
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. J. R. Larus, président du jury
Prof. R. Guerraoui, directeur de thèse

Dr T. Harris, rapporteur
Dr G. Muller, rapporteur

Prof. W. Zwaenepoel, rapporteur

Towards Scalable Synchronization on Multi-Cores

THÈSE NO 7246 (2016)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 21 OCTOBRE 2016

 À LA FACULTÉ INFORMATIQUE ET COMMUNICATIONS
LABORATOIRE DE PROGRAMMATION DISTRIBUÉE

PROGRAMME DOCTORAL EN INFORMATIQUE ET COMMUNICATIONS

Suisse
2016

PAR

Vasileios TRIGONAKIS

“We can only see a short distance ahead,

but we can see plenty there that needs to be done.”

— Alan Turing

To my parents,

Eirini and Charalampos

Acknowledgements
“The whole is greater than the sum of its parts.”

— Aristotle

To date, my education (i.e., diploma, M.Sc., and Ph.D.) has lasted for 13 years. I could not

possibly be here and sustain all the pressure (and of course the financial expenses) without

the help and support of my family, Eirini (my mother), Charalampos (my father), and Eleni

(my sister). I want to deeply thank them for being there for me throughout these years.

In my experience, a successful Ph.D. thesis in the area called “systems” (i.e., with a focus on

software systems) requires either 10 years of solo work, or 5–6 years of fruitful collaborations. I

was lucky enough to belong in the latter category and to have the chance to collaborate with

many amazing people in producing the research that is included in this dissertation. This is

actually the main reason why in the main body of this dissertation I use “we” instead of “I.”

First and foremost, I would like to thank my advisor, Rachid Guerraoui. Naturally, without him

this dissertation would not exist. Rachid is among the most clever and optimistic people I have

ever met. To him, I owe three of the most important attributes which I gained during my Ph.D.:

(i) being laconic, (ii) optimism, and (iii) my “marketing skills.” The first one can be simply

explained by his single-sentence answers to several paragraphs long e-mails. My optimism

towards research and my marketing skills can be summarized by my current belief that there

are no “bad” research results, but there are definitely bad ways to present those results. In other

words, Rachid taught me that if the research work is solid, people will always be interested to

read about it.

As I mentioned earlier, my work is a result of several fruitful collaborations. I first want to

thank Tudor David, with whom we traveled, partied, but also wrote the first two papers of my

thesis. Similarly, Javier Picorel has been a close friend throughout the five plus years of my

Ph.D. After a couple of years of friendship, we did not resist and decided to collaborate on a

very cool project (Chapter 5), where we combined my software with his hardware expertise.

On that same project, I also had the chance to collaborate with Babak Falsafi, who I deeply

appreciate for his advice on how to present and improve my research results.

Additionally, I wish to thank Tim Harris, who offered me the great opportunity to join Oracle

Labs for a three-months internship in Cambridge and who also was one of the five members

i

Acknowledgements

of my Ph.D. defense jury. Albeit the short duration of that internship, we were able to finalize

the project and, with some additional work here at EPFL, to write a paper (Chapter 7). For that

same project, I want to thank my friend and collaborator Georgios Chatzopoulos for his help.

Furthermore, I must thank the three other committee members for my private Ph.D. defense,

namely Gilles Muller, Willy Zwaenepoel, and James Larus. Our discussions during the defense,

as well as their written comments, helped me improve the quality of my dissertation.

Naturally, as a Ph.D. student my main/only interest was to solve problems. Still, I had zero

interest in solving problems unrelated to research, such as traveling expenses and other

bureaucratic stuff, or installing and configuring processors and software. Luckily, I did not

really have to handle any of these distractions due to the help of the two secretaries of our lab,

Kristine Verhamme and France Faille, and our system administrator Fabien Salvi. Similarly, I

want to thank Peva Blanchard for translating my thesis’ abstract to French.

Of course, many more people contributed in a way or another to this Ph.D. I would like to thank

my colleagues and my friends (many people belong to both groups) for making my everyday

life simpler and happier. Without David, Javier, Iraklis, Nadia, Christina, Iris, Matt, George,

Tudor, Adi, Matej, Karolos, ... my life during these five years would have been unbearable. In

particular, with Iraklis Psaroudakis, Javier Picorel, and David Kozhaya we started the Ph.D. in

the same year. I am lucky and grateful to have them as my friends, as they are the people with

whom I “cried” about the difficulties of the Ph.D., I celebrated happy moments, etc. Similarly,

my “non-Lausannois” friends were always there for me, to listen to my problems over Skype

and to spend awesome vacations together. Last but not least, I want to give special thanks to

my girlfriend Bojana Paunovic, who arrived in my life almost a year ago and made this past

complicated year of my life significantly more pleasant.

Lausanne, EPFL, 29 September 2016 Vasileios Trigonakis

ii

Preface
This dissertation presents part of the Ph.D. work performed under the supervision of Prof. Rachid

Guerraoui at EPFL in Switzerland. The main results of this thesis appeared originally in the

following conference publications (author names are in alphabetical order).

1. Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. “Everything you always wanted

to know about synchronization but were afraid to ask.” Proceedings of the Twenty-Fourth

ACM Symposium on Operating Systems Principles (SOSP). ACM, 2013. (Chapter 4)

2. Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. “Asynchronized concurrency:

The secret to scaling concurrent search data structures.” Proceedings of the Twentieth

International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS). ACM, 2015. (Chapter 6)

3. Rachid Guerraoui, and Vasileios Trigonakis. “Optimistic concurrency with OPTIK.” Pro-

ceedings of the Twenty-First ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming (PPoPP). ACM, 2016. (Chapter 6)

4. Babak Falsafi, Rachid Guerraoui, Javier Picorel and Vasileios Trigonakis. “Unlocking

energy.” Proceedings of the 2016 USENIX Annual Technical Conference (USENIX ATC).

USENIX, 2016. (Chapter 5)

5. George Chatzopoulos, Rachid Guerraoui, Tim Harris, and Vasileios Trigonakis. “Ab-

stracting multi-core topologies with MCTOP.” Under submission. (Chapter 7)

Besides the above-mentioned publications that constitute the backbone of this thesis, I further

worked on the following conference publications (author names are in alphabetical order):

1. Vincent Gramoli, Rachid Guerraoui, and Vasileios Trigonakis. “TM2C: A software trans-

actional memory for many-cores.” Proceedings of the Seventh European Conference on

Computer Systems (EuroSys). ACM, 2012.

2. Jelena Antic, Georgios Chatzopoulos, Rachid Guerraoui, and Vasileios Trigonakis. “Lock-

ing made easy.” Proceedings of the Seventeenth Annual Middleware Conference

(Middleware). ACM, 2016.

iii

Abstract
The shift of commodity hardware from single- to multi-core processors in the early 2000s com-

pelled software developers to take advantage of the available parallelism of multi-cores. Unfor-

tunately, only few—so-called embarrassingly parallel—applications can leverage this available

parallelism in a straightforward manner. The remaining—non-embarrassingly parallel—

applications require that their processes coordinate their possibly interleaved executions to

ensure overall correctness—they require synchronization. Synchronization is achieved by

constraining or even prohibiting parallel execution. Thus, per Amdahl’s law, synchronization

limits software scalability.

In this dissertation, we explore how to minimize the effects of synchronization on software

scalability. We show that scalability of synchronization is mainly a property of the underlying

hardware. This means that synchronization directly hampers the cross-platform performance

portability of concurrent software. Nevertheless, we can achieve portability without sacrificing

performance, by creating design patterns and abstractions, which implicitly leverage hardware

details without exposing them to software developers.

We first perform an exhaustive analysis of the performance behavior of synchronization on

several modern platforms. This analysis clearly shows that the performance and scalability

of synchronization are highly dependent on the characteristics of the underlying platform.

We then focus on lock-based synchronization and analyze the energy/performance trade-

offs of various waiting techniques. We show that the performance and the energy efficiency

of locks go hand in hand on modern ��� multi-cores. This correlation is again due to the

characteristics of the hardware that does not provide practical tools for reducing the power

consumption of locks without sacrificing throughput.

We then propose two approaches for developing portable and scalable concurrent software,

hence hiding the limitations that the underlying multi-cores impose. First, we introduce OPTIK,

a new practical design pattern for designing and implementing fast and scalable concurrent

data structures. We illustrate the power of our OPTIK pattern by devising five new algorithms

and by optimizing four state-of-the-art algorithms for linked lists, skip lists, hash tables, and

queues. Second, we introduce MCTOP, a multi-core topology abstraction which includes low-

level information, such as memory bandwidths. MCTOP enables developers to accurately and

portably define high-level optimization policies. We illustrate several such policies through

four examples, including automated backoff schemes for locks, and illustrate the performance

and portability of these policies on five platforms.

v

Abstract

Keywords: multi-cores, concurrency, synchronization, locking, message passing, concurrent

data structures, scalability, energy efficiency

vi

Résumé
L’évolution des architectures matérielles des processeurs mono-coeur aux multi-coeurs, au

début des années 2000, a incité les développeurs de logiciels à profiter du parallélisme fourni

par ces processeurs multi-coeurs. Cependant, très peu d’applications (dites trivialement

parallélisables) peuvent bénéficier de ce parallélisme d’une manière simple et directe. Les

autres applications (non trivialement parallélisables) demandent à ce que les processus se

coordonnent au cours de leurs exécutions entrelacées afin de garantir l’exactitude de leur

calcul : ces applications nécessitent de la synchronisation. La synchronisation des processus

est obtenue en contraignant, voire même en empêchant certaines exécutions parallèles.

En conséquence, conformément à la loi d’Amdahl, la synchronisation limite la scalabilité

logicielle.

Dans ce mémoire, nous examinons les moyens de minimiser les effets de synchronisation

sur la scalabilité. Nous montrons que la relation entre scalabilité et synchronisation dépend

en grande partie de l’architecture matérielle sous-jacente. Dit autrement, la synchronisation

affecte directement la portabilité de la performance des programmes concurrents à travers

les différentes plate-formes matérielles. Néanmoins, il est possible de garantir la portabilité

sans sacrifier les performances, en forgeant des schémas de conception (design patterns) et

des abstractions, qui tirent profit implicitement des détails matériels sans les exposer aux

développeurs.

Nous présentons d’abord une analyse exhaustive des performances de synchronisation sur

différentes plateformes récentes. Cette analyse montre clairement que la performance et la

scalabilité de la synchronisation dépendent fortement des caractéristiques de la plateforme

sous-jacente. Nous nous concentrons ensuite sur la synchronisation à base de verrous (lock-

based) et analysons les compromis entre consommation énergétique et performance que

présentent les diverse techniques d’attente. Nous montrons que la performance et l’efficacité

énergétique évolue conjointement sur les récentes architectures multi-coeurs ���. Cette

corrélation est due, encore une fois, aux caractéristiques du matériel qui ne fournit pas d’outils

pratiques permettant de réduire la consommation énergétique des verrous sans affecter le

débit.

Nous proposons deux approches pour le développement de logiciel concurrent qui soit à la

fois portable et scalable, masquant ainsi les limitations que l’architecture multi-coeurs sous-

javente impose. En premier lieu, nous présentons OPTIK, un nouveau schéma de conception

(design pattern) pratique permettant de forger et d’implémenter des structures de données

vii

Abstract

concurrentes à la fois rapide et scalable. Nous illustrons la pertinence de notre schéma OPTIK

en présentant cinq nouveaux algorithmes, et en améliorant quatre des plus récents algo-

rithmes, pour les listes chaînées, les listes à enjambement (skip list), les tables de hachage, et

les files. En second lieu, nous présentons MCTOP, une abstraction de la topologie multi-coeurs

qui offre des informations bas-niveau, telles que la bande-passante mémoire. MCTOP per-

met au développeur de définir, de manière précise et portable, des politiques d’optimisation

haut-niveau. Nous illustrons plusieurs de ces politiques à travers quatre examples, dont des

schémas de retrait automatique pour les verrous, et analysons la performance et la portabilité

de ces politiques sur cinq plateformes.

Mots-clés : multi-coeurs, concurrence, synchronisation, verrou, passage de message, struture

de données concurrente, scalabilité, efficacité énergétique.

viii

Contents

Acknowledgments i

Preface iii

Abstract (English/Français) v

Table of Contents ix

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Synchronization Primer . 2

1.1.1 Synchronization Techniques . 2

1.1.2 Towards Scalable Synchronization . 3

1.2 Hardware Dictates the Scalability of Synchronization 4

1.3 Hiding Hardware Limitations to Achieve Portable Scalability 5

1.4 Contributions . 5

1.5 Thesis Roadmap . 6

I Preliminaries 7

2 Background and Target Platforms 9

2.1 Characteristics of Modern Multi-Core Processors 9

2.2 Synchronization . 12

2.3 Concurrent Data Structures . 15

2.4 Target Platforms . 15

3 Related Work 19

3.1 Scaling Synchronization on Multi-Cores . 19

3.2 Scaling Concurrent Data Structures on Multi-Cores 22

3.3 Scaling Software Systems on Multi-Cores . 24

ix

Contents

II Analyzing Synchronization 29

4 A Performance Analysis of Synchronization on Multi-Cores 31

4.1 Introduction . 31

4.2 Target Platforms in Detail . 34

4.2.1 Multi-Socket – Directory-Based: Opteron 35

4.2.2 Multi-Socket – Broadcast-Based: Westmere 35

4.2.3 Single-Socket – Uniform: SPARC-T2 . 36

4.2.4 Single-Socket – Non-Uniform: Tilera . 36

4.3 SSYNC . 36

4.3.1 Libraries . 36

4.3.2 Microbenchmarks and Concurrent Software 37

4.4 Hardware-Level Analysis . 37

4.4.1 Local Accesses . 38

4.4.2 Remote Accesses . 38

4.4.3 Enforcing Locality . 41

4.4.4 Stressing Atomic Operations . 42

4.5 Software-Level Analysis . 43

4.5.1 Locks . 43

4.5.2 Message Passing . 48

4.5.3 Hash Table (����) . 49

4.5.4 Key-Value Store (Memcached) . 51

4.5.5 Discussion: Beyond Locks and Message Passing 52

4.6 Conclusions . 53

5 An Energy Efficiency Analysis of Locking on Multi-Cores 55

5.1 Introduction . 55

5.2 Methodology . 59

5.3 Power Consumption of Target Platforms . 59

5.3.1 Estimating Maximum Power Consumption 59

5.4 Reducing Power Consumption in Synchronization 61

5.4.1 Power: The Price of Busy Waiting . 61

5.4.2 Reducing the Price of Busy Waiting . 61

5.4.3 Latency: The Price of Sleeping . 64

5.4.4 Reducing the Price of Sleeping . 65

5.5 Energy Efficiency of Locks . 67

5.5.1 MUTEXEE: An Optimized Mutex Lock . 67

5.5.2 Evaluating Lock Algorithms . 70

5.5.3 Implications . 72

5.6 Energy Efficiency of Lock-Based Systems . 73

5.6.1 Results . 73

5.7 Conclusions . 76

x

Contents

III Scaling Synchronization 79

6 Designing Concurrent Data Structures with OPTIK 81

6.1 Introduction . 81

6.2 Optimistic Concurrency in Cache-Line Hash Table (CLHT) 85

6.2.1 Discussion . 87

6.3 OPTIK . 87

6.3.1 The OPTIK Pattern . 87

6.3.2 The OPTIK-Lock Abstraction . 89

6.3.3 Practical Considerations . 93

6.4 Concrete OPTIK Examples . 94

6.4.1 OPTIK-Based Array Map . 94

6.4.2 OPTIK-Based Linked List . 98

6.5 OPTIK in Concurrent Data Structures . 99

6.5.1 OPTIK in Linked Lists . 100

6.5.2 OPTIK in Hash Tables . 102

6.5.3 OPTIK in Skip Lists . 104

6.5.4 OPTIK in Binary Search Trees (BSTs) . 106

6.5.5 OPTIK in Queues . 106

6.5.6 Summary . 109

6.6 Conclusions . 109

7 Abstracting Multi-Core Topologies with MCTOP 111

7.1 Introduction . 111

7.2 The MCTOP Topology Abstraction . 114

7.2.1 Examples of MCTOP Topologies . 115

7.3 MCTOP-ALG: Inferring Topologies . 115

7.3.1 Context-to-Context Latencies . 117

7.3.2 Latency Normalization . 119

7.3.3 Component Creation . 119

7.3.4 Topology Creation . 120

7.3.5 Practical Considerations . 120

7.4 Enriching MCTOP Topologies . 121

7.5 Portable Optimizations with MCTOP . 122

7.6 Thread Placement with MCTOP . 124

7.7 Examples of Portable Optimizations . 126

7.7.1 Using Latencies to Optimize Locking . 126

7.7.2 Using libmctop in Parallel Mergesort . 127

7.7.3 Using libmctop to Improve Metis . 128

7.7.4 Using libmctop to Enrich OpenMP . 129

7.8 Conclusions . 131

xi

Contents

8 Concluding Remarks 133

8.1 Implications . 133

8.2 Future Research . 135

Bibliography 153

Curriculum Vitae 155

xii

List of Figures
2.1 Typical configuration of a single-socket multi-core processor. 10

2.2 Typical configuration of a multi-socket multi-core processor. 12

2.3 Topology representation of an 8-socket Intel Xeon processor—Westmere. 16

2.4 Topology representation of a 4-socket Intel Xeon processor—Haswell. 16

2.5 Topology representation of a 4-socket Oracle processor—SPARC-T44. 17

4.1 Methodology of our performance analysis of synchronization. 32

4.2 Latency of acquiring different implementations of a ticket lock. 41

4.3 Throughput of different atomic operations on a single memory location. 42

4.4 Uncontested lock acquisition latencies. 44

4.5 Throughput of different lock algorithms using a single lock. 45

4.6 Throughput of different lock algorithms using 512 locks. 46

4.7 Throughput and scalability of locks depending on the number of locks. 47

4.8 One-to-one communication latencies of message passing. 48

4.9 Total throughput of client-server communication. 49

4.10 Throughput and scalability of the hash table (����) on different configurations. 50

4.11 Throughput of Memcached using a set-only test. 52

5.1 Power consumption and energy efficiency of �����	
���
���������. 56

5.2 Power-consumption breakdown on Ivy. 60

5.3 Power consumption and CPI while waiting. 61

5.4 Power consumption and CPI while spinning. 62

5.5 Power consumption of busy waiting using DVFS and ��	����������. 63

5.6 Latency of different ���
� operations. 64

5.7 Power and communication throughput of sleeping, spinning, and spin-then-sleep. 66

5.8 Throughput and energy-efficiency ratios of MUTEXEE over MUTEX. 68

5.9 Tail latencies of a single MUTEX and MUTEXEE locks. 69

5.10 Throughput and energy-efficiency ratios of MUTEXEE without over with timeouts. 69

5.11 Throughput and energy efficiency of a single (global) lock. 71

5.12 Correlation of throughput with energy efficiency on various contention levels. . 72

5.13 Normalized throughput of various systems with different locks. 74

5.14 Normalized energy efficiency of various systems with different locks. 74

5.15 Normalized tail latency of various systems with different locks. 75

xiii

List of Figures

6.1 The OPTIK pattern: Naive implementation. 82

6.2 The OPTIK pattern implemented with OPTIK locks. 83

6.3 CLHT with 4096 elements on 20 threads for various update rates. 87

6.4 The basic building block of the OPTIK pattern. 88

6.5 Code for OPTIK locks on top of versioned locks. 91

6.6 Locking and validation with and without OPTIK locks. 92

6.6 An OPTIK-based concurrent array map data structure. 96

6.7 Performance comparison of lock-based vs. OPTIK-based maps. 97

6.8 An OPTIK-based linked-list data structure. 99

6.9 Throughput of linked-list algorithms on various workloads. 101

6.10 Throughput of hash-table algorithms on various workloads. 103

6.11 Throughput of skip-list algorithms on various workloads. 105

6.12 Throughput of BST algorithms on various workloads. 107

6.13 Throughput and latency distribution of queue algorithms on various workloads. 108

7.1 Topology representation of an 8-socket AMD processor—Opteron. 112

7.2 Coherence traffic for a multi-core RFO request. 116

7.3 Lock-step execution of MCTOP-ALG’s threads. 117

7.4 The four steps of MCTOP-ALG. 118

7.5 Example output of MCTOP-PLACE. 125

7.6 Throughput of different lock algorithms using educated backoffs with MCTOP. . 126

7.7 Performance of sorting 1GB worth of integers on various platforms. 128

7.8 Relative execution time and energy efficiency of Metis with/without ��������. 129

7.9 Relative execution time of MCTOP_MP compared to default OpenMP. 130

xiv

List of Tables
2.1 Short description of the lock algorithms that we consider in this thesis. 14

4.1 Details about the hardware and the OS characteristics of the target platforms. . 34

4.2 Local caches and memory latencies (cycles). 38

4.3 Latencies (cycles) of the cache coherence to access a cache line. 39

5.1 Differences between MUTEX and MUTEXEE. 67

5.2 Single-threaded lock throughput and energy efficiency. 70

5.3 Target software systems and configurations for our energy-efficiency analysis. . 74

7.1 The main structures of MCTOP. 115

7.2 The set of policies offered by MCTOP-PLACE. 125

xv

1 Introduction

Moore’s law [157] and Dennard’s scaling rule [53] are the two principles that used to govern

processor design for almost four decades. Moore’s law suggests that the number of transistors

that can be inexpensively placed on an integrated circuit can double approximately every

two years. Dennard’s rule claims that every technology generation brings a doubled integra-

tion capacity of transistors that are 40% faster in the same power envelope as the previous

generation. While Moore’s law is still effective [114], Dennard’s scaling rule’s life came to an

end in the early 2000s, mainly due to sub-threshold voltage leakage and heat dissipation

limitations [26]. The end of Dennard’s rule signaled the transition from single- to multi-core

processors. Today, embedded, desktop, and server processors are all multi-cores. As the name

suggests, a multi-core processor includes several CPU cores that can execute software threads

in parallel.

This shift of commodity hardware from single- to multi-cores also triggered a transition

towards the need for software parallelism. In other words, in order to improve performance

of a software application on multi-cores, developers have to employ parallelism for utilizing

the multiple cores of the underlying machines. As it was simply put in 2005 by Herb Sutter,

“The free lunch is over [203],” meaning that developers have to explicitly harvest the available

hardware parallelism in their software.

For a certain type of applications, called embarrassingly parallel, extracting parallelism is

relatively straightforward. For example, data parallel problems require applying certain com-

putations on large amounts of data (e.g., MapReduce-type of computation [52]). The most

important characteristic of embarrassingly parallel applications is that they do not include

accesses to shared state.

