

m = 6 m = 7 m = 8 m = 9 m = 10
Figure 3: The first 10 temporal modes

k = 1 k = 2 k = 3 k = 4

k = 5 k = 6 k = 7 k = 8

k = 9 k = 10 k = 11 k = 12

Figure 4: The first 12 spatial modes
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With those 17 candidates, the Greedy ROM generates a total of
∑I
i=1M

i = 284 temporal basis and∑I
i=1K

i = 216 spatial basis. After the SVD compression 12 temporal basis ξm(m = 1, 2, · · ·M) - see

Figure 3 for an illustration of these, and 10 spatial ones ϕk(k = 1, 2, · · ·K), illustrated in Figure 4, are

retained. We observe that all temporal modes in Figure 3 change rapidly close to 0, consistent with the

rapid changes of the solution during the initial temporal phase.

After the reduced basis built, it takes 0.12 seconds to approximate one point with those reduced

basis while the numerical solver have to spend 251.97 seconds, illustrating that a great online benefit is

achieved in computational cost with the proposed approach.

We observe in Figure 3 that the errors become very small after greedy sampling. However, this does

not allow us to conclude that the Greedy ROM approximation is accurate. To evaluate this, we need to

consider the direct error in flow field’s prediction across variations in θ. We consider the flow field at two

points, neither of which belong to the candidates. One is θ = 0.55 and the other is θ = 1.15. Figure 5 and

6 display the solution contours of both points at different time instants, obtained by the reduced model

as well as the direct solver and Figure 7 gives the error distributions |uθ(x, t) − ûθ(x, t)|. We observe

good agreements of fluid fields at both points and small errors distributed in the whole field.

Direct solver

Reduced order model

(a)t=0.04s (b)t=0.2s (c)t=2s (d)t=5s

Figure 5: Contour of solution at different times for θ = 0.55
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Direct solver

Reduced order model

(a)t=0.04s (b)t=0.2s (c)t=2s (d)t=5s

Figure 6: Contour of solution at different times for θ = 1.15

θ = 0.55

θ = 1.15

(a)t=0.04s (b)t=0.2s (c)t=2s (d)t=5s

Figure 7: ∆u(x, t) = |uθ(x, t)− ûθ(x, t)| for θ = 0.55, 1.15
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B. Dual parameters’ case

For the single parameter problem discussed above, the Greedy ROM has no obvious advantage over

direct ROM(ROM with uniform sampling). Let us turn to a two-parameter problem and consider the

two-dimensional diffusion problem with two parameters θ1, θ2, associated with the initial condition and

the boundary condition, respectively.

The initial condition is given by

uθ0(x) = θ1 × c+ ū (34)

where c is a function of x and y, c(x, y) = λ(x + 0.5)(x − 0.5)(y + 0.5)(y − 0.5) and ū is the solution of

the Poisson problem  −4ū = 1 in Ω

ū = 0 on ∂Ω
(35)

The boundary condition is time-independent but depends on θ2 as

gθ(x, t) = θ2 x ∈ ∂Ω (36)

We assume a interval [0.5, 1.5] for θ1, θ2 and set the constant parameters in the Greedy ROM system as:

ε1 = 10−9; ε2 for temporal and spatial basis equals to 0.005 and 10−3 respectively; σ = 0.25.

The initial candidates consist of four corners in the parameter space, {(0.5,0.5), (0.5,1.5), (1.5,0.5),

(1.5,1.5)}. After 35 iterations, we obtain a candidate ensemble consisting of a total of 39 parameter

points (together with initial points), see round spots in Figure 8. Figure 9 shows the trend of the three

errors with increasing sampling, measured on a 15× 15 uniform grid. After 35 iterations, the mean error

at T ≥ t ≥ 0 as well as mean error at t = 1s is below than 10−3, which ensures a good accuracy of the

Greedy ROM in this case.

Figure 8: Final parameter points after 35 iterations
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Iterative step
lo

g
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R
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R
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0 5 10 15 20 25 30 35-3

-2

-1

Figure 9: Errors between solution approximated by the reduced model and solutions calculated directly

by the solver across 15× 15 test points

We again pick two parameter points (1,1) and (1.3,0.8), marked by delta spots in Figure 8, neither of

which belong to the candidates or close to the candidates, to gauge the accuracy of the flow field solution.

u contours are presented as a comparison, see Figure 10 and 11. As expected, the reduced model provides

a very accurate approximation of the solution at any time instant in the interval [0, T ].