In contrast, non-embarrassingly parallel software, such as operating systems and databases,

must access shared state. For instance, modern operating-system schedulers include shared

thread queues. Similarly, most components of database systems, such as indexes and the

transaction manager, are also shared. Concurrent processes have to coordinate their accesses

to this shared state in order to ensure correctness—they must synchronize. For example,

1

Chapter 1. Introduction

consider the simple code for decrementing an unsigned counter by one if the counter is

greater than zero: �� �� � �� � � 	 �
 � �. If � is a shared counter and two processes

execute this code without synchronization, it can happen that both processes simultaneously

read � 	 � and decide to decrease the value of �, potentially resulting to the incorrect state

� 	
�. The goal of synchronization is to disallow such erroneous executions.

1.1 Synchronization Primer

Synchronization stems from the Greek words “syn” (with) and “chronos” (time) and denotes the

act of coordinating the execution of a set of processes. As the only purpose of synchronization

is to ensure correctness, synchronization can be seen as mere overhead (i.e., it does not

contribute to the forward progress of the high-level application computation). Typically,

synchronization is achieved by limiting or even prohibiting parallelism. Thus, per Amdahl’s

law [8, 106], synchronization hinders software scalability. In practice, synchronization often

imposes scalability bottlenecks in concurrent systems [17, 28, 29, 33, 35, 42, 43, 44, 136, 145],

which can be notoriously difficult to remove (e.g., the global locks in the Linux kernel [21, 134]).

1.1.1 Synchronization Techniques

Synchronization on top of coherent shared memory can be implemented in various ways. Still,

regardless of the implementation specifics, all synchronization approaches are bound to rely

on the low-level primitives that are available on cache-coherent multi-cores, such as loads,

stores, memory barriers, and compare-and-swap. Additionally, all synchronization techniques

must adhere to the memory consistency model of the processor, which dictates how hardware

can re-order the memory operations of a core [201].

In most practical systems, synchronization is implemented with locks (i.e., mutual exclusion).

As the purpose of locks is to serialize the accesses to shared resources, locks directly hinder

scalability. Additionally, locks are often cited for several correctness and performance issues,

such as deadlocks, priority inversion, and lock convoying [41, 103]. Still, locks are used in

essentially every modern concurrent software system, mainly due to their simplicity compared

to other synchronization techniques.

Alternatively, there is a trend towards lock-free designs for increasing parallelism and alleviating

the problems associated with locks in concurrent systems [27, 54, 144]. However, lock-free

programming is cumbersome and is thus impractical for widespread use. Instead, data sharing

is commonly “hidden” behind the interface of concurrent data structures, such as linked lists

and hash tables. Concurrent data structures offer certain benefits: (i) they are a higher-level

abstraction than locks, (ii) they are usually designed by concurrency experts, and (iii) they can

be implemented using lock-free or lock-based techniques.

Of course, there are more approaches to synchronization. Two other prominent ones are

message passing and transactional memory. With message passing, processes communicate

2

1.1. Synchronization Primer

through messages, although they might execute on a shared memory multi-core. The main

benefit of message passing stems from the explicit inter-process communication, which

allows for better control of process and data placement [17]. Message passing is the main

synchronization mechanism in various programming languages such as Erlang, Go, or D.

Finally, transactional memory (TM) [102, 197] provides the transactional construct to program-

mers. The programmer has to wrap her sequential code within the delimiters of a transaction.

The TM runtime is then responsible for synchronizing concurrent transactions. Although TM

has gained momentum due to the recent introduction of a restricted version of TM in Intel

processors [113], TM has not been widely-used in practice due to its limited availability.

1.1.2 Towards Scalable Synchronization

As synchronization can been seen as a mere execution overhead, a synchronization scheme

is said to scale if its performance does not degrade as the number of processes increases.

For example, acquiring a lock should ideally take the same amount of time regardless of the

number of processes sharing that lock.

There is an immense amount of work regarding synchronization (e.g., [1, 10, 17, 24, 27, 28, 33,

43, 46, 56, 76, 136, 139, 145, 149, 150, 187, 193, 195, 209, 214]). This prior work mainly involves

the design of new algorithms [1, 46, 56, 136, 149], fixing synchronization-related issues in

specific systems [28, 33, 187, 193, 209], or analyzing specific aspects of synchronization [10, 24,

150]. As a result, the conclusions of existing work cannot be properly generalized to understand

the root cause of synchronization problems in new platforms, workloads, or systems. In most

cases, when software systems face scalability issues, it is not clear if these issues are due to the

underlying hardware, to the synchronization algorithm itself, to its usage of specific atomic

operations, to the application context, or to the workload.

Additionally, prior work has focused on traditional performance metrics, namely throughput

and latency. These have been the main metrics for measuring the efficiency of computing

systems for several decades. However, this state of affairs started changing in the past few

years as energy has become a very important factor [16]. Reducing the power consumption

of systems is considered crucial today [61, 92]. Synchronization is a very appealing target

for saving energy, mainly because synchronization is a building block for software and typ-

ically translates to processes waiting for each other. Consequently, we need to analyze and

understand the energy efficiency trade-offs in synchronization.

In this dissertation, we take an in-depth approach to analyzing synchronization both in terms

of performance and energy efficiency, focusing on lock-based synchronization. In summary,

we show that scalability of synchronization is mainly a property of the underlying hardware.

This means that synchronization directly hampers the cross-platform performance portability of

concurrent software. Nevertheless, we can achieve portability without sacrificing performance,

by creating design patterns and abstractions, which implicitly leverage hardware details without

exposing them to software developers.

3

Chapter 1. Introduction

In what follows, we first explain why and how hardware dictates the scalability of synchroniza-

tion (Section 1.2) and then show how we can potentially hide these hardware intricacies to

achieve portable scalability (Section 1.3).

1.2 Hardware Dictates the Scalability of Synchronization

Part II of this dissertation (Chapters 4 and 5) includes two analyses of synchronization: The

first analysis focuses on the performance of synchronization on various multi-core processors,

while the second analysis revolves around the energy efficiency of locks.

Chapter 4 presents an exhaustive study of synchronization. We span multiple layers, from

hardware cache-coherence protocols up to high-level concurrent software. We do so on

different types of architectures, from single-socket—uniform and non-uniform—to multi-

socket—directory and broadcast-based—multi-cores. We draw a set of observations that,

roughly speaking, imply that scalability of synchronization is mainly a property of the hard-

ware. In brief, we show that non-uniformity of memory accesses is the main inhibitor of

scalability. In particular, synchronizing across sockets of multi-socket processors is detrimen-

tal for scalability. Unfortunately, we also observe that trying to limit synchronization within a

socket is not always feasible, again due to limitations imposed by the underlying hardware.

Chapter 5 presents the first study of the energy efficiency of lock-based synchronization on

��� multi-cores. Intuitively, locks are a natural place for improving the energy efficiency of

software. First, as we mentioned earlier, concurrent systems are mainstream and when their

threads synchronize, they typically do it with locks. Second, locks are well-defined abstractions,

hence changing the algorithm implementing them can be achieved without modifying the

software system. Third, some locking strategies consume more power than others, thus the

strategy choice can make a difference. Last but not least, as we show in Chapter 5, improving

the energy efficiency of locks goes hand in hand with improving their throughput.

We make our case for this throughput/energy-efficiency correlation through a series of observa-

tions obtained from an exhaustive analysis of the energy efficiency of locks on two processors

and six software systems. Essentially, these observations show that modern hardware does

not provide adequate tools for reducing the power consumption of locks without destroying

throughput. Naturally, without the ability to affect power consumption, we have to continue

focusing on throughput optimizations in order to also improve energy efficiency.

Overall, both of these synchronization studies show that the underlying multi-core hardware

largely dictates the scalability of synchronization that can be achieved by software.

4

1.3. Hiding Hardware Limitations to Achieve Portable Scalability

1.3 Hiding Hardware Limitations to Achieve Portable Scalability

Multi-core hardware dictating the behavior of synchronization is very bad news for the porta-

bility of concurrent systems. Fine-tuning software for every single platform is intractable. In

Part III of this dissertation (Chapters 6 and 7), we introduce two approaches that can lead to

both portability and scalability of synchronization (and of concurrent software).

Chapter 6 introduces OPTIK, a new practical design pattern for designing and implementing

fast and scalable concurrent data structures. OPTIK relies on the commonly-used technique of

version numbers for detecting conflicting concurrent operations. We show how to implement

the OPTIK pattern using the novel concept of OPTIK locks. These locks extend the traditional

lock interface for efficiently implementing the OPTIK pattern. Existing state-of-the-art lock-

based data structures acquire the lock and then check for conflicts (e.g., [97, 105]). In contrast,

with OPTIK locks, we merge the lock acquisition with the detection of conflicting concurrency

in a single atomic step, similarly to lock-free algorithms. We illustrate the power of our OPTIK

pattern and its implementation by introducing five new algorithms and by optimizing four

state-of-the-art algorithms for linked lists, skip lists, hash tables, and queues. Our results show

that concurrent data structures built using OPTIK are more scalable than the state of the art.

Chapter 7 introduces ��������, a library that relies on the determinism of cache-coherence

protocols for inferring the basic topology of multi-cores using only latency measurements.

�������� then augments this basic representation with low-level information, such as mem-

ory bandwidths, to deliver the MCTOP topology abstraction. MCTOP enables developers to

accurately and portably define high-level performance policies. For example, using MCTOP,

we can easily define policies such as “use the two closest cores,” or “use two sockets with

maximum communication bandwidth.” These MCTOP policies utilize low-level characteristics

of multi-cores, such as latencies and bandwidth, without exposing them to the developer,

resulting in portable software optimizations. We illustrate several such policies through four

examples: (i) automatic backoff schemes for locks, (ii-iii) thread placement in OpenMP and the

Metis MapReduce library, as well as (iv) a topology-aware mergesort algorithm. We illustrate

the performance benefits and the portability of these policies across five processors from Intel,

AMD, and Oracle, with minimal development effort.

Overall, these two approaches prove that we can achieve portable scalability of concurrent

software. To this end, we need to create design patterns, abstractions, or other high-level

constructs which encapsulate synchronization and other hardware characteristics without

exposing low-level details to software developers.

1.4 Contributions

As the number of cores and the complexity of multi-core systems keeps increasing, designing

and implementing scalable synchronization becomes ever more challenging. This dissertation

offers (i) a better understanding of the behavior of synchronization on modern multi-cores,

5

Chapter 1. Introduction

and (ii) two approaches to deliver portable scalability of synchronization (and of concurrent

software). In detail, this dissertation makes the following intellectual contributions:

1. A clear understanding of how hardware limits and dictates the performance and energy

efficiency of synchronization, with ramifications on both software and hardware design.

2. OPTIK: A design pattern for devising scalable concurrent data structures.

3. MCTOP: An abstraction of multi-core topologies and a policy-based approach towards

portable optimizations.

Furthermore, this dissertation contributes in providing several novel algorithms and synchro-

nization libraries (implementing both our new and existing state-of-the-art algorithms):

1. SSYNC: A cross-platform synchronization suite; SSYNC works on ���, �����, and Tilera

processors. SSYNC is available at 	

��

����������	
��
�
�����.

2. LOCKIN: A locking library with more than 10 state-of-the-art lock algorithm implemen-

tations. LOCKIN includes MUTEXEE, our novel variant of pthread mutex lock. LOCKIN is

available at 	

��

����������	
��
�
������.

3. OPTIK: A concurrent data structure library. OPTIK includes the implementation of OPTIK

locks (i.e., our extension of the traditional lock interface for efficiently implementing the

OPTIK pattern) and the five new data structure algorithms we design with OPTIK. OPTIK

is available at 	

��

����������	
��
�
��
��.

4. CLHT: A very fast and scalable concurrent hash table. CLHT is a part of ASCYLIB and is

available at 	

��

����������	
��
�
�������.

5. �����
��: A library for designing portable software based on our MCTOP multi-core

abstraction. �����
�� includes the implementation of MCTOP-ALG (i.e., an algorithm

for inferring the topology of any multi-core solely based on cache-coherence measure-

ments). �����
�� will soon be available at 	

��

����������	
��
�
��
��.

1.5 Thesis Roadmap

The rest of the dissertation is organized in three parts as follows:

P
ar

tI

• Chapter 2 introduces some background regarding shared-memory synchronization

and describes the platforms used for the experiments throughout this dissertation.

• Chapter 3 discusses existing related work.

P
ar

tI
I • Chapter 4 includes an exhaustive analysis of synchronization on four multi-cores.

• Chapter 5 presents the first study of the energy-efficiency trade-offs of lock-based

synchronization on modern ��� multi-cores.

P
ar

tI
II

• Chapter 6 introduces OPTIK, a novel design pattern for designing and implementing

scalable optimistic concurrent data structures.

• Chapter 7 presents �����
��, a novel library that enables portable optimizations of

concurrent software by abstracting multi-core topologies.

• Chapter 8 concludes this dissertation and discusses potential avenues for future work.

6

Part I

Preliminaries

2 Background and Target Platforms

In this chapter, we provide the necessary background related to the main chapters of this

thesis. We start by describing important characteristics of modern multi-cores that affect the

design and implementation of concurrent software. We continue by introducing the basic

concepts that are used in synchronization and in the design of concurrent data structures. We

conclude this chapter by describing the eight platforms that we use in our experiments.

2.1 Characteristics of Modern Multi-Core Processors

From Single- to Multi-Core Processors. In the early 2000s, processor manufacturers sud-

denly switched from single- to multi-core processors for commodity hardware. This switch

was motivated by technological reasons related to power consumption and heat dissipation of

microprocessors [25]. Nowadays, embedded, desktop, and server processors are multi-cores.

As the name suggests, a multi-core processor includes several CPU cores that can execute

software threads in parallel.

This shift of commodity hardware from single- to multi-cores also triggered a transition

towards the need for concurrent programming. In other words, on multi-cores, in order to

improve performance of a software application, one needs to use concurrent programming to

utilize the multiple cores of the underlying machine. As it was simply put in 2005 by Herb Sutter,

“The free lunch is over [203],” meaning that developers must employ concurrency in their

software in order to harvest the available hardware parallelism. On single-core processors,

technology scaling used to ensure that approximately every two years processors would

become almost twice as fast as the processors of the previous generation. Consequently,

every single–threaded piece of software was also “becoming twice as fast” every two years—

motivating the name free lunch.

Cache Coherence. Traditionally, even on single-core processors, the gap between CPU core

performance and the memory latency has been increasing for the past decades [100]. This

problem is mitigated by multiple levels of caches. On single-core processors, caching is

9

Chapter 2. Background and Target Platforms

“straightforward,” given that there is a single core with multiple level of caches, hence the core

can freely cache and update data in the caches.

In contrast, multi-core processors bring the need for cache coherence between the (private)

caches of different cores. Cache coherence is the hardware protocol responsible for main-

taining the consistency of data in caches. The cache-coherence protocol implements the two

fundamental operations of an architecture: load (read) and store (write). In addition to these

two operations, cache coherence typically also provides other, more sophisticated atomic

operations: compare-and-swap, fetch-and-increment, atomic swap, etc. Atomic operations

are essential for synchronization as many synchronization problems are impossible with just

load and store operations [14].

Figure 2.1 – Typical configuration of a single-socket multi-core processor.

Figure 2.1 depicts a typical configuration of one multi-core socket (i.e., one processor chip/die).

For performance reasons, each core has two levels of private caches. Intuitively, if core 1

intends to modify a cache line of data1 that is cached in the private caches of core 2, core 1

must inform core 2’s caches about the update in order to avoid data inconsistencies. These

situations are handled by the cache-coherence protocol of the processor.

Modern processors implement the MESI coherence protocol [174], or variants of MESI. With

MESI, each cache line can be in one of the following four states:

• Modified: This is the only and the latest copy of this block of data in the cache hierarchy.2

This block of data is stale in main memory.

• Exclusive: This is the only copy of data in the cache hierarchy. This block of data is valid

in main memory.

• Shared: This is one of possibly many copies of this block of data (i.e., other cores might

hold copies in their caches). This block of data is valid in main memory.

• Invalid: This block of data holds invalid data that cannot be used by the core.

1 A cache line, also known as a cache block, is the granularity of data transfer and coherence on modern processors.
The size of a cache line is typically 64 bytes on modern multi-cores.

2 Multiple copies of this modified cache line might exist in the caches of the same core (e.g., L1 and L2), depending
if caches are inclusive or exclusive [100].

10

2.1. Characteristics of Modern Multi-Core Processors

As we describe in Chapter 4, cache coherence can be viewed as synchronization at the hard-

ware level and dictates how fast two threads can communicate in software.

Coherence is usually implemented by either snooping or using a directory [201]. With snoop-

ing, the individual caches monitor any traffic on the addresses they hold in order to ensure

coherence. A directory keeps approximate or precise information of which caches hold copies

of a memory location. Any operation that requires coherence has to consult the directory,

enforce consistency, and update the directory.

Simultaneous Multi-Threading (SMT). The multiple cores of a multi-core can be used to

take advantage of the thread-level parallelism of software—different threads can, in parallel,

perform work on different cores. Still, many workloads include irregular memory accesses,

resulting in poor utilization of the core’s resources due to memory stalls.3 In order to alleviate

this problem, and at the same time deliver even higher thread-level parallelism, many modern

processors (e.g., Intel ��� and �����) include simultaneous multi-threading (SMT) [212].

With SMT, each CPU core contains more than one hardware context, which share many of

the resources of the core, such as the caches and the pipelines. Typically, when a hardware

context is stalled, another context is scheduled by the hardware.

Operating systems, such as Linux and Solaris, expose hardware contexts as the scheduling

unit for software. A developer can pin software threads to specific hardware contexts, so

that threads execute only on these hardware contexts. Note that although the OS essentially

exposes hardware contexts as cores, executing two threads on the hardware contexts of the

same or of different cores can make a huge performance difference due to the heavy resource

sharing of hardware contexts of the same core. In this thesis, the term thread refers to software

threads, while the term hardware context refers to either a hardware context of an SMT-enabled

processor, or a core of a non-SMT processor.

Dynamic Voltage and Frequency Scaling (DVFS). DVFS is a commonly-used power-

management technique that adjusts the frequency and the voltage of the CPU to save power.

Most modern processors expose control registers to adjust the desired frequency and voltage

points. For instance, Linux uses the 	
��
�� driver to adjust these control registers based

on CPU utilization. When the driver detects that the processor utilization increases, the

frequency and voltage of the CPU are increased accordingly. When the processor is mostly idle,

the frequency and voltage are scaled down to save power. For a comprehensive explanation

of how DVFS operates on modern multi-cores, we refer the reader to [213]. In Chapter 5, we

consider DVFS for optimizing the energy efficiency of synchronization.

3 Note that the same problem is attacked by out-of-order execution [100], which re-orders instructions of a single
execution context in order to take advantage of instruction-level parallelism and hide long-latency instructions.

11

Chapter 2. Background and Target Platforms

Non-Uniform Memory Access (NUMA). Modern server processors are typically packaged

in multi-socket configurations. Multi-socket multi-cores, also known as multi-processors,

consist of several multi-cores which are interconnected with fast network (e.g., Intel’s Quick-

Path interconnect [112], or AMD’s HyperTransport [45]). A typical 4-socket configuration is

shown in Figure 2.2, where each socket is directly connected to all other sockets and to a

memory node. Multi-socket servers typically provide fully-coherent globally shared memory

(i.e., threads have coherent accesses to all memory nodes, local or not). The cross-socket

interconnection network serves two main purposes: (i) transferring memory across sockets,

and (ii) propagating cross-socket coherence messages.

Accessing memory from the local node of a socket is faster than accessing remote memory,

thus multi-socket processors are said to offer non-uniform memory accesses (NUMA). As we

show in Chapter 4, NUMA effects play an important role in the performance and scalability of

synchronization. Additionally, in Chapter 7, we introduce a multi-core topology abstraction

that can simplify programming on NUMA architectures.

Figure 2.2 – Typical configuration of a multi-socket multi-core processor.

2.2 Synchronization

Synchronization denotes the act of coordinating the execution of a set of processes. In concur-

rent systems where processes share data, synchronization is necessary for correctness [14].

Essentially, synchronization does not contribute any useful work to concurrent software,

hence, it can be considered as mere overhead. Therefore, as we show in this thesis, synchro-

nization must be reduced to the bare minimum.

As we mentioned earlier, cache-coherence protocols essentially implement synchronization

at the hardware level. Although these protocols are not directly exposed to software, as we

illustrate throughout this thesis, they play a crucial role on the performance and scalability of

concurrent software. Essentially, all software synchronization techniques directly build on top

12

2.2. Synchronization

of this hardware synchronization (as they make use of loads, stores, and atomic operations).

In particular, in Chapter 7, we show that the characteristics of cache-coherence protocols are

so explicit that they can be used to infer the topology of any multi-core.

In software, synchronization can be implemented in various ways. In what follows, we describe

the two most prominent synchronization techniques, which we consider in this dissertation.

Locking. Locking is by far the most commonly-used approach to synchronization. Practically

all modern software system employ locks in their design and implementation. Prominent

examples include operating systems (e.g., Linux [72, 73]), databases (e.g., MySQL [168]), and

key-value stores (e.g., Memcached [70], RocksDB [64]).

The main reason behind the popularity of locking is that offers an intuitive abstraction. Locks

ensure mutual exclusion; only the holder/owner of the lock can proceed with its execution.

Executions that are protected by locks are known as critical sections. The remaining threads

wait until the holder releases the lock. This waiting is implemented with either sleeping

(blocking), or busy waiting (spinning) [172].

With sleeping, the thread is put in a per-lock wait queue and the hardware context is released

to the OS. When the lock is released, the OS might wake up the thread (triggered by the

release function). With busy waiting, threads remain active, polling the lock in a spin-wait

loop. Sleeping is employed by the pthread mutex lock (MUTEX). On Linux, MUTEX builds

on top of ����� system calls, which allow a thread to wait for a value change on an address.

MUTEX might first perform busy waiting for a limited amount of time and if the lock cannot be

acquired, the thread makes the ����� call.

The lock algorithms which employ busy waiting are called spinlocks [10, 103]. In simple

spinlock algorithms (e.g., TAS, TTAS, TICKET) processes spin on a common memory location

until they acquire the lock. Simple spinlocks are generally considered to scale poorly because

they involve high contention on a single cache line [10], an issue which is addressed by queue-

based spinlocks [46, 149]. Queue-based locks remove the single cache line bottleneck of

simple spinlocks by generating a queue of nodes, so that each process spins on a unique

memory location.

Spinlocks mostly differ in their busy-waiting implementation. For example, TAS spins with an

atomic operation, continuously trying to acquire the lock (global spinning). In contrast, all

other spinlocks (e.g., TTAS, TICKET, MCS, CLH, HCLH) spin with a load until the lock becomes

free and only then try to acquire the lock with an atomic operation (local spinning). To acquire

a queue-based lock (e.g., MCS, CLH), a thread adds an entry to a queue and spins until the

previous holder hands over the lock. Hierarchical locks [56, 139] (e.g., HCLH, HTICKET) are

tailored to today’s NUMA architectures by using node-local data structures and minimizing

accesses to remote data. Table 2.1 describes the lock algorithms that we consider in this thesis.

13

Chapter 2. Background and Target Platforms

Name Waiting Short description

MUTEX [87] sleeping The standard pthread mutex lock algorithm. Threads (might) spin for a while
before releasing their hardware context to the OS (if they do not manage to
acquire the lock during this busy waiting period).

MUTEXEE [66] sleeping Our optimized MUTEX lock algorithm, presented in Section 5.5.1. MUTEXEE tries
to avoid the frequent sleep invocations of MUTEX, using spinning both in lock
and unlock functions.

TAS [10] global
spinning

Test-and-set lock. Threads busy wait on the lock with atomic operations
(e.g., compare-and-swap) until they manage to acquire the lock.

TTAS [10] local
spinning

Test-and-test-and-set lock. Threads busy wait by polling (loading) the lock value
until the lock becomes free. Once the lock is free, threads perform atomic opera-
tions to try to acquire it. If unsuccessful, they return again to local spinning.

TICKET [149] local
spinning

Contains two counters: ticket and current. To acquire the lock, threads atom-
ically fetch and increase the ticket counter. If the acquired ticket equals the
current counter, the thread has acquired the lock, otherwise, the thread spins
until its ticket becomes equal to counter.

ARRAY [103] queue
based

Includes an array of flags. To acquire the lock, threads atomically fetch and
increment a counter in order to find which slots in the array to use. Only one
flag can be free at a time. To release the lock, the lock owner transfers the free
flag to the next slot.

MCS [149] queue
based

Threads create a linked queue of lock requests by appending their local node
with an atomic swap to the tail of the lock. Threads spin on their local queue
nodes and release the lock by following the successor node of their local node.

CLH [46, 140] queue
based

CLH is similar to MCS. However, threads “inherit” and spin on their predecessor
node, not on their own local node. Essentially, the queue with CLH is implicit
(every thread knows of just two nodes).

HCLH [139] hierarchical
queue

A hierarchical version of CLH. Threads create implicit per-NUMA-node queues
and splice them into a global queue with a compare-and-swap.

HTICKET [49, 56] hierarchical
local

A hierarchical version of TICKET. When a thread acquires the top-level lock
(across nodes), it fetches several tickets. These tickets are used for transferring
the lock among threads of the same node. When no local thread intends to
acquire the lock or all tickets are consumed, the lock is released to other nodes.

Table 2.1 – Short description of various lock algorithms.

Message Passing. An alternative to locks that we consider in this thesis is to partition the sys-

tem resources between processes. In this view, synchronization is achieved through message

passing, which is either provided by the hardware or implemented in software [13]. Software

implementations are generally built over cache-coherence protocols and impose a single-

writer and a single-reader for the used cache lines. The main goal of using message passing

on a shared-memory multi-core system is to achieve explicit inter-process communication,

which is easier to control and debug than implicit communication over shared memory. Ad-

ditionally, message-passing-based software systems can be easily ported and deployed as

distributed systems and can thus easily leverage new technologies such as RDMA.

In principle, synchronization on top of shared memory or through message passing are duals

of each other—i.e., concurrent software built with shared memory has a counterpart with

message passing, and vice versa [13, 126]. Still, as we show in Chapter 4, modern multi-cores

favor shared memory unless there is extremely high contention.

14

2.3. Concurrent Data Structures

2.3 Concurrent Data Structures
Data structures allow for efficient storage and retrieval of data elements. These elements

are typically identified by unique keys. In particular, search data structures (e.g., lists, hash

tables) include three main operations: (i) search, for searching for an element with a given

key, (ii) insert, for inserting a new element in the structure if the key is not already there, and

(iii) delete, for deleting an existing element. Other data structures, such as queues, offer a

different interface. Queues are first-in first-out (FIFO) structures with two main operations:

(i) enqueue, to place an element at the head of the queue, and (ii) dequeue, to remove the

current tail element (if any).

Concurrent data structures (CDSs) can be simultaneously accessed by multiple threads through

their interface. The consistency of CDSs is typically measured with respect to linearizabil-

ity [104]. Linearizable CDS algorithms are commonly classified based on the progress guar-

antees they offer. It is common to distinguish between blocking [103], lock-free, and wait-

free [101] algorithms. Blocking algorithms typically rely on locking and might block, waiting

for a lock to be released. Lock-free algorithms are non-blocking in the sense that (i) they do

not use locks, and (ii) they ensure that at least one process in a system can make progress.

Finally, wait-free algorithms, in addition to being non-blocking, guarantee that every process

in a system eventually makes progress. In practice, wait-free algorithms are slower than their

lock-based and lock-free counterparts and are thus not very commonly used [48]. In Chapter 6,

we introduce several novel CDS algorithms, including lock-free and lock-based designs.

Most state-of-the-art CDS algorithms are optimistic, regardless if they are lock-based or lock-

free. They are optimistic in the sense that they first optimistically perform some work, without

synchronizing with other threads, and then synchronize to validate the consistency of the

optimistic work and to modify the state of the structure. Lock-based algorithms perform

validation in critical sections (i.e., in the execution parts which are protected by locks), while

lock-free algorithms use atomic operations, such as compare-and-swap, to simultaneously

validate and update the target nodes of the data structure.

2.4 Target Platforms

In what follows, we describe the eight multi-core processors that we employ in collecting

the experimental results of this thesis. Each chapter utilizes a different subset of these multi-

cores, depending on the requirements of the chapter (i.e., what the chapter aims to illustrate).

The topology representations that we depict in the figures of this chapter are automatically

generated by ��������, a tool that we introduce in Chapter 7 (we do not include graphs for

the single-socket processors).

Opteron. The 48-core AMD Opteron (we use Opteron as an example for �������� in Chap-

ter 7–Figure 7.1) contains four Opteron 6172 multi-chip modules (MCMs). Each MCM has two

6-core dies, for a total of 8 memory nodes. It operates at 2.1 GHz and has 64 KB, 512 KB, and 5

MB (per die) L1, L2, and LLC data caches, respectively.

15

Chapter 2. Background and Target Platforms

Socket 0 - 116 cycles

089 129 28

088 128 28

087 127 28

086 126 28

085 125 28

084 124 28

083 123 28

082 122 28

081 121 28

000 120 28

Node
0

598 cy
4.9 GB/s

Node
1

601 cy
4.2 GB/s

Node
2

600 cy
4.9 GB/s

Node
3

495 cy
5.0 GB/s

Node
4

369 cy
13.1 GB/s

Node
5

497 cy
10.7 GB/s

Node
6

502 cy
8.6 GB/s

Node
7

603 cy
7.9 GB/s

(a) Intra-socket topology of a socket.

0

4

341 cy
5.0 GB/s

5 341 cy
10.7 GB/s

6

341 cy
8.6 GB/s

1 2341 cy
10.8 GB/s

3

341 cy
6.5 GB/s

341 cy
6.6 GB/s

341 cy
5.8 GB/s

341 cy
8.0 GB/s

341 cy
10.9 GB/s

7

341 cy
8.1 GB/s

341 cy
8.8 GB/s

341 cy
13.3 GB/s

lvl 4
(2 hops) 458cy

(b) Cross-socket topology.

Figure 2.3 – Topology representation of an 8-socket Intel Xeon processor—Westmere.

Westmere. The 80-core Intel Xeon (Figure 2.3) consists of eight sockets of Intel Xeon West-

mere E7-8867L 10-cores (two hardware contexts per core). Westmere operates at 1.1-2.1 GHz

and has 32 KB, 256 KB, and 30 MB (per die) L1, L2, and LLC data caches, respectively.

Haswell. The 48-core (two hardware contexts core) Intel Xeon (Figure 2.4) comprises four

Haswell E7-4830 v3 sockets. Haswell operates at 1.2-2.7 GHz and has 32 KB, 256 KB, and 30

MB (per die) L1, L2, and LLC data caches, respectively.

Ivy. The 20-core Intel Xeon (we use Ivy as an example for in Chapter 7–Figure 7.4)

consists of two sockets of Ivy Bridge E5-2680 v2 10-core (20 hardware contexts). Ivy runs at

1.2-2.8 GHz and includes 32 KB, 256 KB, and 25 MB (per die) L1, L2, and LLC, respectively.

(a) Intra-socket topology of a socket.

0

1

338cy
12.6GB/s

2

338cy
12.6GB/s

3

338cy
12.8GB/s

338cy
12.8GB/s

338cy
12.6GB/s

338cy
12.6GB/s

(b) Cross-socket topology.

Figure 2.4 – Topology representation of a 4-socket Intel Xeon processor—Haswell.

16

2.4. Target Platforms

Ivy-desktop The 4-core Intel Core i7 is a desktop Ivy Bridge 3770K processor (8 hardware

contexts). Ivy-desktop runs at 1.6-3.5 GHz and includes 32 KB, 256 KB, and 8 MB (per die) L1,

L2, and LLC, respectively.

SPARC-T2. The Sun Niagara 2 is a single-die processor (SUN UltraSPARC-T2) that incor-

porates 8 cores clocked at 1.2 GHz. It is based on the chip multi-threading architecture; it

provides 8 hardware contexts per core, totaling 64 hardware threads. Each L1 cache (8 KB) is

shared among the 8 hardware contexts of a core, while the shared LLC is 4 MB.

SPARC-T44 The Oracle SPARC T4-4 (Figure 2.5) consists of four SPARC T4 sockets with eight

cores per socket and a total of 256 hardware contexts (eight hardware contexts per core).

SPARC-T44 operates at 3 GHz and has 16 KB, 256 KB, and 4 MB (per die) L1, L2, and LLC data

caches, respectively.

Tilera. The Tilera TILE-Gx36 [205] is a 36-core chip multi-processor. It clocks at 1.2 GHz and

has 32 KB, 256 KB, and 9 MB 3 L1, L2, and L3 data caches, respectively.

Socket 0 - 207 cycles

056 057 058 059 060 061 062 063 101

048 049 050 051 052 053 054 055 101

040 041 042 043 044 045 046 047 101

032 033 034 035 036 037 038 039 101

024 025 026 027 028 029 030 031 101

016 017 018 019 020 021 022 023 101

008 009 010 011 012 013 014 015 101

000 001 002 003 004 005 006 007 101

Node
0

479 cy
28.2 GB/s

Node
1

679 cy
15.3 GB/s

Node
2

689 cy
15.2 GB/s

Node
3

688 cy
15.1 GB/s

(a) Intra-socket topology of a socket.

0

1

650 cy
15.3 GB/s

2

650 cy
15.2 GB/s

3

650 cy
15.1 GB/s

650 cy
15.1 GB/s

650 cy
15.1 GB/s

650 cy
15.3 GB/s

(b) Cross-socket topology.

Figure 2.5 – Topology representation of a 4-socket Oracle processor—SPARC-T44.

17

3 Related Work

In this chapter, we discuss the work that is the most related to the topics covered by this

dissertation. We focus on synchronization based on locks and message passing (Section 3.1).

Still, we describe alternative synchronization techniques for optimistic concurrency in the

context of concurrent data structures (Section 3.2). Finally, we describe the implications of

synchronization on the scalability of software systems (Section 3.3).

3.1 Scaling Synchronization on Multi-Cores

Leveraging Cache Coherence. Cache-coherence protocols guarantee the consistency of

data across the multiple caches in multi-cores and are thus also responsible for transferring

data within the memory hierarchy. Given that today’s multi-cores provide communication

latencies with large non-uniformity, analyzing and leveraging cache coherence is essential for

the scalability of synchronization primitives. The characteristics of cache-coherence protocols

on ��� multi-sockets have been investigated by a number of studies [90, 156], whose focus is

on bandwidth limitations. The cache-coherence latencies are measured from the point of view

of loading data. We extend these studies by also measuring stores and atomic operations—

which are essential for most synchronization constructs [14]—and analyzing the impact on

higher-level concurrent software.

Molka et al. [156] consider the effect of the AMD and Intel memory hierarchy characteristics

on various workloads from SPEC OMP2001 and conclude that throughput is mainly dictated

by memory limitations. The results are thus of limited relevance for systems involving high

contention. Moses et al. [160] use simulations to show that increasing non-uniformity entails a

decrease in the performance of the TTAS lock under high contention. However, the conclusions

are limited to spinlocks and one specific hardware model. We generalize and quantify such

observations on commonly used architectures and synchronization schemes, while also

analyzing their implications.

19

Chapter 3. Related Work

Scaling Lock-Based Synchronization. Lock-based synchronization has been thoroughly

analyzed in the past. Many studies [3, 10, 117, 136, 149] point out scalability problems due to

excessive coherence traffic with traditional spinlocks and propose alternatives. Note that some

of these studies pre-date multi-core processors with MESI cache coherence. Instead, they

address concerns regarding caching of lines in shared mode at multiple processors. In more

detail, Agarwal and Cherian [3] propose various adaptive backoff mechanisms for reducing

coherence traffic of spinlocks. In Chapter 7 we design “educated” lock backoff mechanisms

that build on top of the cache-coherence latencies of multi-cores. Mellor-Crumney et al. [149]

and Anderson [10] introduce and test several alternatives to simple spinlocks, such as queue

locks. Their evaluation is performed on large scale multi-processors, on which the memory

latency distribution is significantly different than on today’s multi-cores. Throughout this

thesis, we thoroughly evaluate queue-based spinlocks, such as MCS [149] and CLH [46, 140],

on modern multi-core processors.

Goodman et al. [81] propose various architectural primitives for implementing synchroniza-

tion, based on the idea of synchronization bits that offer mutual exclusion. Kägi et al. [117]

build on the idea of synchronization bits and propose the design of a hardware-based queue-

based lock for minimizing coherence traffic. Naturally, these techniques require hardware

modifications and are not available on commercial processors.

Lim and Agarwal [130] propose reactive locks, an adaptive synchronization scheme that

switches between different protocols and waiting strategies. The idea of reactive locks is 100%

aligned to the findings of this thesis, however, (i) the authors report modest performance

benefits, and (ii) reactive locks must be implemented and evaluated on modern multi-cores.

More recently, Radovic and Hagersten [184, 185] were the first to propose hierarchical locks,

tailored for NUMA architectures. Hierarchical locks trade short-term fairness for performance,

by letting threads of a socket exchange the lock within the socket (for some fixed number of

lock handovers) before releasing the lock to threads of other sockets. Based on this idea, many

other hierarchical locks have been designed. Luchangco et. al [139] study a NUMA-aware

hierarchical CLH lock (HCLH) and compare its performance with a number of well-known locks.

Dice et al. [56] propose lock cohorting, a generic technique for designing hierarchical locks.

Similarly, Chabbi et al. [38] introduce a hierarchical MCS lock that supports deep hierarchies.

Our analysis in Chapter 4 shows that hierarchical locks can be beneficial in the presence of

(i) large non-uniformity and (ii) under very-high lock contention, so that the lock can indeed

remain busy within a single socket. Additionally, in Chapter 5, we show how reducing fairness

can result in significant energy efficiency benefits.

Inspired by our analysis of synchronization in Chapter 4, Guiroux et al. [89] performed an

extensive analysis of 27 lock algorithms on ��� multi-cores on applications from PARSEC,

Phoenix, and SPLASH2 suites. To be able to easily modify lock algorithms in theses applica-

tions, they develop an interpolation library that builds on our CLHT hash table (Section 6.2).

20

3.1. Scaling Synchronization on Multi-Cores

Their results corroborate our findings that “every lock algorithm has its fifteen minutes of fame”

and that the underlying hardware platform plays a big role on the performance of locking.

Other lock-related studies focus on the Linux kernel [29] and conclude that the default ticket

lock implementation causes important performance bottlenecks in the OS on a multi-core.

Performance is improved in a number of different scenarios by replacing the ticket locks with

complex locks. We confirm that plain spinlocks do not scale across sockets and present some

optimizations that alleviate the issue.

Similarly to our MUTEXEE lock (Section 5.5.1), Solaris’ mutex locks offer the option of “adaptive

unlock,” where the lock owner does not wake up any threads if the lock can be handed over

in user space [154]. Moreshet et al. [158] share some preliminary results suggesting that

transactional memory can be more energy efficient than locks. Wamhoff et al. [213] evaluate

the overheads of using DVFS in locks and show how to improve performance by boosting the

lock owner. Our work extends prior synchronization work with a complete study of the energy

efficiency of lock-based synchronization.

Spin-Then-Sleep Trade-Off in Locks. The spin-then-sleep strategy was first proposed by

Ousterhout [172] in order to avoid wasteful context switches in case processes are likely to

wait for only a short amount of time. Various studies [24, 118, 129] analyze this trade-off and

show that just spinning or sleeping is typically suboptimal. Franke et al. [74] recognize the

need for fast user-space locking and describe the first implementation of ����� in Linux. Our

MUTEXEE lock (Section 5.5.1) uses the ����� system calls for putting threads to sleep.

Johnson et al. [116] advocate for decoupling the lock-contention strategy from thread schedul-

ing. At first glance, our MUTEXEE lock might look similar to their load-control lock (LC). LC

builds on top of TP-MCS [96], an MCS lock with support for timeouts, allowing threads to be

dequeued from the lock-waiting queue. However, the LC and MUTEXEE have some notable

differences. LC relies on a global view of the system for load control (threads are put to sleep

when the system load is high), while MUTEXEE performs per-lock load control. LC’s global load

control can result in “unlucky” locks having their few waiting threads sleep for at least 100 ms,

although there is low lock contention—sleeping threads are not woken up by a lock release,

but only because of a decrease in load or 100 ms timeout (we could say that LC is unfair with

100 ms “granularity”). Finally, in contrast to MUTEXEE, LC might waste energy, because on low

system load, no thread is blocked, even if the waiting times are hundreds of ms.

Scaling Message-Passing-Based Synchronization. As we mentioned earlier, synchroniza-

tion on top of shared memory or through message passing are in principle duals of each

other [13, 126]. A number of efforts (e.g., Barrelfish [17], fos [214]) point out the difficulty of

scaling traditional shared-memory operating systems on multi-cores. This difficulty stems

from the fact that, generation after generation, multi-cores tend to offer a larger number of

cores and more heterogeneous resources. To achieve scalability, these systems avoid resource

sharing altogether by using message passing (often implemented on top of shared memory).

21

Chapter 3. Related Work

In our prior work [84], we introduced TM2C, the first software transactional memory for

non-coherent multi-core processors. TM2C builds on top of a distributed lock service and

offers starvation-free transactions. Analyzing the portability of TM2C on various multi-core

processors gave us the inspiration for the synchronization analysis of Chapter 4.

Various techniques have been proposed in order to improve the performance of highly-

contended locks, especially on multi-socket processors. For example, flat combining [99] is

an approach in which a thread can execute critical sections on behalf of others. With flat

combining, an operation translates to a message to a dedicated server thread that performs

the operation on locally-held data without employing any synchronization. The immediate

benefits are that (i) the server threads perform unsynchronized accesses to (likely) locally

cached data, and (ii) requests are serialized by message passing, hence avoiding the single

contention point of memory contention with locks.

Fatourou and Kallimanis [68] propose three optimized implementations of flat combining

with the goal of minimizing coherence traffic to improve performance. The main idea of their

solution is to piggyback thread requests to the server in the queue node of an MCS lock. That

way, executing an operation boils down to “acquiring a lock.” RCL [136, 137] replaces the

“lock, execute, and unlock” pattern with remote procedure calls to a dedicated server core. For

highly-contended critical sections this approach hides the contention behind messages and

enables the server to locally access the protected data.

Similarly, Petrovic et al. [177] devise server-based and combining algorithms tailored for

hardware message passing available on platforms such as the Tilera (see Section 2.1). They

use these two synchronization approaches to design queue and stack algorithms and show

that for these highly-contended data structures their solutions significantly outperform their

shared memory counterparts. Overall, the scope of flat-combining solutions is limited to high

contention and a large number of cores.

Our results regarding message-passing-based synchronization in Chapter 4 corroborate prior

work and confirm that message passing can provide significant scalability benefits over locking

under very high contention. Nevertheless, we show that when contention is low, message

passing is significantly slower than solutions that build directly on top of shared memory.

3.2 Scaling Concurrent Data Structures on Multi-Cores

This section mainly discusses the work that is related to Chapter 6, our OPTIK design pattern for

concurrent data structures. Essentially, variants of the OPTIK pattern can be found wherever

optimistic concurrency is used (e.g., databases, distributed systems). In the following, we

highlight work that is the most related to OPTIK.

22

3.2. Scaling Concurrent Data Structures on Multi-Cores

Designing Concurrent Data Structures (CDSs). There has been a large amount of work on

designing efficient and scalable CDSs, for linked lists [93, 97, 151, 183], hash tables [127, 151],

skip lists [75, 183, 202], binary search trees [30, 57, 60, 161], queues [153, 159, 177, 210], and

stacks [98, 177, 206]. Every new CDS design typically introduces a new technique for detecting

and handling concurrency. In Chapter 6, we introduce OPTIK, a generic design pattern that

provides a way of detecting conflicting concurrency via version numbers in different CDSs.

Gramoli et al. [85] utilize version numbers to design a concurrent linked list which reduces

synchronization over the lazy linked list [97] and is similar to our OPTIK-based fine-grained

linked list. Our BST-TK binary-search-tree algorithm is the first occurrence of the OPTIK pattern.

In this thesis, we further generalize the usage of version numbers to a design pattern and show

how to use it in various CDSs.

OPTIK is largely inspired by our “asynchronized concurrency” (ASCY) paradigm [51]. ASCY

consists of four complementary programming patterns that call for the design of concurrent

search data structures to resemble that of their sequential counterparts. ASCY is a result

of an extensive performance analysis of several algorithms on four multi-core processors.

Similarly to our ASCY work, Gramoli [83] analyzed lock-free, lock-based, and transaction-

based concurrent data structure algorithms on multi-cores. One of his main conclusions is

that lock-free designs are more scalable than lock-based ones. Our results with ASCY and

OPTIK clearly show that lock-based algorithms are as scalable as their lock-free counterparts

(and are usually faster).

Alistarh et al. [6] recently proved that, even in the presence of high contention for some

memory locations, lock-free concurrent algorithms are wait-free under stochastic scheduling

of shared memory accesses. Similarly, David and Guerraoui [48] empirically showed that

lock-based concurrent search data structures, such as lists, practically behave as wait-free

algorithms. Essentially, they show that lock-related issues (e.g., priority inversions, lock con-

voying) do not manifest in search data structures, thus the simplicity and high performance of

lock-based designs should be preferred over wait-free algorithms. Our experience with OPTIK

corroborates their findings and proves that we can easily and efficiently design concurrent

data structures.

Optimistic Concurrency Techniques. Several concepts and tools have been proposed for

designing and implementing optimistic concurrency.

Read-copy update (RCU) [146] is a technique that was introduced in the Linux kernel for

easily designing CDSs with (i) wait-free reads and (ii) memory reclamation. Nevertheless,

RCU targets read-mostly workloads. Relativistic programming [208] extends RCU to support

infrequent, but expensive operations, such as hash-table resize. Arbel and Attiya [11] extend

RCU to better support concurrent updates. Still, their binary-search-tree design is slower

than other state-of-the-art trees, especially on write-intensive workloads. Predicate RCU

(PRCU) [12] reduces the granularity of waiting in RCU. PRCU offers a trade-off between

23

Chapter 3. Related Work

the amount of work that search operations must do and the amount of waiting in updates.