SOLVER

ROM

(a)t=0 (b)t=0.1s (c)t=0.5s (d)t=5s

Figure 10: u contour at different time instants for θ1 = 1 and θ2 = 1
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SOLVER

ROM

(a)t=0 (b)t=0.1s (c)t=0.5s (d)t=5s

Figure 11: u contour at different time instants for θ1 = 1.3 and θ2 = 0.8

4.2. Lid-driven cavity flow

As a more complex problem in fluid dynamics, a two-dimensional driven cavity flow with two param-

eters θ1 and θ2 is considered as the second verification case. For this, we consider the incompressible

Navier-Stokes equations(excluding body forces):


∂u
∂x + ∂v

∂y = 0

∂u
∂t + u · ∂u∂x + v · ∂u∂y = − 1

ρ0
· ∂p∂x + ν∆u

∂v
∂t + u · ∂v∂x + v · ∂v∂y = − 1

ρ0
· ∂p∂y + ν∆v

(37)

where ρ0 is a constant. Unlike the diffusion problems, there are now three state variables: the velocity

in x direction(u), the velocity in y direction(v), and the pressure (p). And the Reynolds number equals

to 100, thus the viscosity ν is determined.
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Figure 12: Schematic diagram of computational domain

The computational domain is shown in Figure 12. θ1 denotes the velocity of the top boundary, and

θ2 refers to the height of the cavity such that the computational domain is [0, 1] × [0, θ2]. The initial

velocities are 0 everywhere at the boundary except at the top boundary. In numerical simulation, T=5.0s

and time-step dt = 0.01s. We use a second order finite difference scheme with a uniform spatial grid

made of 41 × 41 points. In addition, a coarser spatial mesh of 11 × 11 points is generated to extract

temporal snapshots and a uniform Nt = 51 point set in [0,T] is used to generate spatial snapshots.

We assume that θ1, θ2 ∈ [1, 2]. It is worth noting that as the flow field characteristics and accuracy

requirements of the different variables are different, different constants should be given in our approxima-

tion system for each state variable: ε1 to compute temporal and spatial modes are set {10−5, 10−5, 10−9}

for u, v, p; ε2 for the temporal modes are given by{0.03, 0.05, 10−3}, while ε2 for the spatial modes are

set {10−4, 10−4, 10−5} respectively; and in RBF we use σ = {0.02, 0.02, 1} for the 3 variables.

A. Adaptive sampling

The sampling is initiated from four points (θ1, θ2) = {(1, 1), (1, 2), (2, 1), (2, 2)}. After 35 iterations

the candidates are located at round spots in Figure 13.

Figure 13: Final parameter points after 35 iterations

We select 11 × 11 points uniformly distributed in the parameter space [1, 2] × [1, 2] as test points.
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Figure 14 shows the trend of the three state variables’ errors defined in (31)-(33) for the test points

between the reduced order solution and by the numerical solver. With the iteration increasing, errors of

the three state variables all gradually decrease and the variation turn flat after 35 iterations, after which

the errors are less than 10−2 for the velocity components, while p errors are less than 10−3.
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Figure 14: Errors the reduced order model and the full solutions at uniformly distributed test points

Table 3: Errors between the Greedy ROM and uniform sampling ROM

Maximal error Mean error at T ≥ t ≥ 0 Mean error at t=1s

u v p u v p u v p

Greedy ROM -1.848 -2.068 -2.975 -2.310 -2.2289 -3.557 -2.359 -2.258 -3.671

ROM with uniform candidates -1.246 -1.370 -2.251 -1.264 -1.434 -2.521 -1.241 -1.394 -2.586

Considering the ROM in Section 3 with 37 candidates spread uniformly in the parameter space we

compare in Table (3) the errors defined in (31)-(33) at test points for the two different approaches. For the

same variable, the errors of Greedy ROM system are substantially smaller than those computed by the

ROM with 37 candidates, showing that in this case the candidates determined by Greedy ROM system

has a notable advantage over the direct uniform sampling approach.

B. Fluid field approximation

After the sampling process, the scheme provides 11, 10 and 8 temporal modes as well as 9, 11 and

7 spatial modes for u, v and p, respectively. For each test sample, the reduced basis only cope with

11 × 9 + 10 × 11 + 8 × 7 = 265 unknowns. While in this test-case with 3 state variables, the full model

deals with a mesh of 1681 cells and 501 time intervals, meaning that it has to solve 2.52 million unknowns

for each sample. Thus the DOFs of problem solving has been greatly reduced. Figure 15 compares

velocity profiles of Greedy ROM system with those by the direct incompressible Navier-stokes solver

when θ1 = 1 and θ2 = 1. As the figures shown, the approximated velocity profiles coincide very well with

those of the solver. Solutions in [45] are also presented for reference. The example also highlights that
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the accuracy of the reduced model is consistent with the numerical solver, i.e., the differences observed

in Figure 15 can be attributed to the quality of the solver.