RLU [145] improves the usability of RCU by offering concurrency of reads with multiple writers.

With OPTIK, we decouple memory reclamation from concurrency control, thus we are able to

achieve designs that incur none of the aforementioned overheads of RCU.

Transactional memory offers the concept of transactions for implementing synchronization.

Software transactional memory (STM) [197] implements transactions in software. STM can be

used in the design of CDSs, but due to the instrumentation overheads of STMs, the resulting

implementations are typically slower than their lock-free or lock-based counterparts [36].

Hardware transactional memory (HTM) [102] implements transactions in hardware and thus

avoids the instrumentation and the metadata overhead of STMs. Unfortunately, HTMs are

currently neither ubiquitous nor robust enough to be extensively used by CDS designers.

Speculative lock elision [186, 190] aims at reducing the overhead of locking when concurrent

critical sections do not actually conflict. A thread might elide a lock, meaning that threads

optimistically execute their critical sections without acquiring that lock. If a true data conflict

appears, then the thread rolls back and executes the critical section normally. The main goal

of lock elision is to enable writing concurrent applications with coarse-grained locking that

perform well. In contrast, OPTIK’s main goal is to enable the design of high-performance

CDSs in a methodical way. As we discussed earlier, flat combining [99] is another technique

that appears promising for optimizing coarse-grained lock-based CDSs (e.g., queues). Unlike

OPTIK, flat combining is not suitable for highly-concurrent data structures, such as hash tables.

Sequence locks (seqlocks) [125] resemble OPTIK locks as they include a lock and a version

number. With seqlocks, readers ensure that they read consistent data by double checking

the version number. However, unlike OPTIK, seqlocks assume distinct readers/writers and

keep the lock and the version separately. In fact, OPTIK locks can be used in implementing the

seqlock functionality.

Version Numbers in Concurrency. Optimistic concurrency control was introduced for op-

timizing database transactions [123] in 1981. It relied on transaction numbers for detecting

conflicting concurrency. In concurrent programming, many STM systems (e.g, TL2 [55],

TinySTM [69], NOrec [47], SpecTM [58]) rely on version numbers for validating the optimistic

results of transactions. Version numbers have also been employed in distributed transactions

(e.g., [4, 59]) for detecting conflicts. To the best of our knowledge, we are the first to extend

the traditional lock interface, with OPTIK locks, so that we merge validation with locking.

3.3 Scaling Software Systems on Multi-Cores

Scaling System Performance. In order to improve OS scalability on multi-cores, a number

of approaches deviate from traditional kernel designs. The OS is typically restructured to

either improve locality (e.g., Tornado [76]), limit sharing (e.g., Corey [27]), or avoid resource

sharing altogether by using message passing (e.g., Barrelfish [17], fos [214]). Boyd-Wickizer

24

3.3. Scaling Software Systems on Multi-Cores

et al. [28] aim at verifying whether these scalability issues are indeed inherent to the Linux

kernel design. The authors show how optimizing, using various concurrent programming

techniques, removes several scalability issues from both the kernel and the applications. By

doing so, they conclude that it is not necessary to give up the traditional kernel structure just

yet. Lozi et al. [138] analyze the behavior of the Linux scheduler and show that certain bugs

can result in significant performance degradation of synchronization-heavy applications.

Clements et al. [43] link commutative interfaces to the existence of scalable implementations.

In essence, they argue that commutative operations can lead to cache conflict-free implemen-

tations, that are inherently scalable from the memory-system point of view. This conclusion

can help developers avoid unnecessary synchronization that can hinder system scalability.

Numerous key-value stores, such as Memcached [70], RocksDB [64], LevelDB [82], SILT [131]

or Masstree [143] are based on concurrent data structures. In some cases, these structures

have been shown to be scalability bottlenecks, as for example in Memcached [28, 67, 163]. Fan

et al. [67] achieve a 3-fold performance increase over the traditional Memcached, mainly by

optimizing its hash table’s synchronization. Similarly, Lim et al. [132] get significant scalability

improvements on key-value stores, largely due to synchronization optimizations. Golan-Gueta

et al. [80] propose an architecture for log-structured data stores with optimized synchroniza-

tion. They redesign LevelDB and show up to 2.5x higher throughput than state-of-the-art

log-structured systems.

Our results confirm these papers’ observation that synchronization can be an important

bottleneck. We go a step further: We study the roots of scalability problem and observe that

many of the priorly reported issues are in fact hardware-related and would manifest differently

on different platforms.

Scaling System Energy Efficiency. There are many hardware techniques for reducing the

energy footprint of systems. Hardware techniques for reducing energy consumption include

clock gating [128], power gating [179], as well as voltage and frequency scaling [71, 189].

Additionally, there is a body of work that points out the importance of energy-efficient soft-

ware. For instance, Linux has rules to manage frequency and voltage settings [173]. Further

work proposes OS facilities for managing and estimating power [188, 198, 199, 219, 221].

Other frameworks approximate loops and functions to reduce energy [15, 62, 192]. Moreover,

compiler-based [216, 218] and decoupled access-execute DVFS [122] frameworks trade off

performance for energy. In servers, consolidation [19, 39] collocates workloads on a sub-

set of servers, and fast transitioning between active-to-idle power states allows for low idle

power [147, 148]. Basically, those techniques require changes in hardware, installing new

schedulers or runtime systems, or even rebuilding the entire system.

Psaroudakis et al. [181] achieve up to 4x energy-efficiency improvements in database analytical

workloads, using hardware models for power-aware scheduling. Similarly, Tsirogiannis et

al. [211] analyze a DB system and conclude that the most energy-efficient point is also the best

25

Chapter 3. Related Work

performing one. Our POLY conjecture (Chapter 5) is a similar result for locks. Nevertheless,

while they evaluate various DB configurations, we study the spin vs. sleep trade-off. To the

best of our knowledge, this is the first work to consider the energy trade-offs of lock-based

synchronization on modern multi-cores.

Optimizing Systems for Multi-Cores. As corroborated by a large amount of work in operat-

ing systems [17, 18, 18, 27, 28, 76, 176, 220], databases [77, 115, 178, 182, 222], programming

languages [78, 165], parallel runtimes [2, 23, 94, 141], key-value stores [20, 132], and synchro-

nization [34, 37, 38, 56], system developers need to optimize software for the target platform to

achieve good performance. Below, we discuss selected examples of multi-core optimizations.

Giceva et al. [77] explore the efficient deployment of database query plans on multi-cores for

improving database performance. Psaroudakis et al. [182] describe how data placement and

access patterns can significantly affect performance in databases. In the same vein, Gidra et

al. [78, 79] improve the performance of Java’s garbage collection by mainly optimizing memory

placement and removing memory bottlenecks.

In synchronization, optimizing for the underlying platform is a one-way road (as we clearly

show in Chapter 4). To this end, the various hierarchical lock algorithms and techniques [37,

38, 56] that we discussed earlier are designed to be topology aware.

�������� (Chapter 7) is built based on the realization that multi-core optimizations are neces-

sary for good system performance. With ��������, we offer the MCTOP topology abstraction

that enables portable optimizations.

Tools for Multi-Cores. Developing concurrent software is an onerous task. To simplify pro-

gramming, software developers rely on tools and libraries that offer thread pinning, memory

placement, etc. Accordingly, libraries with similar functionality to our �������� (Chapter 7)

already exist. The most prominent ones are ���	
�� [120], �����
� [167] and ����� [31].

Similarly to ��������, all three provide some form of topology abstraction, as well as APIs for

thread and memory placement. In contrast to ��������, all three libraries rely on the OS for

the topology of the machine (which, as we show, can lead to inaccuracies). They also lack the

low-level measurements that the enriched MCTOP abstraction offers.

Additionally, ���	
�� and �����
� offer relative “distances” between resources. These de-

pend on the OS and can be very inaccurate, as we notice during our experiments. Both

���	
�� and �����
� are also OS-specific (���	
�� works on Linux, while �����
� on So-

laris). ����� is portable across platforms (i.e., it can load the topology from various different

operating systems), but is also missing the detailed latency and bandwidth measurements of

MCTOP, which, as we show, are crucial to optimizing software. ����� also offers an API that can

be used across platforms. Unfortunately, it focuses mainly on locality and the available cache

hierarchies of the platforms. In contrast, with MCTOP, we have both the portable abstraction

of the topology, as well as the enriched measurements which can be used either directly or

indirectly to optimize software across platforms.

26

3.3. Scaling Software Systems on Multi-Cores

������ [207] is a set of command-line tools that visualize the thread and cache topology of

a multi-core, as well as control the thread affinities of an application. ������ relies on the

operating system for its topology (currently it supports only Linux) and focuses mainly on

performance counter measurements.

There also exist tools for collecting measurements similar to the ones in MCTOP. These

include Intel’s performance counter monitor [215], which can be used to measure the memory

bandwidth from the memory controllers on an Intel platform.

As we show in Chapter 7, ���	
��
 contains all the necessary components (i.e., topology and

low-level measurement abstractions) to achieve portable optimizations on multi-cores.

27

Part II

Analyzing Synchronization

As the number of cores and the complexity of multi-core systems keeps increasing,
designing, implementing, debugging, and optimizing synchronization becomes more
and more challenging. Additionally, emerging performance metrics, such as energy
consumption, contribute further to this difficulty. Today, software developers must not
only optimize their systems for throughput and latency, but also for energy efficiency.
In this part, we analyze synchronization in terms of throughput, latency, and energy
efficiency, in order to assist developers with designing and implementing scalable
synchronization on modern multi-cores.

4 A Performance Analysis of Synchro-
nization on Multi-Cores1

In this chapter, we present an exhaustive study of synchronization in terms of traditional

performance metrics, such as throughput and latency. Our goal with this study is to offer a

better understanding of how synchronization behaves on modern multi-core processors. We

span multiple layers, from hardware cache-coherence protocols up to high-level concurrent

software. We do so on different types of architectures, from single-socket—uniform and non-

uniform—to multi-socket—directory and broadcast-based—multi-cores. We draw a set of

observations which, roughly speaking, imply that scalability of synchronization is mainly a

property of the hardware.

4.1 Introduction

Scaling software systems to multi-core architectures is one of the most important challenges

in computing today. A major impediment to scalability is synchronization. As we discussed

in Chapter 3, in the past few decades, a large body of work has been devoted to the design,

implementation, evaluation, and application of synchronization schemes. Yet, the designer

of a concurrent system still has little indication, a priori, of whether a given synchronization

scheme will scale on a given modern multi-core architecture and, a posteriori, about exactly

why a given scheme did, or did not, scale.

One of the reasons for this state of affairs is that there are no results on modern architectures

connecting the low-level details of the underlying hardware (e.g., the cache-coherence proto-

col) with synchronization at the software level. Recent work that evaluated the scalability of

synchronization on modern hardware (e.g., [28, 136]) was typically put in a specific applica-

tion and architecture context, making the evaluation hard to generalize. In most cases, when

scalability issues are faced, it is not clear if they are due to the underlying hardware, to the

synchronization algorithm itself, to its usage of specific atomic operations, to the application

context, or to the workload.

1 Appeared in: Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. “Everything you always wanted to know
about synchronization but were afraid to ask.” SOSP 2013.

31

Chapter 4. A Performance Analysis of Synchronization on Multi-Cores

Of course, getting the complete picture of how synchronization schemes behave, in every

single context, is very difficult. Nevertheless, in an attempt to shed some light on such a

picture, we present the most exhaustive study of synchronization on multi-cores to date. Our

analysis seeks completeness in two directions (Figure 4.1).

Figure 4.1 – Methodology of our performance analysis of synchronization.

1. We consider multiple synchronization layers, from basic multi-core hardware up to com-

plex concurrent software. First, we dissect the latencies of cache-coherence protocols.

Then, we study the performance of various atomic operations, such as compare-and-

swap, test-and-set, fetch-and-increment. Next, we proceed with locking and message

passing techniques. Finally, we examine a concurrent hash table and an in-memory

key-value store (Memcached).

2. We vary a set of important architectural attributes to better understand their effect on

synchronization. We explore both single-socket (chip multi-processor) and multi-socket

(multi-processor) multi-cores. In the former category, we consider uniform (e.g., Sun

Niagara 2—SPARC-T2) and non-uniform (e.g, Tilera TILE-Gx36—Tilera) designs. In the

latter category, we consider platforms that implement coherence based on a directory

(e.g., AMD Opteron—Opteron) or broadcast (e.g., Intel Xeon—Westmere).

We focus our analysis on traditional performance metrics—i.e., throughput and latency. Our

set of experiments, of what we believe constitute the most commonly–used synchronization

schemes and hardware architectures today, induces the following set of observations.

Crossing sockets is a killer. The latency of performing any operation on a cache line (e.g., a

store or a compare-and-swap) simply does not scale across sockets. Our results indicate an

increase from 2 to 7.5 times compared to intra-socket latencies, even under no contention.

These differences amplify with contention at all synchronization layers and suggest that

cross-socket sharing should be avoided.

Sharing within a socket is necessary but not sufficient. If threads are not explicitly placed

on the same socket, the operating system might try to load balance them across sockets,

inducing expensive communication. However, surprisingly, even with explicit placement

within the same socket, an incomplete cache directory, combined with a non-inclusive last-

level cache (LLC), might still induce cross-socket communication. On Opteron for instance,

32

4.1. Introduction

this phenomenon entails a 3-fold increase compared to the actual intra-socket latencies. We

discuss one way to alleviate this problem by circumventing certain access patterns.

Intra-socket (non-)uniformity does matter. Within a socket, the fact that the distance from

the cores to the LLC is the same, or differs among cores, even only slightly, impacts the

scalability of synchronization. For instance, under high contention, SPARC-T2 (uniform)

enables approximately 1.7 times higher scalability than Tilera (non-uniform) for all locking

schemes. The developer of a concurrent system should thus be aware that highly-contended

data pose a higher threat in the presence of even the slightest non-uniformity, such as non-

uniformity inside a socket.

Loads and stores can be as expensive as atomic operations. In the context of synchroniza-

tion, where memory operations are often accompanied with memory fences, loads and stores

are generally not significantly cheaper than atomic operations with higher consensus num-

bers [101]. Even without fences, on data that are not locally cached, a compare-and-swap is

roughly only 1.35 (on Opteron) and 1.15 (on Westmere) times more expensive than a load.

Message passing shines when contention is very high. Structuring an application with mes-

sage passing reduces sharing and proves beneficial when a large number of threads contend

for a few data. However, under low contention and/or a small number of cores, locks perform

better on higher-layer concurrent testbeds (i.e., a hash table) even when message passing

is provided in hardware (e.g., Tilera). This suggests the exclusive use of message passing for

optimizing certain highly contended parts of a system.

Every locking scheme has its fifteen minutes of fame. None of the nine locking schemes

we consider consistently outperforms any other one, on all target architectures or workloads.

Strictly speaking, to seek optimality, a lock algorithm should thus be selected based on the

hardware platform and the expected workload.

Simple locks are powerful. Overall, an efficient implementation of a ticket lock is the best

performing synchronization scheme in most low contention workloads. Even under rather

high contention, the ticket lock performs comparably to more complex locks, in particular

within a socket. Consequently, given their small memory footprint, ticket locks should be

preferred, unless it is sure that a specific lock will be very highly contended.

A high-level ramification of many of these observations is that the scalability of synchro-

nization appears, first and above all, to be a property of the hardware, in the following sense.

Basically, in order to be able to scale, synchronization should better be confined to a single

socket, ideally a uniform one. On certain platforms (e.g., Opteron), this is simply impossible

due to the hardware. Within a socket, sophisticated synchronization schemes are generally

not worthwhile. Even if, strictly speaking, no size fits all, a proper implementation of a simple

ticket lock seems enough.

33

Chapter 4. A Performance Analysis of Synchronization on Multi-Cores

In summary, the main contribution of this chapter is the most exhaustive study of synchro-

nization to date. Results of this study can be used to help predict the cost of a synchronization

scheme, explain its behavior, design better schemes, as well as possibly improve future hard-

ware design. SSYNC, the cross-platform synchronization suite we built to perform the study is,

we believe, a contribution of independent interest. SSYNC abstracts various lock algorithms

behind a common interface: It not only includes many state-of-the-art algorithms, but also

provides platform specific optimizations with substantial performance improvements. SSYNC

also contains a library that abstracts message passing on various platforms, and a set of mi-

crobenchmarks for measuring the latencies of the cache-coherence protocols, the locks, and

the message passing. SSYNC is available at �����������	�
������
�	������.

The rest of the chapter is organized as follows. We present more details about our target

platforms in Section 4.2. We describe SSYNC in Section 4.3. We present our analyses of synchro-

nization from the hardware and software perspectives, in Sections 4.4 and 4.5, respectively.

Finally, in Section 4.6, we conclude this chapter.

4.2 Target Platforms in Detail

This section describes in detail the four platforms considered in our experiments. Each

is representative of a specific type of multi-core architecture. In Section 2.1, we provide a

higher-level overview of these platforms.

In this chapter, we consider two large-scale multi-socket multi-cores, henceforth called the

multi-sockets, and two large-scale chip multi-processors (CMPs), henceforth called the single-

sockets. The multi-sockets are the 4-socket AMD Opteron (Opteron) and the 8-socket Intel

Xeon (Westmere), whereas the CMPs are the 8-core Sun Niagara 2 (SPARC-T2) and the 36-core

Tilera TILE-Gx36 (Tilera). The characteristics of the four platforms are detailed in Table 4.1.

Name Opteron Westmere SPARC-T2 Tilera

System AMD Magny Cours Intel Westmere-EX SUN SPARC-T5120 Tilera TILE-Gx36
Processors 4× Opteron 6172 8× Xeon E7-8867L UltraSPARC-T2 TILE-Gx CPU

Cores 48 80 (SMT disabled) 8 (64 contexts) 36
Core Clock 2.1 GHz 2.13 GHz 1.2 GHz 1.2 GHz

DVFS - disabled - -
L1 Cache 64/64 KB I/D 32/32 KB I/D 16/8 KB I/D 32/32 KB I/D
L2 Cache 512 KB 256 KB 256 KB

Last-level Cache 2× 6 MB (per die) 30 MB (shared) 4 MB (shared) 9 MB (distributed)
Interconnect 6.4 GT/s HyperTrans-

port (HT) 3.0
6.4 GT/s QuickPath
Interconnect (QPI)

Niagara2 Crossbar Tilera iMesh

Memory 128 GB DDR3-1333 192 GB DDR3-1067 32 GB FB-DIMM-400 16 GB DDR3-800
#Channels / #Nodes 4 per socket / 8 4 per socket / 8 8 / 1 4 / 2

OS / Kernel Ubuntu 12.04.2/3.4.2 Red Hat EL 6.3/2.6.32 Solaris 10 u7 Tilera EL 6.3/2.6.40

Table 4.1 – Details about the hardware and the OS characteristics of the target platforms.

34

4.2. Target Platforms in Detail

All platforms have a single die per socket, aside from the Opteron, that has two. Given that

these two dies are actually organized in a 2-socket topology, we use the term socket to refer to

a single die for simplicity.

4.2.1 Multi-Socket – Directory-Based: Opteron

The 48-core AMD Opteron contains four multi-chip modules (MCMs). Each MCM has two

6-core dies with independent memory controllers. Hence, the system comprises, overall, eight

memory nodes. The topology of the system is depicted in Figure 7.1b. The maximum distance

between two dies is two hops. The dies of an MCM are situated at a 1-hop distance, but they

share more bandwidth than two dies of different MCMs.

The caches of Opteron are write-back and non-inclusive [45]. In other words, every new cache

fill goes in the L1 cache, but not in the L2/L3 which are victim caches, filled by the evictions of

the L1 and the L2 respectively. Nevertheless, the hierarchy is not strictly exclusive; on an LLC

hit the data is pulled in the L1 but may or may not be removed from the LLC (decided by the

hardware [7]). Opteron uses the MOESI protocol for cache coherence. ‘O’ stands for the owned

state, which indicates that this cache line has been modified (by the owner) but there might be

more shared copies on other cores. This state allows a core to load a modified line of another

core without the need to invalidate the modified line. The modified cache line simply changes

to owned and the new core receives the line in shared state. Cache coherence is implemented

with a broadcast-based protocol, assisted by what is called the HyperTransport Assist (also

known as the probe filter) [45]. The probe filter is, essentially, a directory residing in the LLC.2

An entry in the directory holds the owner of the cache line, which can be used to directly probe

or invalidate the copy in the local caches of the owner core.

4.2.2 Multi-Socket – Broadcast-Based: Westmere

The 80-core Intel Xeon consists of eight sockets of 10-cores.3 These form a twisted hypercube,

as depicted in Figure 2.3b maximizing the distance between two nodes to two hops. Westmere

uses inclusive caches [111]—every new cache-line fill occurs in all the three levels of the

hierarchy. The LLC is write-back; the data is written to the memory only upon an eviction of a

modified line due to space or coherence. Within a socket, Westmere implements coherence

by snooping. Across sockets, it broadcasts snoop requests to the other sockets. Within the

socket, the LLC keeps track of which cores might have a copy of a cache line. Additionally,

Westmere extends the MESI protocol with the forward state [112]. This state is a special form

of the shared state and indicates the only cache that will respond to a load request for that line

(thus reducing bandwidth usage).

2 Typically, the probe filter occupies 1 MB of the LLC.
3 SMT is disabled for the experiments in this chapter.

35

Chapter 4. A Performance Analysis of Synchronization on Multi-Cores

4.2.3 Single-Socket – Uniform: SPARC-T2

The Sun Niagara 2 is a single-die processor that incorporates 8 cores. It is based on the chip

multi-threading architecture; it provides 8 hardware threads per core, totaling 64 hardware

threads. Each L1 cache is shared among the 8 hardware threads of a core and is write-through

to the LLC. The 4 MB LLC (L2) cache is divided into eight banks of 512 KB each and is shared

by the 8 cores. The 8 cores communicate with the shared LLC through a crossbar [162],

which means that each core is equidistant from the LLC (uniform). The cache-coherence

implementation is directory-based and uses duplicate tags [155] (i.e., the LLC cache holds a

directory of all the L1 lines).

4.2.4 Single-Socket – Non-Uniform: Tilera

The Tilera TILE-Gx36 [205] is a 36-core chip multi-processor. The cores, also called tiles, are

allocated on a 2-dimensional mesh and are connected with Tilera’s iMesh on-chip network.

iMesh handles the coherence of the data and also provides hardware message passing to the

applications. Tilera implements the dynamic distributed cache technology [205]. All L2 caches

are accessible by every core on the chip, thus, the L2s are used as a 9 MB coherent LLC. The

hardware uses a distributed directory to implement coherence. Each cache line has a home

tile (i.e., the actual L2 cache where the data reside if cached by the distributed LLC). Consider,

for example, the case of core x loading an address homed on tile y . If the data is not cached in

the local L1 and L2 caches of x, a request for the data is sent to the L2 cache of y , which plays

the role of the LLC for this address. Clearly, the latency of accessing the LLC depends on the

distance between x and y , hence Tilera is a non-uniform cache architecture.

4.3 SSYNC: A Cross-Platform Synchronization Library

SSYNC is our cross-platform synchronization suite; it works on ������, ���	
, and Tilera pro-

cessors. SSYNC contains ��
�����, a library that abstracts lock algorithms behind a common

interface and ��
����, a library with fine-tuned implementations of message passing for each

of the four platforms. SSYNC also includes microbenchmarks for measuring the latencies of

cache coherence, the locks, and message passing, as well as a cache efficient hash table (����).

4.3.1 Libraries

libslock. This library contains a common interface and optimized implementations of a

number of widely used locks (see Table 2.1 for a short description of the algorithms). ��
�����

includes three simple spinlocks, namely TAS, TTAS with exponential backoff [10, 103], and

TICKET. The queue locks are the MCS lock and the CLH lock. We also employ an array-based

lock (ARRAY). ��
����� also contains hierarchical locks, such as HCLH and the hierarchical

36

4.4. Hardware-Level Analysis

ticket lock (HTICKET).4 Finally, �������� abstracts the pthread mutex interface (MUTEX).

�������� also contains a cross-platform interface for atomic instructions and other architec-

ture dependent operations, such as fences, thread and memory placement functions.

libssmp. ������	 is our implementation of message passing over cache coherence (similar

to the one in Barrelfish [17]).5 It uses cache line-sized buffers (messages) in order to complete

message transmissions with single cache-line transfers. Each buffer is one-directional and

includes a byte flag to designate whether the buffer is empty or contains a message. For

client-server communication, ������	 implements functions for receiving from any other,

or from a specific subset of the threads. Even though the design of ������	 is identical on

all platforms, we leverage the results of Section 4.4 to tailor ������	 to the specifics of each

platform individually.

4.3.2 Microbenchmarks and Concurrent Software

ccbench. ���
��� is a tool for measuring the cost of operations on a cache line, depending

on the line’s MESI state and placement in the system. ���
��� brings the cache line in the

desired state and then accesses it from either a local or a remote core. ���
��� supports 30

cases, such as store on modified and test-and-set on shared lines.

Stress Tests. SSYNC provides tests for the primitives in �������� and ������	. These tests

can be used to measure the primitives’ latency or throughput under various conditions (e.g.,

number and placement of threads, level of contention).

Hash Table (ssht). ���
 is a concurrent hash table that exports three operations: 	�
, �

,

and �
���
. It is designed to place the data as efficiently as possible in the caches in order to

(i) allow for efficient prefetching and (ii) avoid false sharing. ���
 can be configured to use

any of the locks of �������� or the message passing of ������	.

4.4 Hardware-Level Analysis

In this section, we report on the latencies incurred by the hardware cache-coherence protocols

and discuss how to reduce them in certain cases. These latencies constitute a good estimation

of the cost of sharing a cache line in a multi-core platform and have a significant impact on the

scalability of any synchronization scheme. We use ���
��� to measure basic operations such

as load and store, as well as compare-and-swap (CAS), fetch-and-increment (FAI), test-and-set

(TAS), and swap (SWAP).

4 In fact, based on the results of Section 4.4 and without being aware of [56], we designed and implemented the
HTICKET algorithm.

5 On Tilera, it is an interface to the hardware message passing.

37

Chapter 4. A Performance Analysis of Synchronization on Multi-Cores

4.4.1 Local Accesses

Table 4.2 contains the latencies for accessing the local caches of a core. In the context of

synchronization, the values for the LLCs are worth highlighting. On Westmere, the 44 cycles

is the local latency to the LLC, but also corresponds to the fastest communication between

two cores on the same socket. The LLC plays the same role for the single-socket platforms,

however, it is directly accessible by all the cores of the system. On Opteron, the non-inclusive

LLC holds both data and the cache directory, so the 40 cycles is the latency to both. However,

the LLC is filled with data only upon an eviction from the L2, hence the access to the directory

is more relevant to synchronization.

Opteron Westmere SPARC-T2 Tilera
L1 3 5 3 2
L2 15 11 11

LLC 40 44 24 45
RAM 136 355 176 118

Table 4.2 – Local caches and memory latencies (cycles).

4.4.2 Remote Accesses

Table 4.3 contains the latencies to load, store, or perform an atomic operation on a cache

line based on the cache line’s previous state and location. Notice that the accesses to an

invalid line are accesses to the main memory. In the following, we discuss all cache-coherence

states, except for the invalid. We do not explicitly measure the effects of the forward state of

Westmere: There is no direct way to bring a cache line to this state. The effects of forward state

are included in the load from shared case.

Loads. On Opteron, a load has basically the same latency regardless of the previous state

of the line; essentially, the steps taken by the cache-coherence protocol are always the same.

Interestingly, although the two dies of an MCM are tightly coupled, the benefits are rather small.

The latencies between two dies in an MCM and two dies that are simply directly connected

differ by roughly 12 cycles. One extra hop adds an additional overhead of 80 cycles. Overall, an

access over two hops is approximately 3 times more expensive than an access within a die.

The results in Table 4.3 represent the best-case scenario for Opteron: At least one of the

involved cores resides on the memory node of the directory. If the directory is remote to both

cores, the latencies increase proportionally to the distance. In the worst case, where two cores

are on different nodes, both 2-hops away from the directory, the latencies are 312 cycles. Even

worse, even if both cores reside on the same node, they still have to access the remote directory,

wasting any locality benefits.

38

4.4. Hardware-Level Analysis

System Opteron Westmere SPARC-T2 Tilera
�����State

Hops same same one two same one two same other one max
die MCM hop hops die hop hops core core hop hops

loads
Modified 81 161 172 252 109 289 400 3 24 45 65
Owned 83 163 175 254 - - - - - - -

Exclusive 83 163 175 253 92 273 383 3 24 45 65
Shared 83 164 176 254 44 223 334 3 24 45 65
Invalid 136 237 247 327 355 492 601 176 176 118 162

stores
Modified 83 172 191 273 115 320 431 24 24 57 77
Owned 244 255 286 291 - - - - - - -

Exclusive 83 171 191 271 115 315 425 24 24 57 77
Shared 246 255 286 296 116 318 428 24 24 86 106

atomic operations: CAS (C), FAI (F), TAS (T), SWAP (S)
Operation all all all all all all all C/F/T/S C/F/T/S C/F/T/S C/F/T/S
Modified 110 197 216 296 120 324 430 71/108/64/95 66/99/55/90 77/51/70/63 98/71/89/84

Shared 272 283 312 332 113 312 423 76/99/67/93 66/99/55/90 124/82/121/95 142/102/141/115

Table 4.3 – Latencies (cycles) of the cache coherence to load/store/CAS/FAI/TAS/SWAP a
cache line depending on the MESI state and the distance. The values are the average of 10000
repetitions with < 3% standard deviation.

In contrast, Westmere does not have the locality issues of Opteron. If the data is present within

the socket, a load can be completed locally due to the inclusive LLC. Loading from the shared

state is particularly interesting, because the LLC can directly serve the data without needing

to probe the local caches of the previous owner (unlike the modified and exclusive states).

However, the overhead of going off-socket on Westmere is very high. For instance, loading from

the shared state is 7.5 times more expensive over two hops than loading within the socket.

Unlike the large variability on multi-sockets, the results are more stable on the single-sockets.

On SPARC-T2, a load costs an L1 or L2 access, depending on whether the two threads reside on

the same core. On Tilera, the LLC is distributed, hence the latencies depend on the distance of

the requesting core from the home tile of the cache line. The cost for two adjacent cores is 45

cycles, whereas for the two most remote cores,6 it is 20 cycles higher (2 cycles per hop).

Stores. On Opteron, both loads and stores on a modified or an exclusive cache line have

similar latencies (no write-back to memory). However, a store on a shared line is different.7

Every store on a shared or owned cache line incurs a broadcast invalidation to all nodes. This

happens because the cache directory is incomplete (it does not keep track of the sharers) and

does not in any way detect whether sharing is limited within the node.8 Therefore, even if

all sharers reside on the same node, a store needs to pay the overhead of a broadcast, thus

increasing the cost from around 83 to 244 cycles. Obviously, the problem is aggravated if the

6 10 hops distance on the 6-by-6 2-dimensional mesh of Tilera.
7 For the store on shared test, we place two different sharers on the indicated distance from a third core that

performs the store.
8 On Westmere, the inclusive LLC is able to detect if there is sharing solely within the socket.

39

Chapter 4. A Performance Analysis of Synchronization on Multi-Cores

directory is not local to any of the cores involved in the store. Finally, the scenario of storing

on a cache line shared by all 48 cores costs 296 cycles.

Again, Westmere has the advantage of locality; Westmere locally completes an operation that

involves solely cores of a single node. In general, stores behave similarly regardless of the

previous state of the cache line. Finally, storing on a cache line shared by all 80 cores on

Westmere costs 445 cycles.

Similarly to a load, the results for a store exhibit much lower variability on the single-sockets.

A store on SPARC-T2 has essentially the latency of the L2, regardless of the previous state of

the cache line and the number of sharers. On Tilera, stores on a shared line are a bit more

expensive due to the invalidation of the cache lines of the sharers. The cost of a store reaches a

maximum of 200 cycles when all 36 cores share that line.

Atomic Operations. On the two multi-sockets, CAS, TAS, FAI, and SWAP have essentially

the same latencies. These latencies are similar to a store followed by a memory barrier. On

the single-sockets, some operations clearly have different hardware implementations. For

instance, on Tilera, the FAI operation is faster than the others. Another interesting point is the

latencies for performing an operation when the line is shared by all the cores of the system.

On all platforms, the latencies follow the exact same trends as a store in the same scenario.

Implications. The latencies of cache coherence reveal some important issues that should be

addressed in order to implement efficient synchronization. Cross-socket communication is 2

to 7.5 times more expensive than intra-socket communication. The problem on the broadcast-

based design of Westmere is larger than on Opteron. However, within the socket, the inclusive

LLC of Westmere provides strong locality, which in turn translates into efficient intra-socket

synchronization. In terms of locality, the incomplete directory of Opteron is problematic in

two ways. First, a read-write pattern of sharing, causes stores on owned and shared cache lines

to exhibit the latency of a cross-socket operation, even if all sharers reside on the same socket.

We thus expect intra-socket synchronization to behave similarly to the cross-socket. Second,

the location of the directory is crucial: If the cores that use some memory are remote to the

directory, they pay the remote access overhead. To achieve good synchronization performance,

the data has to originate from the local memory node (or to be migrated to the local one).

Overall, an Opteron MCM should be treated as a two-node platform.

The single-sockets exhibit quite a different behavior: They both use their LLCs for sharing.

The latencies (to the LLC) on SPARC-T2 are uniform (i.e., they are affected by neither the

distance nor the number of the involved cores). We expect this uniformity to translate to

synchronization that is not prone to contention. The non-uniform Tilera is affected both by

the distance and the number of involved cores, therefore we expect scalability to be affected by

contention. Regarding the atomic operations, both single-sockets have faster implementations

for some of the operations (see Table 4.3). These should be preferred to achieve the best

synchronization performance.

40

4.4. Hardware-Level Analysis

4.4.3 Enforcing Locality

A store to a shared or owned cache line on Opteron induces an unnecessary broadcast of

invalidations, even if all the involved cores reside on the same node (see Table 4.3). This results

in a 3-fold increase of the latency of the store operation. In fact, to avoid this issue, we propose

to explicitly maintain the cache line to the modified state. This can be easily achieved by

calling the ��������� 	
� instruction before any load reference to that line. Of course, this

optimization should be used with care because it disallows two cores to simultaneously hold a

copy of the line.

To illustrate the potential of this optimization, we engineer an efficient implementation of

a ticket lock. As we describe in Table 2.1, a ticket lock consists of two counters: the ticket

and the current. To acquire the lock, a thread atomically fetches and increases the ticket

counter—it obtains a ticket tick. If tick equals the current counter, the thread has acquired

the lock, otherwise, the thread spins until this becomes true. To release the lock, the thread

increases the value of the current counter.

A particularly appealing characteristic of the ticket lock is the fact that the ticket, subtracted by

the current counter, is the number of threads queued before the current thread. Accordingly, it

is intuitive to spin with a backoff proportional to the number of threads queued in front [149].

We use this backoff technique with and without the ��������� optimization and compare the

results with a non-optimized implementation of the ticket lock. Figure 4.2 depicts the latencies

for acquiring and immediately releasing a single lock. Obviously, the non-optimized version

scales terribly, delivering a latency of 720K cycles on 48 cores. In contrast, the versions with

the proportional backoff scale significantly better. The ��������� gives an extra performance

boost, performing up to 2 times better on 48 cores.

SSYNC uses the aforementioned optimization wherever possible. For example, our message

passing implementation on Opteron with the ��������� technique is up to 2.5 times faster

than without it.

 0
 20
 40
 60
 80

 100
 120
 140

 0 6 12 18 24 30 36 42 48

La
te

nc
y

(K
cy

cl
es

)

Threads

non-optimized
backoff

backoff &
 prefetchw

Figure 4.2 – Latency of acquiring different implementations of a ticket lock on Opteron.

41

Chapter 4. A Performance Analysis of Synchronization on Multi-Cores

4.4.4 Stressing Atomic Operations

In this test, we stress the various atomic operations of our four platforms. Each thread re-

peatedly tries to perform an atomic operation on a single shared location. For FAI, SWAP, and

CAS_FAI these calls are always eventually successful (i.e., they write to the target memory),

whereas for TAS and CAS they are not. CAS_FAI implements a FAI operation based on CAS.

CAS_FAI enables us to highlight both the costs of spinning until CAS is successful and the

benefits of having a FAI instruction supported by the hardware. After completing a call, the

thread pauses for a sufficient number of cycles to prevent the same thread from completing

consecutive operations locally (long runs [153]). This delay is proportional to the maximum

latency across the involved cores and does not affect the total throughput in a way other than

the intended.

On the multi-sockets, we allocate threads on the same socket and continue on the next socket

once all cores of the previous one have been used. On SPARC-T2, we divide threads evenly

among the eight physical cores. On all platforms, we ensure that each thread allocates its local

data from the local node. We repeat each experiment five times and show the average value.

Figure 4.3 shows the results of this experiment. The multi-sockets exhibit a very steep decrease

in the throughput once the location is accessed by more than one core. The latency of the

operations increases from approximately 20 to 120 cycles. In contrast, the single-sockets

generally show an increase in the throughput on the first few cores. This can be attributed to

the cost of the local parts of the benchmark (e.g., a while loop) that consume time comparable

to the latency of the operations. For more than six cores, however, the results stabilize (with a

few exceptions).

Both Opteron and Westmere exhibit a stable throughput close to 20 Mops/s within a socket,

which drops once there are cores on a second socket. Not surprisingly (see Table 4.3), the

drop on Westmere is larger than on Opteron. The throughput on these platforms is dictated by

the cache-coherence latencies, given that an atomic operation actually brings the data in its

local cache. In contrast, on the single-sockets the throughput converges to a maximum value

and exhibits no subsequent decrease. Some further interesting points worth highlighting

 0

 40

 80

 120

 0 12 24 36 48T
hr

ou
gh

pu
t (

M
op

s/
s)

Threads

Opteron

 0 20 40 60 80

Threads

Westmere

 0 16 32 48 64

Threads

SPARC-T2

 0 12 24 36

Threads

Tilera
CAS TAS CAS-FAI FAI SWAP

Figure 4.3 – Throughput of different atomic operations on a single memory location.

42

4.5. Software-Level Analysis

are as follows. First, SPARC-T2 (����� architecture) does not provide an atomic increment

or swap instruction. Their implementations are based on CAS, therefore the behavior of

FAI and CAS_FAI are practically identical. SWAP shows some fluctuations on SPARC-T2,

which we believe are caused by the scheduling of the hardware threads. However, �����

provides a hardware TAS implementation that proves to be highly efficient. Likewise, the FAI

implementation on Tilera slightly outperforms the other operations.

Implications. Both multi-sockets have a very fast single-thread performance, that drops on

two or more cores and decreases further when there is cross-socket communication. Contrarily,

both single-sockets have a lower single-thread throughput, but scale to a maximum value, that

is subsequently maintained regardless of the number of cores. This behavior indicates that

globally stressing a cache line with atomic operations will introduce performance bottlenecks

on the multi-sockets, while being somewhat less of a problem on the single-sockets. Finally, a

system designer should take advantage of the best performing atomic operations available on

each platform, like the TAS on SPARC-T2.

4.5 Software-Level Analysis

This section describes the software-oriented part of this study. We start by analyzing the

behavior of locks under different levels of contention and continue with message passing.

We use the same methodology as in Section 4.4.4 in the experiments of this section as well.

In addition, the globally shared data is allocated from the first participating memory node.

We finally report on our findings on higher-level concurrent software and we discuss the

implications of the results of this chapter on other synchronization approaches such as

combiners and lock-free programming.

4.5.1 Locks

We evaluate the locks in SSYNC under various degrees of contention on our platforms. We

evaluate (i) no contention, (ii) under extreme and very low contention (within each platform),

and (iii) under intermediate contention (across platforms).

Uncontested Locking

In this experiment we measure the latency to acquire a lock based on the location of the

previous owner. Although in a number of cases acquiring a lock does involve contention,

a large portion of acquisitions in applications are uncontested, hence they have a similar

behavior to this experiment.

Initially, we place a single thread that repeatedly acquires and releases the lock. We then

add a second thread, as close as possible to the first one, and pin it further in subsequent

43

Chapter 4. A Performance Analysis of Synchronization on Multi-Cores

0

300

600

900

1200

1500
TA

S
TT

AS
TI

C
KE

T
AR

R
AY

M
U

TE
X

M
C

S
C

LH
H

C
LH

H
TI

C
KE

T
TA

S
TT

AS
TI

C
KE

T
AR

R
AY

M
U

TE
X

M
C

S
C

LH
H

C
LH

H
TI

C
KE

T
TA

S
TT

AS
TI

C
KE

T
AR

R
AY

M
U

TE
X

M
C

S
C

LH TA
S

TT
AS

TI
C

KE
T

AR
R

AY
M

U
TE

X
M

C
S

C
LH

Opteron Westmere SPARC-T2 Tilera

La
te

nc
y

(c
yc

le
s)

single thread same core same die same mcm one hop two hops max hops

Figure 4.4 – Uncontested lock acquisition latency based on the location of the previous owner
of the lock.

runs. Figure 4.4 contains the latencies of the different locks when the previous owner is at

various distances. Latencies suffer important increases on the multi-sockets as the second

thread moves further from the first. In general, acquisitions that need to transfer data across

sockets have a high cost. Remote acquisitions can be up to 12.5 and 11 times more expensive

than local ones on Opteron and Westmere respectively. In contrast, due to the shared and

distributed LLCs, SPARC-T2 and Tilera suffer no and slight performance decrease, respectively,

as the location of the second thread changes. The latencies of the locks are in accordance with

the cache-coherence latencies presented in Table 4.3.

Moreover, the differences in the latencies are significantly larger between locks on the multi-

sockets than on the single-sockets, making the choice of the lock algorithm in an uncontested

scenario paramount to performance. More precisely, while simple spinlocks (i.e., TAS, TTAS,

TICKET) closely follow the cache-coherence latencies, more complex locks generally introduce

some additional overhead.

Implications. Using a lock, even if no contention is involved, is up to one order of magnitude

more expensive when crossing sockets. The 350-450 cycles on a multi-socket, and the roughly

200 cycles on a single-socket, are not negligible, especially if the critical sections are short.

Moreover, the penalties induced when crossing sockets in terms of latency tend to be higher

for complex locks than for simple locks. Therefore, regardless of the platform, simple locks

should be preferred, when contention is very low.

Lock Algorithm Behavior

We study the behavior of locks under extreme and very low contention. On the one hand,

highly contended locks are often the main scalability bottleneck of software systems. On the

other hand, many systems use locking strategies, such as fine-grained locks, that induce low

contention. Therefore, good performance in these two scenarios is essential. We measure

44

4.5. Software-Level Analysis

 0
 1
 2
 3
 4
 5
 6
 7
 8

 0 12 24 36 48T
hr

ou
gh

pu
t (

M
op

s/
s)

Threads

Opteron

Best single
 thread: 22 Mops/s

 0 20 40 60 80

Threads

Westmere

Best single
 thread: 34 Mops/s

 0 16 32 48 64

Threads

SPARC-T2

 0 12 24 36

Threads

Tilera

TTAS
ARRAY

MCS
CLH

HTICKET
TAS

HCLH
MUTEX

TICKET

Figure 4.5 – Throughput of different lock algorithms using a single lock.

the total throughput of lock acquisitions that can be performed using each lock algorithm.

Each thread acquires a randomly-chosen lock, reads and writes one corresponding cache line

of data, and releases the lock. Similarly to the atomic operations stress test (Section 4.4.4) in

the single-lock experiment, a thread pauses after it releases the lock, in order to ensure that

the release becomes visible to the other cores before retrying to acquire the lock. Given the

uniform structure of the platforms, we do not use hierarchical locks on the single-sockets.

Extreme Contention. Figure 4.5 depicts the results of the maximum contention experiment

(one lock). As we mentioned earlier, our microbenchmark employs sufficient delays after

releasing the lock so that we avoid long runs. As we described in Section 4.4, Westmere exhibits

very strong intra-socket locality. Accordingly, hierarchical locks (i.e., HTICKET and HCLH)

perform the best. Although there is a very big drop from one to two cores on the multi-sockets,

within the socket both Opteron and Westmere manage to keep a rather stable performance.

However, once a second socket is involved the throughput decreases again.

Not surprisingly, the CLH and the MCS locks are the most resilient to contention. They both

guarantee that a single thread is spinning on each cache line and use the globally shared data

only to enqueue for acquiring the lock. TICKET proves to be the best simple spinlock on this

workload. Overall, the throughput on two or more cores on the multi-sockets is an order of

magnitude lower than the single-core performance. In contrast, the single-sockets maintain a

comparable performance on multiple cores.

Very Low Contention. The very low contention results (512 locks) are shown in Figure 4.6.

Once again, one can observe the strong intra-socket locality of Westmere. In general, simple

locks match or even outperform the more complex queue locks. While on Westmere the

differences between locks become insignificant for a large number of cores, it is generally

TICKET that performs the best on Opteron, SPARC-T2, and Tilera. On a low-contention scenario

it is thus difficult to justify the memory requirements that complex lock algorithms have. It

should be noted that, aside from the acquisitions and releases, the load and the store on

the protected data also contribute to the lack of scalability of multi-sockets, for the reasons

pointed out in Section 4.4.