(a) u-velocity distribution along vertical vine

through the geometric center of the cavity

(b) v-velocity distribution along horizontal line

through the geometric center of the cavity

Figure 15: Velocity profile

Direct solver

Reduced order model

(a)(1.1, 1.1) (b)(1.3, 1.3) (c)(1.5, 1.7) (d)(1.7, 1.7)

Figure 16: X-velocity contour at the four points
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Direct solver

Reduced order model

(a)(1.1, 1.1) (b)(1.3, 1.3) (c)(1.5, 1.7) (d)(1.7, 1.7)

Figure 17: Y-velocity contour at the four points

Direct solver

Reduced order model

(a)(1.1, 1.1) (b)(1.3, 1.3) (c)(1.5, 1.7) (d)(1.7, 1.7)

Figure 18: Pressure contour at the four points
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Direct solver

Reduced order model

(a)(1.1, 1.1) (b)(1.3, 1.3) (c)(1.5, 1.7) (d)(1.7, 1.7)

Figure 19: Streamlines at the four points
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u error distribution

v error distribution

p error distribution

(a)(1.1, 1.1) (b)(1.3, 1.3) (c)(1.5, 1.7) (d)(1.7, 1.7)

Figure 20: Error distributions at the four points

To further confirm the accuracy of the Greedy ROM approach, flow fields, contours and streamlines

are given for four points marked by delta spots in Figure 13 . From the contours of the three state

variables in Figure 16-18, we observe an excellent agreement between the contours approximated by

Greedy ROM and computed by the direct solver. Error distributions in Figure 20 also demonstrate the

approximation accuracy of our proposed scheme. Although streamlines are extremely sensitive and minor

variation in velocity contours may lead to difference in the streamlines, we also observe a good agreement

in streamlines, see Figure 19. Even when the height of cavity varies a lot, the approach is able to simulate

streamlines well, including capturing the corner vortices accurately.
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C. Time-consuming evaluation

Computational efficiency is a key factor to judge a ROM and in this section computational cost of

the proposed greedy ROM is presented to evaluate its efficiency, which is divided into two parts:

In the sampling part, with n grows, the CPU timing also increases, meaning that time-consuming

at the last step is the largest, thus only time-consuming at the last cycle is presented, as Table 4. At

this moment, it takes 28.81 seconds to extract reduced basis and 2.7355 seconds to solve γkmi with 39

snapshots, and the process of determining the new candidate from 51×51 = 2601 points with the estimator

only cost 3.3041 seconds. Finally the numerical solver is called up to generate the new snapshot, which

costs 73.2s. The total time-consuming at 35th step is 28.81 + 2.7355 + 3.3041 + 73.2 = 108.05 seconds.

The second part is adopting ROM to approximate solutions with existing snapshots determined by

sampling approach. From Table 5, in the offline stage it takes 28.81 + 2.7355 seconds and in the online

stage, it takes 0.0468 s for the ROM approximating one test sample with the snapshots determined by

sampling approach, while our numerical solver cost 73.2s, demonstrating that the CPU timing’s speed-up

is very significant and inspiring.

Combining with the high approximation accuracy presented, we conclude that our proposed approach

performs excellently and efficiently in this case.

Table 4: Time-consuming (in seconds) required by Greedy sampling at 35th cycle.

Phase Time-consuming

Sampling:Extracting reduced basis 28.81

Sampling:Computing γkmi (i = 1, 2, · · ·N) 2.7355

Sampling:Determining the new candidate 3.3041

Numerical Solver 73.2

Total 108.05

Table 5: Time-consuming (in seconds) required by the numerical solver and by the proposed scheme(offline

and online computations).

Phase Time-consuming

ROM: extracting reduced basis (offline) 28.81

ROM: computing γkmi (i = 1, 2, · · ·N)(offline) 2.7355

ROM: approximation for one sample (online) 0.0468

Numerical Solver(for one sample) 73.2
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5. Concluding remarks

We have presented the development of a non-intrusive reduced order model based on a greedy ap-

proach. While the focus has been on problems in fluid dynamics, the approach is applicable to general

parametrized time-dependent problems. To enable a robust approximation for many snapshots, we in-

troduced the use of RBF-QR to overcome ill-conditioning. The efficacy and accuracy of the method has

been demonstrated by two case applications, including heat conduction and a driven cavity flow.

While the results are encouraging and the approach have been demonstrated on non-trivial examples,

future work should seek to improve the effectiveness of the Greedy ROM algorithm, possibly through the

use of a local reduced basis, and apply this approach to problems of a more complex nature, including

examples where dimension of parameter space is large and boundary conditions vary with time.
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