45

Chapter 4. A Performance Analysis of Synchronization on Multi-Cores

 0
 20
 40
 60
 80

 100
 120
 140
 160

 0 12 24 36 48T
hr

ou
gh

pu
t (

M
op

s/
s)

Threads

Opteron

 0 20 40 60 80

Threads

Westmere

 0 16 32 48 64

Threads

SPARC-T2

 0 12 24 36

Threads

Tilera

TTAS
ARRAY

MCS
CLH

HTICKET
TAS

HCLH
MUTEX

TICKET

Figure 4.6 – Throughput of different lock algorithms using 512 locks.

Implications. None of the locks is consistently the best on all platforms. Moreover, no

lock is consistently the best within a platform. While complex locks are generally the best

under extreme contention, simple locks perform better under low contention. Under high

contention, hierarchical locks should be used on multi-sockets with strong intra-socket locality,

such as Westmere. Opteron, due to the previously discussed locality issues, and the single-

sockets favor queue locks. In case of low contention, simple locks are better than complex

implementations within a socket. Under extreme contention, while not as good as more

complex locks, a ticket lock can avoid performance collapse within a socket. On Westmere,

the best performance is achieved when all threads run on the same socket, both for high

and for low contention. Therefore, synchronization between sockets should be limited to the

absolute minimum on such platforms. Finally, we observe that when each core is dedicated to

a single thread there is no scenario in which pthread mutexes perform the best. Mutexes are

however useful when threads contend for a core. Therefore, unless multiple threads run on the

same core, alternative implementations should be preferred. In Section 5.5.1, we introduce

MUTEXEE, an optimized implementation of pthread mutex.

Cross-Platform Lock Behavior

In this experiment, we compare lock behavior under various degrees of contention across

architectures. In order to have a straightforward cross-platform comparison, we run the tests

on up to 36 cores. Having already explored the lock behavior of different algorithms, we

only report the highest throughput achieved by any of the locks on each platform. We vary

the contention by running experiments with 4, 16, 32, and 128 locks, thus examining high,

intermediate, and low degrees of contention.

The results are shown in Figure 4.7. In all cases, the differences between the single and multi-

sockets are noticeable. Under high contention, single-sockets prevent performance collapse

from one thread to two or more, whereas in the lower contention cases these platforms scale

well. As noted in Section 4.4, stores and atomic operations are affected by contention on

Tilera, resulting in slightly less scalability than on SPARC-T2: On high contention workloads,

the uniformity of SPARC-T2 delivers up to 1.7 times more scalability than Tilera (i.e., the

rate at which performance increases). In contrast, multi-sockets exhibit a significantly lower

46

4.5. Software-Level Analysis

1.
0x

: T
IC

KE
T

0.
5x

: T
AS

0.
5x

: H
TI

C
KE

T
0.

5x
: H

TI
C

KE
T

1.
0x

: T
IC

KE
T

0.
8x

: T
AS

0.
2x

: H
TI

C
KE

T
0.

2x
: C

LH
1.

0x
: T

IC
KE

T
5.

4x
: C

LH 9.
0x

: T
IC

KE
T

11
.0

x:
 C

LH
1.

0x
: T

IC
KE

T
3.

4x
: C

LH
5.

7x
: C

LH
6.

1x
: C

LH

0
5

10
15
20
25
30
35
40
45
50
55

1 6 18 36 1 10 18 36 1 8 18 36 1 8 18 36

Opteron Westmere SPARC-T2 Tilera
Threads

16 locks

1.
0x

: T
IC

KE
T

0.
3x

: T
IC

KE
T

0.
2x

: M
C

S
0.

2x
: M

C
S

1.
0x

: T
IC

KE
T

0.
4x

: C
LH

0.
2x

: H
TI

C
KE

T
0.

1x
: H

TI
C

KE
T

1.
0x

: T
IC

KE
T

3.
4x

: C
LH

3.
8x

: C
LH

3.
7x

: C
LH

1.
0x

: T
IC

KE
T

2.
0x

: C
LH

2.
3x

: C
LH

2.
2x

: C
LH

0
5

10
15
20
25
30
35
40

1 6 18 36 1 10 18 36 1 8 18 36 1 8 18 36

Opteron Westmere SPARC-T2 Tilera

Th
ro

ug
hp

ut
 (M

op
s/

s)

Threads

4 locks

1.
0x

: T
IC

KE
T

0.
5x

: T
AS

0.
5x

: H
TI

C
KE

T
0.

5x
: H

TI
C

KE
T

1.
0x

: T
IC

KE
T

1.
1x

: T
AS

0.
3x

: A
R

R
AY

0.
2x

: H
C

LH
1.

0x
: T

IC
KE

T
6.

1x
: T

IC
KE

T
11

.2
x:

 T
IC

KE
T

15
.9

x:
 C

LH
1.

0x
: T

IC
KE

T
4.

3x
: T

AS
7.

4x
: C

LH
9.

0x
: T

IC
KE

T

0
10
20
30
40
50
60
70

1 6 18 36 1 10 18 36 1 8 18 36 1 8 18 36

Opteron Westmere SPARC-T2 Tilera

Th
ro

ug
hp

ut
 (M

op
s/

s)

Threads

32 locks

1.
0x

: T
IC

KE
T

0.
6x

: T
TA

S
0.

6x
: T

TA
S

0.
6x

: T
TA

S
1.

0x
: T

IC
KE

T
1.

8x
: T

AS
1.

0x
: H

C
LH

0.
7x

: H
C

LH
1.

0x
: T

IC
KE

T
7.

2x
: T

IC
KE

T
14

.0
x:

 T
IC

KE
T

22
.0

x:
 T

IC
KE

T
1.

0x
: T

IC
KE

T
4.

8x
: T

AS 9.
6x

: T
AS 15

.6
x:

 T
AS

0
10
20
30
40
50
60
70
80
90

1 6 18 36 1 10 18 36 1 8 18 36 1 8 18 36

Opteron Westmere SPARC-T2 Tilera
Threads

128 locks

Figure 4.7 – Throughput and scalability of locks depending on the number of locks. The “X :
Y” labels on top of each bar indicate the best-performing lock (Y) and the scalability over the
single-thread execution (X).

throughput for high contention, when compared to single-thread performance. Multi-sockets

provide limited scalability even on the low contention scenarios. The direct cause of this

contrasting behavior is the higher latencies for the cache-coherence transitions on multi-

sockets, as well as the differences in the throughput of the atomic operations. It is worth

noticing that Westmere scales well when all the threads are within a socket. Performance,

however, severely degrades even with one thread on a remote socket. In contrast, Opteron

shows poor scalability regardless of the number of threads. The reason for this difference is

the limited locality of Opteron we discussed in Section 4.4.

Implications. There is a significant difference in scalability trends between multi and single-

sockets across various degrees of contention. Moreover, even a small degree of non-uniformity

can have an impact on scalability. As contention drops, simple locks should be used in order

to achieve high throughput on all architectures. Overall, we argue that synchronization-

intensive systems should favor platforms that provide locality (i.e., they can prevent cross-

socket communication).

47

Chapter 4. A Performance Analysis of Synchronization on Multi-Cores

4.5.2 Message Passing

We evaluate the message passing implementations of SSYNC. To capture the most prominent

communication patterns of a message passing application, we evaluate both one-to-one and

client-server communication. The size of a message is 64 bytes (a cache line).

One-to-One Communication. Figure 4.8 depicts the latencies of two cores that exchange

one-way and round-trip messages. As expected, Tilera’s hardware message passing performs

the best. Not surprisingly, a one-way message over cache coherence costs roughly twice the

latency of transferring a cache line. Once a core x receives a message, it brings the receive

buffer (i.e., a cache line) to its local caches. Consequently, the second core y has to fetch

the buffer (first cache-line transfer) in order to write a new message. Afterwards, x has to

re-fetch the buffer (second transfer) to get the message. Accordingly, the round-trip case takes

approximately four times the cost of a cache-line transfer. The reasoning is exactly the same

with one-way messages, but applies to both ways: Send and then receive.

Client-Server Communication. Figure 4.9 depicts the one-way and round-trip throughput

for a client-server pattern with a single server. Again, the hardware message passing of Tilera

performs the best. With 35 clients, one server delivers up to 16 Mops/s (round-trip) on Tilera

(less on the other platforms). In this benchmark, the server does not perform any computation

between messages, therefore the 16 Mops constitutes an upper bound on the performance

of a single server. It is interesting to note that if we reduce the size of the message to a single

word, the throughput on Tilera is 27 Mops/s for round-trip and more than 100 Mops/s for

one-way messages, respectively.

Two additional observations are worth mentioning. First, Westmere performs very well within

a socket, especially for one-way messages. The inclusive LLC cache plays the role of the

26
2 47

2

50
6 66
0

21
4

91
4 11

67

18
1

24
9

61 64

51
9 88

7

95
9

15
67

56
4

19
68

26
60

33
7 47
1

12
0

13
8

0

500

1000

1500

2000

2500

3000

sa
m

e
di

e
sa

m
e

 m
cm on

e
ho

p
tw

o
ho

ps
sa

m
e

 d
ie on

e
ho

p
tw

o
ho

ps
sa

m
e

co
re

ot
he

r
co

re on
e

ho
p

m
ax

ho
ps

Opteron Westmere SPARC-T2 Tilera

La
te

nc
y

(c
yc

le
s)

one-way round-trip

Figure 4.8 – One-to-one communication latencies of message passing depending on the
distance between the two cores.

48

4.5. Software-Level Analysis

5
10
15
20

50

 0 6 12 18 24 30 36

T
hr

ou
gh

pu
t (

M
op

s/
s)

Client Threads

Opteron, one-way
Opteron, round-trip

Westmere, one-way
Westmere, round-trip
SPARC-T2, one-way

SPARC-T2, round-trip
Tilera, one-way

Tilera, round-trip

Figure 4.9 – Total throughput of client-server communication.

buffer for exchanging messages. However, even with a single client on a remote socket, the

throughput drops from 25 to 8 Mops/s. The second point is that as the number of cores

increases, the round-trip throughput becomes higher than the one-way on Westmere. We also

observe this effect on Opteron, once the length of the local computation of the server increases

(not shown in the graph). This happens because the request-response model enables the

server to efficiently prefetch the incoming messages. On one-way messages, the clients keep

trying to send messages, saturating the incoming queues of the server. This leads to the clients

busy-waiting on cache lines that already contain a message. Therefore, even if the server

prefetches a message, the client will soon bring the cache line to its own caches (or transform

it to shared), making the consequent operations of the server more expensive.

Implications. Message passing can achieve latencies similar to transferring a cache line

from one core to another. This behavior is essentially not affected by contention, because

each pair of cores uses individual cache lines for communication. These observations apply

both to one-to-one and client-server communication. However, a single server has a rather

low upper bound on the throughput it can achieve, even when not executing any computation.

In a sense, we have to trade performance for scalability.

4.5.3 Hash Table (����)

We evaluate ���� (i.e., the concurrent hash table implementation of SSYNC) under low

(512 buckets) and high (12 buckets) contention, as well as short (12 elements) and long

(48 elements) buckets. We use 80% ���, 10% ���, and 10% ��	
�� operations, so as to keep

the size of the hash table constant. We configure ���� so that each bucket is protected by

a single lock, the keys are 64 bit integers, and the payload size is 64 bytes. The trends on

scalability pertain on other configurations as well. Finally, we configure the message passing

(mp) version to use (i) one server per three cores9 and (ii) round-trip operations (i.e., all

operations block, waiting for a response from the server). It should be noted that dedicating

9 This configuration achieves the highest throughput.

49

Chapter 4. A Performance Analysis of Synchronization on Multi-Cores

1.
0x

 :
TI

C
KE

T
3.

3x
 :

TI
C

KE
T

5.
3x

 :
TA

S
5.

2x
 :

C
LH

1.
0x

 :
TI

C
KE

T
6.

8x
 :

TA
S

7.
1x

 :
TA

S
9.

7x
 :

H
TI

C
KE

T
1.

0x
 :

TI
C

KE
T

8.
0x

 :
TI

C
KE

T
15

.9
x

: T
IC

KE
T

25
.4

x
: T

IC
KE

T
1.

0x
 :

TA
S

7.
2x

 :
TA

S
13

.7
x

: T
AS

20
.6

x
: T

AS

0
20
40
60
80

100

1 6 18 36 1 10 18 36 1 8 18 36 1 8 18 36

Opteron Westmere SPARC-T2 Tilera

Th
ro

ug
hp

ut
 (M

op
s/

s)

Threads

512 buckets, 12 entries/bucket

mp

1.
0x

 :
TI

C
KE

T
3.

7x
 :

TI
C

KE
T

6.
1x

 :
TI

C
KE

T
9.

3x
 :

TI
C

KE
T

1.
0x

 :
TA

S
7.

5x
 :

TA
S

9.
0x

 :
TA

S
13

.5
x

: T
AS

1.
0x

 :
TI

C
KE

T
8.

0x
 :

TI
C

KE
T

15
.8

x
: T

IC
KE

T
25

.6
x

: T
IC

KE
T

1.
0x

 :
TI

C
KE

T
6.

5x
 :

TA
S

11
.6

x
: T

AS
15

.1
x

: T
AS

0
20
40
60
80

100

1 6 18 36 1 10 18 36 1 8 18 36 1 8 18 36

Opteron Westmere SPARC-T2 Tilera
Threads

512 buckets, 48 entries/bucket

mp

1.
0x

 :
TI

C
KE

T
2.

0x
 :

TA
S

1.
7x

 :
C

LH
1.

6x
 :

C
LH

1.
0x

 :
TA

S
2.

0x
 :

C
LH

0.
7x

 :
C

LH
0.

4x
 :

C
LH

1.
0x

 :
TI

C
KE

T
6.

3x
 :

TI
C

KE
T

9.
4x

 :
TI

C
KE

T
10

.1
x

: T
IC

KE
T

1.
0x

 :
TA

S
5.

5x
 :

TA
S

7.
7x

 :
TI

C
KE

T
6.

7x
 :

TI
C

KE
T

0
10
20
30
40

1 6 18 36 1 10 18 36 1 8 18 36 1 8 18 36

Opteron Westmere SPARC-T2 Tilera

Th
ro

ug
hp

ut
 (M

op
s/

s)

Threads

12 buckets, 12 entries/bucket

mp
1.

0x
 :

TI
C

KE
T

2.
3x

 :
TA

S
2.

2x
 :

C
LH

2.
1x

 :
C

LH
1.

0x
 :

TA
S

2.
1x

 :
C

LH
0.

9x
 :

C
LH

0.
6x

 :
AR

R
AY

1.
0x

 :
TI

C
KE

T
6.

1x
 :

TI
C

KE
T

8.
4x

 :
TI

C
KE

T
8.

7x
 :

TI
C

KE
T

1.
0x

 :
TA

S
5.

4x
 :

TA
S

6.
2x

 :
TI

C
KE

T
4.

7x
 :

TI
C

KE
T

0

10

20
30

40
1 6 18 36 1 10 18 36 1 8 18 36 1 8 18 36

Opteron Westmere SPARC-T2 Tilera
Threads

12 buckets, 48 entries/bucket

mp

Figure 4.10 – Throughput and scalability of the hash table (����) on different configurations.
The “X : Y” labels on top of each bar indicate the best-performing lock (Y) and the scalability
over the single-thread execution (X).

some threads as servers reduces the contention induced on the shared data of the application.

Figure 4.10 depicts the results on the four target platforms on the aforementioned scenarios.10

Low Contention. Increasing the length of the critical sections increases the scalability of the

lock-based ���� on all platforms, except for Tilera. The multi-sockets benefit from the efficient

prefetching of the data of a bucket. All three systems benefit from the lower single-thread

performance, which leads to higher scalability ratios. On Tilera, the local data contend with the

shared data for the L2 cache space, reducing scalability. On this workload, the message passing

implementation is strictly slower than the lock-based ones, even on Tilera. It is interesting

to note that Westmere scales slightly even outside the 10 cores of a socket, thus delivering

the highest throughput among all platforms. Finally, the best performance in this scenario is

achieved by simple spinlocks.

High Contention. The results are radically different for high contention. First, the message

passing version not only outperforms the lock-based ones on three out of the four platforms

(for high core counts), but it also delivers by far the highest throughput. The hardware threads

of SPARC-T2 do not favor client-server solutions; the servers are delayed due to the sharing

10 The single-thread throughput for message passing is actually a result of a one server / one client execution.

50

4.5. Software-Level Analysis

of the core’s resources with other threads. However, with locks, SPARC-T2 achieves a 10-

fold performance increase on 36 threads, which is the best scalability among the lock-based

versions and approaches the optimal 12-fold scalability. It is worth mentioning that if we do

not explicitly pin the threads on cores, the multi-sockets deliver 4 to 6 times lower maximum

throughput on this workload.

Summary. These experiments illustrate two major points. First, increasing the length of a

critical section can partially hide the costs of synchronization under low contention. This, of

course, assumes that the data accessed in the critical section are mostly being read (so they

can be shared) and follow a specific access pattern (so they can be prefetched). Second, the

results illustrate how message passing can provide better scalability and performance than

locking under extreme contention.

4.5.4 Key-Value Store (Memcached)

Memcached (v. 1.4.15) [70] is an in-memory key-value store, based on a hash table. Mem-

cached’s hash table has a large number of buckets and is protected by fine-grain locks. How-

ever, during certain rebalancing and maintenance tasks, Memcached dynamically switches to

a global lock for short periods of time. Since we are interested in the effect of synchronization

on performance and scalability, we replace the default pthread mutexes that protect the hash

table, as well as the global locks, with the interface provided by ��������. In order to stress

Memcached, we use the memslap tool from the libmemcached library [5] (v. 1.0.15). We deploy

memslap on a remote server and use its default configuration. We use 500 client threads and

run a get-only and a set-only tests.

Get. The get test does not cause any switches to global locks. Due to the essentially non-

existent contention, the lock algorithm has little effect in this test. In fact, even completely

removing the locks of the hash table does not result in any performance difference. This

indicates that scalability is limited by bottlenecks other than synchronization.

Set. A write-intensive workload however stresses a number of global locks, which introduces

contention. In the set test the differences in lock behavior translate in a difference in the

performance of the application as well. Figure 4.11 shows the throughput on various platforms

using different locks. We do not present the results on more than 18 cores, since none of the

platforms scales further. Changing the MUTEX to TICKET, MCS, or TAS locks achieves speedups

between 29% and 50% on three of the four platforms.11 Moreover, the cache-coherence

implementation of Opteron proves again problematic. Due to the periodic accesses to global

locks, the previously presented issues strongly manifest, resulting in a maximum speedup

of 3.9. On Westmere, the throughput increases while all threads are running within a socket,

after which it starts to decrease. Finally, thread scheduling has an important impact on

11 The bottleneck on SPARC-T2 is due to network and OS issues.

51

Chapter 4. A Performance Analysis of Synchronization on Multi-Cores

0

50

100

150

200

250

1 6 18 1 10 18 1 8 18 1 10 18

Opteron
(3.9x)

Westmere
(6x)

SPARC-T2
(6.03x)

Tilera
(5.9x)

Th
ro

ug
hp

ut
 (K

op
s/

s) MUTEX TAS TICKET MCS

Figure 4.11 – Throughput of Memcached using a set-only test. The maximum speed-up vs.
single thread is indicated under the platform names.

performance. Not allocating threads to the appropriate cores decreases performance by 20%

on the multi-sockets.

Summary. Even in an application where the main limitations to performance are networking

and the main memory, when contention is involved, the impact of the cache coherence and

synchronization primitives is still important. When there is no contention and the data is

either prefetched or read from the main memory, synchronization is less of an issue.

4.5.5 Discussion: Beyond Locks and Message Passing

In this chapter we focused on analyzing lock and message-passing-based synchronization.

Arguably, these are two most commonly deployed synchronization approaches. Still, other

synchronization techniques have been shown to be promising for optimizing certain coordi-

nation patterns (e.g., highly-contended critical sections). In what follows, we discuss how the

results of this chapter correlate to lock-free and combiner-based synchronization.

Lock-Free Synchronization. As we discuss in Chapters 1 and 2, lock-free programming

avoids using locks by directly employing hardware synchronization primitives, such as

compare-and-swap. As such, the scalability of lock-free designs directly depends on the

performance and scalability of atomic operations, which we thoroughly analyze in Section 4.4.

For instance, crossing sockets significantly increases the latencies of atomic operations,

therefore, crossing sockets will inevitably be problematic for lock-free synchronization.

Additionally, in Chapter 6, we summarize the results of our analysis of lock-free and lock-based

synchronization in concurrent search data structures [51]. Our results clearly indicate that

both lock-free and lock-based data structures follow the exact same scalability trends, which

are of course dictated by the underlying hardware/workload combination. Regardless of the

design, achieving scalability requires to minimize synchronization.

52

4.6. Conclusions

Combiner-Based Synchronization. As we discuss in Chapter 3, there is a large body of

recent work on combiner-based approaches [68, 99, 136, 137, 177]. Combiners promise to

improve the scalability of highly-contented critical sections by letting “server” threads to

execute critical sections on behalf of other threads. In our discussion, we focus on RCL which

has been shown to be the best performing combiner on several configurations [136, 137].

RCL replaces the “lock, execute, and unlock” pattern with remote procedure calls to a dedicated

server core. The RCL approach hides the contention behind messages and enables the server

to locally access the protected data. RCL is designed for improving the scalability of highly-

contended locks. Our message-passing concurrent hash-table of Section 4.3.2 essentially

implement the RCL approach.

Intuitively, for no/low contention critical sections RCL still has to pay the cost of a round-trip

message for synchronization. In contrast, with locks, synchronization is typically achieved

with at most one cache-line transfer. If the lock is already present in the requesting core’s L1

cache (or if it is successfully prefetched), then there is no cache-line transfer. This behavior is

reflected in the hash-table results (Figure 4.10): Locks are faster than message passing under

low contention.

However, for highly-contended critical sections (which is the target of RCL), we indeed see that

RCL can deliver much better scalability than lock-based synchronization. As we show in Fig-

ure 4.9, client-server communication delivers stable throughput regardless of the contention

levels (i.e., the number of requesting threads). For RCL, this behavior translates into critical

sections that do not suffer from congestion collapse as the number of threads increases.

Overall, our results corroborate that on multi-socket multi-cores, under very high contention,

combiner-based approaches deliver better scalability than traditional lock algorithms.

4.6 Conclusions

In this chapter, we dissected the cost of synchronization and studied its scalability along

different directions. Our analysis extended from basic hardware synchronization protocols

and primitives all the way to complex concurrent software. We also considered different

representative hardware architectures. The results of our experiments and our cross-platform

synchronization suite, SSYNC, can be used to evaluate the potential for scaling synchronization

on different platforms and to develop concurrent applications and systems. In fact, the

remainder of this dissertation is heavily inspired by the synchronization study of this chapter.

Our experimentation induced various observations about synchronization on multi-cores.

The first obvious one is that crossing sockets significantly impacts synchronization, regardless

of the layer (e.g., cache coherence, atomic operations, locks). Synchronization scales much

better within a single socket, irrespective of the contention level. Systems with heavy sharing

should reduce cross-socket synchronization to the minimum. As we pointed out, this is not

53

Chapter 4. A Performance Analysis of Synchronization on Multi-Cores

always possible (e.g., on the multi-socket Opteron), for hardware can still induce cross-socket

traffic, even if sharing is explicitly restricted within a socket. Message passing can be viewed

as a way to reduce sharing as it enforces partitioning of the shared data. However, it comes at

the cost of lower performance (than locks) on a few cores or low contention.

Another observation is that non-uniformity affects scalability even within a single-socket

multi-core—synchronization on SPARC-T2 scales better than on Tilera. Consequently, even

on a single-socket multi-core such as the Tilera, a system should reduce the amount of highly-

contended data to avoid performance degradation (due to the hardware).

We also noticed that each of the nine state-of-the-art lock algorithms that we evaluated per-

forms the best on at least one workload/platform combination. Nevertheless, if we reduce the

context of synchronization to a single socket (either one socket of a multi-socket, or a single-

socket multi-core), then our results indicate that simple spinlocks should be preferred over

more complex locks. Complex locks (e.g., queue-based locks) have a lower uncontested per-

formance, a larger memory footprint, and only outperform simple spinlocks under relatively

high contention.

On a high-level, we showed that, roughly speaking, scalability of synchronization is largely a

property of the underlying multi-core. Different platforms offer different cache-coherence

implementations, atomic operations, non-uniformity profiles, intra-socket locality, etc. Con-

sequently, optimizing synchronization of a concurrent system to the maximum is not portable,

because it requires platform-specific fine-tuning.

54

5 An Energy Efficiency Analysis of Lock-
ing on Multi-Cores1

In Chapter 4, we analyzed synchronization in terms of throughput and latency. Nevertheless,

the past few years energy has also become a very important factor in computing. In this

chapter, we present an extensive study of the energy/performance trade-offs of lock-based

synchronization on modern ��� hardware. Locks are a natural place for improving the energy

efficiency of software systems. Intuitively, some locking strategies consume more power than

others, thus the strategy choice can have a significant effect in concurrent systems. In sum-

mary, this chapter illustrates that improving the energy efficiency of locks goes hand in hand

with improving their throughput. The main reason behind this result is that current hardware

does not provide adequate tools for reducing the power consumption of synchronization

without negatively impacting throughput.

5.1 Introduction

For several decades, the main metric to measure the efficiency of computing systems has been

throughput. This state of affairs started changing in the past few years as energy has become a

very important factor [16]. Reducing the power consumption of systems is considered crucial

today [61, 92]. Various studies estimate that datacenters have contributed over 2% of the total

US electricity usage in 2010 [121], and project that the energy footprint of datacenters will

double by 2020 [164].

We argue that optimizing lock-based synchronization is an effective approach to saving energy

in concurrent software. The rationale is the following. First, concurrent systems are now main-

stream and need to synchronize their activities. In most cases, synchronization is achieved

through locking. Hence, designing locking schemes that reduce energy consumption can

affect many software systems. Second, locks are well-defined abstractions and one can usually

replace the lock implementation without any modification to the rest of the system. Third, the

choice of the locking scheme can have a significant effect on energy consumption. Indeed,

1 Appeared in: Babak Falsafi, Rachid Guerraoui, Javier Picorel and Vasileios Trigonakis. “Unlocking energy.”
USENIX ATC 2016.

55

Chapter 5. An Energy Efficiency Analysis of Locking on Multi-Cores

 0
 0.5

 1
 1.5

 2

10 20R
el

at
iv

e
to

 m
ut

ex

Threads

Power Consumption
(lower is better)

(a) 10 20
Threads

Energy Efficiency
(higher is better)

(b)

mutex
spinlock

Figure 5.1 – Power consumption and energy efficiency of ��������	
����
��	�
 with mutex
and spinlock lock algorithms.

the main consequence of synchronization is having some threads wait for one another—an

opportunity for saving energy.

To illustrate this opportunity, consider the average power consumption of two versions

of a �
�
��
	�����������
���������	
����
��	�
 [166] stress test over a long-running

execution—Figure 5.1(a). The two versions differ in how the lock handles contention: Mutexes

use sleeping, while spinlocks employ busy waiting. With sleeping, the waiting thread is put to

sleep by the OS until the lock is released. With busy waiting, the thread remains active, polling

the lock until the lock is finally released. Choosing sleeping as the waiting strategy brings up

to 33% benefits on power. Hence, as we pointed out, the choice of locking strategy can have a

significant effect on power consumption.

Accordingly, privileging sleeping with mutex locks seems like the systematic way to go. This

choice, however, is not as simple as it looks. What really matters is not only the power

consumption, but the amount of energy consumed for performing some work, namely energy

efficiency. In the Figure 5.1 example, although the spinlock version consumes 50% more power

than mutex, it delivers 25% higher energy efficiency (Figure 5.1(b)) for it achieves twice the

throughput. Hence, indeed, locking is a natural place to look for saving energy. Yet, choosing

the best lock algorithm is not straightforward.

To finalize the argument that optimizing locks is a good approach to improve the energy effi-

ciency of systems, we need locks that not only reduce power, but also do not hurt throughput.

Is that even possible?

We show that the answer to this question is positive. We argue for the POLY2 conjecture: Energy

efficiency and throughput go hand in hand in the context of lock algorithms. POLY suggests

that we can optimize locks to improve energy efficiency without degrading throughput; the

two go hand in hand. Consequently, we can apply prior throughput-oriented research on lock

algorithms almost as is in the design of energy-efficient locks as well.

2 POLY stands for “Pareto optimality in locks for energy efficiency.”

56

5.1. Introduction

We argue for our POLY conjecture through a thorough analysis of the energy efficiency of locks

on two modern Intel processors and six software systems (i.e., Memcached, MySQL, SQLite,

RocksDB, HamsterDB, and Kyoto Kabinet). We conduct our analysis in three layers. We start

by analyzing the hardware and software artifacts available for synchronization (e.g., pausing

instructions, the Linux ����� system calls). Then, we evaluate optimized variants of lock

algorithms in terms of throughput and energy efficiency. Finally, we apply our results to the six

software systems. We derive from our analysis the following observations that underlie POLY:

Busy waiting inherently hurts power consumption. With busy waiting, the underlying

hardware context remains active. On Intel machines, for example, it is not practically feasible

to reduce the power consumption of busy waiting. First, there is no power-friendly pause

instruction to be used in busy-wait loops. The conventional way of reducing the cost of these

loops, namely the ��� �	�
� instruction, actually increases power consumption. Second, the

��
�������	�� instructions require kernel-level privileges, thus using them in user space

incurs high overheads. Third, traditional DVFS techniques for decreasing the voltage and

frequency of the cores (hence lowering their power consumption) are too coarse-grained and

too slow to use. Consequently, the power consumption of busy waiting can simply not be

reduced. The only way is to look into sleeping.

Sleeping can indeed save power. Our Xeon (Ivy in Section 2.1) server has approximately

55 Watts idle power and a max total power consumption of 206 Watts. Once a hardware

context is active, it draws power, regardless of the type of work it executes. We can save this

power if threads are put to sleep while waiting behind a busy lock. The OS can then put the

core(s) in one of the low-power idle states [110]. Furthermore, when there are more software

threads than hardware contexts in a system, sleeping is the only way to go in locks, because

busy waiting kills throughput.

However, going to sleep hurts energy efficiency. The ����� system call implements sleep-

ing in Linux and is used by pthread mutex locks. In most realistic scenarios, the �����-call

overheads offset the energy benefits of sleeping over busy waiting, if any, resulting in worse

energy efficiency. Additionally, the spin-then-sleep policy of mutex is not tuned to account

for these overheads. The mutex spins for up to a few hundred cycles before employing �����,

while waking up a sleeping thread takes at least 7000 cycles. As a result, it is common that a

thread makes the costly ����� call to sleep, only to be immediately woken up, thus wasting

both time and energy. We design MUTEXEE, an optimized version of mutex that takes the

����� overheads into account.

Thus, some threads have to go to sleep for long. An unfair lock can put threads to sleep for

long durations in the presence of high contention. Doing so results in lower power consump-

tion, as fewer threads (hardware contexts) are active during the execution. In addition, lower

fairness brings (i) better throughput, as the contention on the lock is decreased, and (ii) higher

tail latencies, as the latency distribution of acquiring the lock might include some large values.

57

Chapter 5. An Energy Efficiency Analysis of Locking on Multi-Cores

Overall, on current hardware, every power trade-off is also a throughput and a latency trade-off

(motivating the name POLY): (i) sleeping vs. busy waiting, (ii) busy waiting with vs. without

DVFS or ����������	��, and (iii) low vs. high fairness. The main reason for these trade-offs

is that hardware does not provide adequate tools for reducing the power consumption in locks

without destroying throughput.

Interestingly, in our quest to substantiate POLY, we optimize state-of-the-art locking techniques

to increase the energy efficiency of our considered systems. We improve the energy efficiency

or our target systems by 33% on average, driven by a 31% increase in throughput. These

improvements are either due to completely avoiding sleeping using spinlocks, or due to

reducing the frequency of sleep/wake-up invocations using our new MUTEXEE scheme.

We conduct our analysis on two modern Intel platforms as they provide tools (i.e., RAPL

interface [111]) for accurately measuring the energy consumption of the processor. Still,

we believe that POLY holds on most modern multi-cores. On the one hand, without explicit

hardware support, busy waiting on any multi-core exhibits similar behavior. On the other hand,

���
 implementations are alike regardless of the underlying platform, thus the overheads of

sleeping will always be significant. However, should the hardware provide adequate tools for

fine-grained energy optimizations in software, POLY might need to be revised. We discuss the

topic further in Section 5.7.

In summary, the main contributions of this chapter are:

• An extensive analysis of the energy efficiency of locks. The results of this analysis can be

used to optimize lock algorithms for energy efficiency.

• The POLY conjecture, stating that we can simply, yet effectively optimize lock-based

synchronization to improve the energy efficiency of software systems.

• Our lock libraries and benchmarks, available at: �������������
����������������.

• MUTEXEE, an improved variant of pthread mutex lock. MUTEXEE delivers on average

28% higher energy efficiency than mutex on six modern systems.

It is worth noting that POLY might not seem surprising to a portion of the multi-core com-

munity. Yet, we believe it is important to clearly state POLY and quantify through a thorough

analysis the reasons why it is valid on current hardware. As we discuss in Section 5.7, our

results have important software and hardware ramifications.

The rest of the chapter is organized as follows. In Section 5.2, we describe our experimental

methodology. We provide some extended details regarding our target platforms in Section 5.3

and explore techniques for reducing the power of synchronization in Section 5.4. We analyze

in Section 5.5 the energy efficiency of locks and we use our results to improve various software

systems in Section 5.6. We conclude the chapter in Section 5.7.

58

5.2. Methodology

5.2 Methodology

Lock-Based Synchronization. As we describe in Chapter 2, locks ensure mutual exclusion;

only the holder of the lock can proceed with its execution. The remaining threads wait until

the holder releases the lock. This waiting is implemented with either sleeping (blocking), or

busy waiting (spinning) [172].

In this chapter, we analyze the energy-efficiency trade-offs between sleeping and spinning.

We use the pthread mutex lock (MUTEX) as our baseline sleeping lock and we consider various

spinlock algorithms (i.e., TAS, TTAS, TICKET, MCS, CLH) for representing busy waiting—see

Table 2.1 for a description of these algorithms.

Energy Efficiency of Software. Energy efficiency represents the amount of work pro-

duced for a fixed amount of energy and can be defined as throughput per power (TPP,

#oper ati on/Joule). Higher TPP represents a more energy-efficient execution. We use

the terms energy efficiency and TPP interchangeably. Alternatively, energy efficiency can

be defined as the energy spent on a single operation, namely energy per operation (EPO,

Joule/oper ati on). Note that TPP = 1/EPO.

Experimental Methodology. We prefer TPP over EPO because both throughput and TPP

are “higher-is-better” metrics. Recent Intel processors include the RAPL [111] interface for

accurately measuring energy consumption. RAPL provides counters for measuring the cores’,

package, and DRAM energy. We use these energy measurements to calculate average power.

Our microbenchmark results are the median of 11 repetitions of 10 seconds. When we vary the

number of threads, we first use the cores within a socket, then the cores of the second socket,

and finally, the remaining (second, third, etc.) hardware threads of each core.

5.3 Power Consumption of Target Platforms

In this chapter, we use two modern Intel ��� platforms, namely Ivy and Ivy-desktop of Sec-

tion 2.1. We focus on these two platforms as they both offer hardware counters for accurately

measuring their energy consumption. For brevity, we only present the experimental results of

our Ivy server. Note that the results on Ivy-desktop are in accordance with the ones on Ivy. We

first provide more details about our two target platforms and then estimate their maximum

power consumption.

Platforms. Ivy runs on frequencies scaling from 1.2 to 2.8 GHz due to DVFS and uses the

Linux kernel 3.13 and glibc 2.13. Ivy-desktop runs on frequencies scaling from 1.6 to 3.5 GHz

due to DVFS and runs the Linux kernel 3.2 and glibc 2.15. We disable Intel Turbo Boost [111].

5.3.1 Estimating Maximum Power Consumption

We estimate the maximum power that Ivy can consume, using a memory-intensive benchmark

that consists of threads sequentially accessing large chunks of memory from their local node.

59

Chapter 5. An Energy Efficiency Analysis of Locking on Multi-Cores

 0
 40
 80

 120
 160
 200

 0 5 10 15 20 25 30 35 40

P
ow

er
 (

W
at

ts
)

Hardware Contexts

Minimum Frequency

 0
 40
 80

 120
 160
 200

 0 5 10 15 20 25 30 35 40

P
ow

er
 (

W
at

ts
)

Hardware Contexts

Maximum Frequency

 0
 40
 80

 120
 160
 200

 0 5 10 15 20 25 30 35 40

P
ow

er
 (

W
at

ts
)

Hardware Contexts

Maximum Frequency

total package cores DRAM

Figure 5.2 – Power-consumption breakdown on Ivy.

Figure 5.2 depicts the total power and the power of different components on Ivy, depending

on the number of active hardware contexts and the voltage-frequency (VF) setting.

Idle Power Consumption. The 0-thread points represent the idle power consumption, which

accounts for the static power in cores and caches, and DRAM background power, and is the

power that is consumed when all cores are inactive.3 In both min and max frequency settings

the total idle power is 55.5 Watts as the VF setting only affects the active power.

Power of Active Cores. Activating the first core of a socket is more expensive than activating

any subsequent due to the activation of the uncore package components. In particular, it

costs 6.4 and 13.6 Watts in package power on the min and max VF settings, respectively. The

second core costs 2.3 and 5.6 Watts. We perform more experiments (not shown in the graphs)

with data sets that fit in L1, L2, and LLC. The results show that the package power is not vastly

reduced on any of these workloads, indicating that once a core is active, the core consumes a

certain amount of power that cannot be avoided.

Attribution of Power to Cores, Package, and Memory. Notice the breakdown of total power

to package/core4 and DRAM power. DRAM power has a smaller dynamic range than package

and core power. On the max VF setting, DRAM power ranges from 25 to 74 Watts, while the

range of package power is from 30 to 132 Watts, and core power from 4 up to 96 Watts.

Implications. The power consumption of Ivy ranges from 55 up to 206 Watts. Out of the

206 Watts, 74 Watts are spent on the DRAM memory. Locks are typically transferred within

the processor by the cache-coherence protocol, thus limiting the opportunities for reducing

power to package power (30-132 Watts). Additionally, once a core is active, the core draws

power, regardless of the type of work performed. Consequently, the opportunity for reducing

power consumption in software is relatively low and mostly has to do with (i) using fewer

cores, by, for example, putting threads to sleep, or (ii) reducing the frequency of a core.

3 Still, the OS briefly enables a few cores during the measurements.
4 The package power includes the core power.

60

5.4. Reducing Power Consumption in Synchronization

5.4 Reducing Power Consumption in Synchronization

In this section, we evaluate the costs of busy waiting and sleeping, and examine different ways

of reducing them.

5.4.1 Power: The Price of Busy Waiting

We measure the total power consumption of the three main waiting techniques (i.e., sleeping,

global spinning, and local spinning—see Section 5.2) when all threads are waiting for a lock

that is never released. Figure 5.3 shows the power consumption and the cycles per instruction

(CPI). CPI represents the average number of CPU cycles that an instruction takes to execute.

CPI is typically used to show how efficiently does some software execute on hardware (Ivy is

able to deliver as low as 0.25 cycles per instruction).

Two main points stand out. First, in this extreme scenario, sleeping is very efficient because

the waiting threads do not consume any CPU resources. In this benchmark, as nothing else

executes on the processor, the OS puts all cores to low-power states. Second, local spinning

consumes up to 3% more power than global spinning. This behavior is explained by the CPI

graph: Global spinning performs atomic operations on the shared memory address of the

lock, resulting in a very high CPI (up to 530 cycles). In local spinning, every thread executes

an L1 load each cycle, whereas, in global spinning, storing over coherence occurs once the

atomic operation is performed, each 530 cycles on average.

5.4.2 Reducing the Price of Busy Waiting

We reduce the power consumption of busy waiting in different ways: (i) we examine various

ways of pausing in spin-wait loops, (ii) we employ DVFS, and (iii) we use ����������	�� to

“block” the waiting threads.

 60

 80

 100

 120

 140

 1 5 10 15 20 25 30 35 40

P
ow

er
 (

W
at

ts
)

Threads

Power

 0

 15

 30

 45

 60

 1 5 10 15 20 25 30 35 40

C
P

I

Threads

Cycles Per Instruction

 134
 136
 138
 140

 30 35 40
 134
 136
 138
 140

 30 35 40

sleeping global spinning local spinning

Figure 5.3 – Power consumption and CPI while waiting.

61

Chapter 5. An Energy Efficiency Analysis of Locking on Multi-Cores

Pausing Techniques. Busy waiting with local spinning is power hungry, because threads

execute with low CPI. Essentially, it is one of the rare cases in computing where the efficient

execution of a piece of software on hardware is a problem. Hence, to reduce the power con-

sumption of busy waiting, we must increase the spin-loop’s CPI. We take several approaches

to this end (Figure 5.4).

Any instruction, that the out-of-order core can hide, cannot reduce the power of the spin

loop. For example, using the ��� instruction to add a “bubble” in the pipeline of the core

decreases CPI decreases from 0.33 to 0.25, followed by a slight increase in power consumption

compared to the empty loop (not show in the graph). According to Intel’s Software Developer’s

Manual [111], “Inserting a pause instruction in a spin-wait loop greatly reduces the processor’s

power consumption.” A ����� (local-pause) increases CPI to 4.6. However, not only does it

not “greatly reduce” power, but it even increases the power consumption by up to 4%. We

speculate that one of the reasons for this increase in power is that ����� gives a hint to the

core to prioritize the other hardware context.

In general, the reason behind the very low CPI of local spinning is the aggressive execution

mechanisms of modern processors that allow instructions to execute both speculatively and

out of the program order. This results in one out of three of the retired operations being a

memory load (the other two are a test and a conditional jump). Without appropriate pausing,

the spin loop retires one memory load per cycle.

A way to avoid the speculative execution of the load is to insert a full, or a load, memory barrier.

That way, the loads only execute once the previous load retires and the instructions that

depend on it, test and jump, are stalled as well. The results (local-mbar) show that the barrier

reduces the power consumption of local spinning to the point that becomes less expensive

than global spinning (global). Additionally, local-mbar consumes up to 7% less power than

local-pause. It is worth noting that local-mbar consumes less power than local-pause even for

low thread counts (e.g., 5% on 10 threads). In the rest of the chapter, we use a memory barrier

for pausing in spin loops.

 60
 80

 100
 120
 140

 1 5 10 15 20 25 30 35 40

P
ow

er
 (

W
at

ts
)

Threads

Power

 0

 15

 30

 45

 60

 1 5 10 15 20 25 30 35 40

C
P

I

Threads

Cycles Per Instruction

 132
 136
 140
 144

 30 35 40
 132
 136
 140
 144

 30 35 40

global local local-pause local-mbar

Figure 5.4 – Power consumption and CPI while spinning.

62

5.4. Reducing Power Consumption in Synchronization

Dynamic Voltage and Frequency Scaling (DVFS). An intuitive way of lowering the power

consumption of an active core is to reduce the voltage-frequency (VF) point via DVFS (see

Section 5.3). Figure 5.5 shows that spinning on VF-min consumes up to 1.7x less power than

on the VF-max setting. Still, DVFS is currently impractical for dynamically reducing power in

busy waiting.

First, to trigger the VF change with DVFS, we need to write on a certain per-hardware context

file of the ������������ directory (more details about DVFS can be found in [213]). Hence,

the VF-switch operation is slow: We measure that it takes 5300 cycles on Ivy. If DVFS is used

while busy waiting, this overhead will be on the critical path when the lock is acquired and the

thread must switch back to the maximum VF point.

Second, both hardware contexts of a physical core share the same VF setting—the higher of the

two. If a context lowers its VF setting, the action will have no effect unless the second context

has the same or lower VF setting. Consequently, using DVFS with SMT is tricky, and as the

DVFS-normal line shows, the power consumption drops only when both hardware contexts

lower their VF points.

Monitor/mwait. The 	
���

�	���� [111] instructions allow a hardware context to block

and enter an implementation-dependent optimized state while waiting for a store event. In

detail, 	
���

 allows a thread to declare a memory range to monitor. The hardware thread

then uses 	���� to enter an optimized state until a store is performed within the address

range. Essentially, 	���� implements sleeping in hardware and can be used in spin-wait loops:

The hardware sleeps, yet the thread does not release its context.

These instructions require kernel privileges. We develop a virtual device and overload its

file_operations functions to allow a user program to declare and wait on an address, similar

to [9]. A thread can wake up others with a user-level store. However, threads pay the user-to-

kernel switch and system-call overheads for waiting.

Figure 5.5 includes the power of busy waiting with 	
���

�	����. These instructions can

reduce power consumption over conventional spinning up to 1.5x. However, similarly to

DVFS, using 	
���

�	���� has two shortcomings. First, 	
���

�	���� can be only used

 60
 80

 100
 120
 140

 1 5 10 15 20 25 30 35 40

P
ow

er
 (

W
at

ts
)

Threads

VF-max
VF-min

DVFS-normal
monitor/mwait

Figure 5.5 – Power consumption of busy waiting using DVFS and 	
���

�	����.

63

Chapter 5. An Energy Efficiency Analysis of Locking on Multi-Cores

in kernel space. The overloaded file operation takes roughly 700 cycles. The best case wake-up

latency from �����, with just one core “sleeping,” is 1600 cycles. In comparison, “waking up” a

locally-spinning thread takes two cache-line transfers (i.e., 280 cycles). Second, programming

with �������	����� on Intel processors can be elaborate and limiting. The ����� instruction

blocks the hardware context until the thread is awaken. In oversubscribed environments (i.e.,

more threads than hardware contexts), �������	����� will likely exacerbate the “livelock”

issues of spinlocks (see Section 5.6). Blocked threads might occupy most hardware contexts,

thus preventing other threads from performing useful work.

Implications. Busy waiting drains a lot of power because cores execute at full speed. Neither

of the two platforms provides sufficient tools for reducing power consumption in a system-

atic way. Pausing techniques, such as
���
, can even increase the power of busy waiting.

Techniques that can significantly reduce power, such as DVFS and �������	�����, are not

designed for user-space usage as they require expensive kernel operations. Hence, sleeping is

currently the only practical way of reducing the power consumption in locks.

5.4.3 Latency: The Price of Sleeping

In Linux, sleeping is implemented with ���
� system calls. A ���
�-sleep call puts the thread

to sleep on a given memory address. A ���
� wake-up call awakes the first N threads sleeping

on an address (N = 1 in locks). The ���
� calls are protected by kernel locks. In particular, the

kernel holds a hash table (array) of locks and ���
� operations calculate the particular lock to

use by hashing the address. Given that the array is large (approximately 256∗#cor es locks),

the probability of false contention is low. However, operations on the same address (same

MUTEX) do contend on kernel level.

We use a microbenchmark where two threads run in lock-step execution (synchronized at

each round with barriers)—Figure 5.6. One thread makes ���
�-sleep calls, while the second

thread makes wake-up calls on the same ���
�, after waiting for some time. A ���
�-sleep

call (i.e., enqueuing behind the lock and descheduling the thread) takes around 2100 cycles

(estimated as the required delay between sleep and wake-up calls for the wake-up calls to

 0

 20

 40

 60

 80

 100

102 103 104 105 106 107

La
te

nc
y

(K
cy

cl
es

)

Delay between futex sleep and wake-up calls (cycles, log10)

wake-up call
turnaround

(95th percentile)

 0
 4
 8

 12

102 103 104

Figure 5.6 – Latency of different ���
� operations.

64

5.4. Reducing Power Consumption in Synchronization

almost always find the other thread sleeping). This sleep latency is not necessarily on the

critical path: The thread sleeps because the lock is occupied. However, the latency to wake up

a thread and the one for the woken-up thread to be ready to execute are on the critical path.

Figure 5.6 contains the wake-up call and the turnaround latencies, depending on the delay

between the invocation of the sleep and the wake-up calls. The turnaround latency is the time

from the wake-up invocation until the woken-up thread is running.5

The turnaround time is at least 7000 cycles and is higher than the wake-up call latency. Apart

from the approximately 2700 cycles of the wake-up call, the woken-up thread requires at least

4000 more cycles before executing. Concretely, once the wake-up call finishes, the woken-up

thread pays the cost of idle-to-active switching and the cost of scheduling.6

Figure 5.6 further includes two interesting points. First, for low delays between the two calls,

the wake-up call is more expensive as it waits behind a kernel lock for the completion of

the sleep call. Second, when the delay between the calls is very large (>600K cycles), the

turnaround latency explodes, because the hardware context sleeps in a deeper idle state [135].

Finally, the results in Figure 5.6 use just two threads and thus represent the best-case latencies,

with minimal or no contention at the kernel level. With more threads, a wake-up invocation is

likely to contend with ����� sleep calls, all serialized using a single kernel lock.

Implications. ����� operations have high latencies and consume energy, as a non-negligible

number of instructions are executed. Handing over a lock with a ����� wake-up call requires

at least 7000 cycles. Even on rather lengthy critical sections (e.g., 10000 cycles), this latency

is prohibitive; it almost doubles the execution time of the critical section. In this case, the

energy benefits of sleeping will not easily compensate the performance losses. In short critical

sections, invoking ����� calls will have detrimental effects on performance.

5.4.4 Reducing the Price of Sleeping

Sleeping can save energy on long waiting duration. We estimate when sleeping reduces power

consumption with two threads:

Period between wake-up calls (cycles) 1024 2048 4096 8192

Power (Watts) 72.03 69.18 68.75 68.02

The first thread sleeps on a location, while the second periodically wakes up the first thread.

We vary the period between the wake-up invocations, which essentially represents the critical-

section duration in locks. The results confirm that if a thread is woken up more frequently than

the �����-sleep latency, power consumption is not reduced. The thread goes to sleep only to

be immediately woken up by a concurrent wake-up call. When these “sleep misses” happen,

we lose performance without any power reduction. Once the delay becomes larger than the

sleep latency (i.e., approximately 2100 cycles on Ivy), we start observing power reductions.

5 The wake-up call latency is directly measured in our microbenchmark, while the turnaround time is estimated

65

Chapter 5. An Energy Efficiency Analysis of Locking on Multi-Cores

 70
 80
 90

 100
 110
 120
 130
 140

 1 10 20 30 40

P
ow

er
 (

W
at

ts
)

Threads

Power

 0
 2
 4
 6
 8

 10
 12
 14

 1 10 20 30 40

T
hr

ou
gh

pu
t (

M
op

s/
s)

Threads

Communication

 0
 2
 4
 6
 8

 10
 12
 14

 1 10 20 30 40

T
hr

ou
gh

pu
t (

M
op

s/
s)

Threads

Communication

sleep spin ss-1 ss-10 ss-100 ss-1000

Figure 5.7 – Power consumption and communication throughput of sleeping, spinning, and
spin-then-sleep for various T s.8

Reducing Fairness. We show two problems with �����-based sleeping: (i) high turnaround

latencies, and (ii) frequent sleeps and wake ups do not reduce power. To fix both problems

simultaneously, we recognize the following trade-off: We can let some threads sleep for long

periods, while the rest coordinate with busy waiting. If the communication is mostly done via

busy waiting, we almost remove the ����� wake-up calls from the critical path. Additionally,

we let threads sleep for long periods, a requirement for reducing power consumption.

This optimization comes at the expense of fairness. The longer a thread sleeps while some

others progress, the more unfair the lock becomes. We experiment with the extreme case

where only two threads communicate via busy waiting, while the rest sleep. Each active thread

has a “quota” T of busy-waiting repetitions, after which it wakes up another thread to take its

turn. Figure 5.7 shows the power and the communication rate (similar to a lock handover) of

sleeping, busy waiting, and spin-then-sleep (ss-T) with various T s on a single �����. T is the

ratio of busy-waiting over ����� handovers.

Figure 5.7 clearly shows that the more unfair an execution—large T s, the better the energy

efficiency. First, larger T s result in lower power, because the sleep and wake-up ����� calls

become infrequent, hence sleeping threads sleep for a long duration. For example, on 10

threads with T = 1000, threads sleep for about 2M cycles. In comparison, with only sleeping,

the sleep duration is less than 90000 cycles. Second, spin handovers face minimal contention,

as only two threads attempt to “acquire” the cache line. Consequently, because most handovers

(99.9%) happen with spinning, the latency is very low, resulting in high throughput.

Implications. Frequent ����� calls will hurt the energy efficiency of a lock. A way around

this problem is to reduce lock fairness in the face of high contention, by letting only a few

threads use the lock as a spinlock, while the remaining threads are asleep.

as the duration of the sleep call, reduced by the delay between the sleep and wake-up calls.
6 When the core is active due to multiprogramming, the turnaround latency only includes the scheduling delays.
8 The performance collapse of spin is due to contention, while of ss-10 and ss-100 due to the high idle-to-active

switching costs (see Figure 5.6).

66

5.5. Energy Efficiency of Locks

5.5 Energy Efficiency of Locks

We evaluate the behavior of various locks in terms of energy efficiency and throughput, relying

on the results of Section 5.4. We first introduce MUTEXEE, an optimized version of MUTEX.

5.5.1 MUTEXEE: An Optimized MUTEX Lock

In Section 5.4, we analyze the overhead of ����� calls. Additionally, we show how we can trade

fairness for energy efficiency. MUTEX does not explicitly take these trade-offs into account,

although it is an unfair lock.

In particular, MUTEX by default attempts to acquire the lock once before employing �����.

MUTEX can be configured (with the ���	
��
���
�
�������

�� initialization attribute) to

perform up to 100 acquire attempts before sleeping with �����.9 Still, threads spin up to a few

hundred cycles on the lock before sleeping with ����� (the exact duration depends on the

contention on the cache line of the lock). This behavior can result in very poor performance

for critical sections of up to 4000 cycles. In brief, threads are put to sleep, although the queuing

time behind the lock is less than the �����-sleep latency. Additionally, to release a lock,

MUTEX first sets the lock to “free” in user space and then wakes up one sleeping thread (if any).

However, a third concurrent thread can acquire the lock before the newly awaken thread Taw

is ready to execute. Taw will then find the lock occupied and sleep again, thus wasting energy,

creating unnecessary contention, and breaking lock fairness.

To fix these two shortcomings, we design an optimized version of MUTEX, called MUTEXEE.

Table 5.1 details how MUTEXEE differs from the traditional MUTEX. The “wait in user space”

step of unlock requires further explanation. MUTEXEE, after releasing the lock in user space,

but before invoking �����, waits for a short period to detect whether the lock is acquired by

another thread in user space. In such case, the unlock operation returns without invoking

�����. The waiting duration must be proportional to the maximum coherence latency of the

processor (e.g., 384 cycles on Ivy).

9 For brevity, in our graphs we show the default MUTEX configuration (i.e., without
��������	
����������
����). We choose the default MUTEX version because: (i) it is the default in
our systems (Section 5.6), and (ii) we thoroughly compare the two versions and conclude that for most
configurations MUTEX is slightly faster without the adaptive attribute.

MUTEX MUTEXEE

lo
ck

for up to ∼ 1000 cycles for up to ∼ 8000 cycles
spin with ����� spin with ����	�

if still busy, sleep with ��
��

u
n

lo
ck release in user space (�
	����
	��� � �)

wait in user space
wake up a thread with ��
��

Table 5.1 – Differences between MUTEX and MUTEXEE.

67

Chapter 5. An Energy Efficiency Analysis of Locking on Multi-Cores

Moreover, MUTEXEE operates in one of two modes: (i) spin, with ∼ 8000 cycles of spinning

in the lock function and ∼ 384 in unlock, and (ii) mutex, with ∼ 256 cycles in lock and ∼ 128

in unlock (used to avoid useless spinning). MUTEXEE keeps track of statistics regarding how

many handovers occur with busy waiting and with �����. Based on those statistics, MUTEXEE

periodically decides on which mode to operate in: If the �����-to-busy-waiting handovers

ratio is high (>30%), MUTEXEE uses mutex, otherwise it remains in spin mode.

Our design sensitivity analysis for MUTEXEE (not shown in the graphs) highlights three main

points. First, spinning for more than 4000 cycles is crucial for throughput: MUTEXEE with

500 cycles spin behaves similarly to MUTEX. Second, the “wait in user space” functionality

is crucial for power consumption (and improves throughput): If we remove it, MUTEXEE

consumes similar power to MUTEX. Finally, the spin and mutex modes of MUTEXEE can save

power on lengthy critical sections.

Fine-Tuning MUTEXEE. The default configuration parameters of MUTEXEE should be suitable

for most ��� processors. Still, these parameters are based on the latencies of the various events

that happen in a �����-based lock, such as the latency of sleeping or waking up. Accordingly,

in order to allow developers to fine-tune MUTEXEE for a platform, we provide a script which

runs the necessary microbenchmarks and reports the configuration parameters that can be

used for that platform.

Comparing MUTEXEE to MUTEX. Figure 5.8 depicts the ratios of throughput and energy

efficiency of MUTEXEE over MUTEX on various configurations on a single lock. MUTEXEE indeed

fixes the problematic behavior of MUTEX for critical sections of up to 4000 cycles. While

MUTEX continuously puts threads to sleep and wakes them up shortly after, MUTEXEE lets the

threads sleep for larger periods and keeps most lock handovers ����� free. Of course, the

latter behavior of MUTEXEE results in lower fairness as shown in Figure 5.9. Up to 4000 cycles,

MUTEXEE achieves much lower 95th percentile latencies than MUTEX, because most lock

handovers are fast with busy waiting. However, the price of this behavior is a few extremely

Throughput

10 20 30 40 50 60
Threads

0

4

8

12

16

C
rit

ic
al

 s
ec

tio
n

(K
cy

cl
es

)

 0

 1

 2

 3
TPP

10 20 30 40 50 60
Threads

0

4

8

12

16

 0
 1
 2
 3
 4
 5
 6

Figure 5.8 – Throughput and TPP ratios of MUTEXEE over MUTEX on various configurations
with a single lock.

68

5.5. Energy Efficiency of Locks

 0

 1

 2

 3

 4

 0 4 8 12 16

La
te

nc
y

(M
cy

cl
es

)

Critical-section duration (Kcycles)

95th percentile

 0

 500

 1000

 1500

 2000

 0 4 8 12 16

La
te

nc
y

(M
cy

cl
es

)

Critical-section duration (Kcycles)

99.99th percentile

 0

 500

 1000

 1500

 2000

 0 4 8 12 16

La
te

nc
y

(M
cy

cl
es

)

Critical-section duration (Kcycles)

99.99th percentile

MUTEX MUTEXEE

Figure 5.9 – 95/99.99th percentile latency of a MUTEX and a MUTEXEE on various configurations.

high latencies as shown in the 99.99th percentile graph. These values are caused by the long-

sleeping threads and represent the trade-off between lock fairness and energy efficiency. As

the critical section size increases, the behavior of the two locks converges: Both locks are

highly unfair as they allow very high tail latencies (the main reason for this unfairness is that,

as we show in Figure 5.6, waking up with ����� takes a lot of time, hence the just woken up

threads find the lock occupied by another thread that acquired the lock in the meantime).

Reducing MUTEXEE’s Tail Latencies. MUTEXEE purposefully reduces the number of �����

invocations by handing the lock over in user space whenever possible. Therefore, it might

let some threads sleep while the rest keep the lock busy, resulting in high tail latencies. A

straightforward way to limit these tail latencies, so that threads are not allowed to remain

“indefinitely” asleep, is to use a timeout for the ����� sleep call. Once a thread is woken up

due to a timeout, the thread spins until it acquires the lock, without the possibility to sleep

again. Of course, one can design more elaborate variants of this protocol. Controlling this

timeout essentially controls the maximum latency of the lock (given that the sleep duration is

significantly larger than the critical sections protected by that lock).

Figure 5.10 depicts the relative performance of MUTEXEE without over with timeouts for a

single lock with 2000 cycles critical sections. For an 8 μs timeout, MUTEXEE delivers up to 14x

Throughput

10 20 30 40 50 60
Threads

8K

128K

2M

32M

512M

M
U

T
E

X
E

E
 T

im
eo

ut
 (

ns
)

 1

 2

 3

 4

5+
TPP

10 20 30 40 50 60
Threads

8K

128K

2M

32M

512M

 1

 2

 3

 4

5+

Figure 5.10 – Throughput and TPP ratios of MUTEXEE without over with timeouts.

69

Chapter 5. An Energy Efficiency Analysis of Locking on Multi-Cores

lower throughput and 24x lower TPP than without timeouts. Threads are continuously sleeping

and waking up with ����� calls, thus significantly reducing throughput and increasing power

consumption compared to MUTEXEE. In general, for timeouts shorter than 16-32 ms, both

throughput and TPP suffer, representing the clear trade-off between fairness and performance.

For example, with 20 threads, MUTEXEE with a 4 ms timeout compares to the rest as follows:

Lock Throughput TPP Max Latency

Kacq/s Kacq/Joule Mcycles

MUTEX 317 4.0 2.0

MUTEXEE 855 10.9 206.5

MUTEXEE timeout 474 6.5 12.0

Depending on the application, the developer can decide whether to use timeouts and choose

the timeout duration for MUTEXEE. For brevity, in the rest of the chapter, we use MUTEXEE

without timeouts. As we show in Section 5.6, we do not observe significant tail-latency

increases due to MUTEXEE in real systems.

5.5.2 Evaluating Lock Algorithms

We evaluate various lock algorithms under different contention levels in terms of throughput

and energy efficiency (TPP).

Uncontested Locking. As we have mentioned again earlier, it is common in systems that

a lock is mostly used by a single thread and both the acquire and the release operations

are almost always uncontested. Table 5.2 includes the throughput (Macq/s) and the TPP

(Kacq/Joule) of various lock algorithms when a thread continuously acquires and releases a

single lock. We use short critical sections of 100 cycles.

The trends in throughput and TPP are identical as there is no contention. The locks perform

inversely to their complexity. The simple spinlocks (TAS, TTAS, and TICKET) acquire and release

the lock with just a few instructions. MUTEX performs several sanity checks and also has

to handle the case of some threads sleeping when a lock is released. MUTEXEE is also more

complex than simple spinlocks due to its periodic adaptation. The queue-based lock, MCS, is

even more complex, because threads must find and access per-thread queue nodes.

MUTEX TAS TTAS TICKET MCS MUTEXEE

Throughput 11.88 16.88 16.98 16.97 12.04 13.32
TPP 174.31 248.14 249.41 249.24 176.72 195.48

Table 5.2 – Single-threaded lock throughput and TPP.

70

5.5. Energy Efficiency of Locks

Contention – Single (Global) Lock. We experiment with a single lock accessed by a varying

number of threads. This experiment captures the behavior of highly-contended coarse-grained

locks. We use a fixed critical section of 1000 cycles.

Figure 5.11 contains the throughput and the TPP results. On 40 threads, MUTEX delivers 73%

lower TPP than TICKET: 63% less throughput and 5.8% more power. The throughput difference

is due to (i) the global spinning of MUTEX, and (ii) the ����� calls, even if they are infrequent.

The power consumption difference is mainly because of the pausing technique. MUTEX spins

with �����, while TICKET uses a memory barrier. With ����� instead of a barrier, TICKET

consumes 4 Watts more.

Moreover, MUTEXEE maintains the contention levels and the frequency of ����� calls low,

regardless of the number of threads. This results in stable throughput and TPP because neither

contention, nor the number of active hardware contexts increases with the number of threads.

This behavior comes at the expense of high tail latency: On 40 threads, MUTEXEE has an 80x

higher 99.9th percentile latency than MUTEX.

Regarding spinlocks, TAS is the worst in this workload. This behavior is due to the stress on

the lock, which makes the release of TAS very expensive. Moreover, for up to 40 threads, the

queue-based lock (MCS) delivers the best throughput and TPP. Queue-based locks are designed

to avoid the burst of requests on a single cache line when the lock is released. On more than

40 threads, fairness shows its teeth. As Ivy has 40 hardware threads, there is oversubscription

of threads to cores. TICKET and MCS, the two fair locks, suffer the most: If the thread that is the

next to acquire the lock is not scheduled, the lock remains free until that thread is scheduled.

Finally, throughput and TPP are directly correlated: The higher the throughput, the higher the

energy efficiency. Still, MUTEXEE delivers higher TPP by achieving both better throughput and

lower power than the rest.

 0

 1

 2

 3

 1 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

M
ac

qs
/s

)

Threads

Throughput

 0

 15

 30

 45

 1 10 20 30 40 50 60

T
P

P
 (

K
ac

qs
/J

ou
le

)

Threads

Throughput per Power

 0

 15

 30

 45

 1 10 20 30 40 50 60

T
P

P
 (

K
ac

qs
/J

ou
le

)

Threads

Throughput per Power

TAS TTAS TICKET MCS MUTEXEE

Figure 5.11 – Throughput and energy efficiency of a single (global) lock.

71

Chapter 5. An Energy Efficiency Analysis of Locking on Multi-Cores

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

N
or

m
al

iz
ed

 T
P

P

Normalized Throughput

linear
MUTEX

TAS
TTAS

TICKET
MCS

MUTEXEE

Figure 5.12 – Correlation of throughput with energy efficiency on various contention levels.

Variable Contention. Figure 5.12 plots the correlation of throughput with TPP on a diverse

set of configurations. We vary the number of threads from 1 to 16, the size of critical section

from 0 to 8000 cycles, and the number of locks from 1 to 512. At every iteration within a

configuration, each thread selects one of the locks at random. The results are normalized to

the overall maximum throughput and TPP, respectively.

Most data points fall on, or very close to, the linear line. In other words, most executions

have almost one-to-one correlation of throughput with TPP. The bottom-left cluster of values

represents highly-contended points. On high contention, there is a trend below the linear

line, which represents executions where throughput is relatively higher compared to energy

efficiency. These results are expected, as on very high contention sleeping can save power

compared to busy waiting, but still, busy waiting might result in higher throughput.

If we zoom into the per-configuration best throughput and TPP, the correlation of the two is

even more profound. On 85% of the 2084 configurations, the lock with the best throughput

achieves the best energy efficiency as well. On the remaining 15%, the highest throughput is

on average 8% better than the throughput of the highest TPP lock, while the highest TPP is 5%

better than the TPP of the highest throughput lock.

Finally, MUTEXEE delivers much higher throughput and TPP than MUTEX; on average, 25% and

32% higher throughput and TPP, respectively. MUTEX is better than MUTEXEE in just 4% of the

configurations (by 9% on average, both in terms of throughput and TPP).

5.5.3 Implications

The POLY conjecture states that energy efficiency and throughput go hand in hand in locks.

Our evaluation of POLY with six state-of-the-art locks on various contention levels shows

that, with a few exceptions, POLY is indeed valid. The exceptions to POLY are high contention

scenarios, where sleeping is able to reduce power, but still results in slightly lower throughput

than busy waiting on the contended locks.

72

5.6. Energy Efficiency of Lock-Based Systems

For low contention levels, energy efficiency depends only on throughput, as there are no

opportunities for saving energy. In these scenarios, even infrequent ����� calls reduce both

throughput and energy efficiency.

For high contention, sleeping can reduce power consumption. However, the frequent �����

calls of MUTEX hinder the potential energy-efficiency benefits due to throughput degradation.

MUTEXEE is able to reduce the frequency of ����� calls either by avoiding the ones that are

purposeless, or by reducing fairness. MUTEXEE achieves both higher throughput and lower

power than spinlocks or MUTEX for high contention levels.

Our POLY conjecture also highlights that the energy efficiency of lock-based synchronization

is largely dictated by the underlying multi-core hardware. First, the main reason behind POLY

is that hardware does not provide adequate tools for reducing the power consumption of

busy waiting without destroying throughput. Second, as energy efficiency mostly depends on

throughput, our results of Chapter 4 directly apply for the energy efficiency of (lock-based)

synchronization as well.

5.6 Energy Efficiency of Lock-Based Systems

In this section, we modify the locks of various concurrent systems to improve their energy

efficiency. We choose the set of systems so that they use the pthread library in diverse ways,

such as using mutexes or reader-writer locks, building on top of mutexes, or relying on

conditionals. Note that we do not modify anything else other than the pthread locks and

conditionals in these systems.

Table 5.3 contains the description and the different configurations of the six systems that we

evaluate. All benchmarks use a dataset size of approximately 10 GB (in memory), except for

the MySQL SSD configuration that uses 100 GB. We set the number of threads for each system

according to its throughput scalability.

5.6.1 Results

Figures 5.13 and 5.14 show the throughput and the energy efficiency (TPP) of the target systems

with different locks. For brevity, we show results with MUTEX, TICKET, and MUTEXEE. The

remaining local-spinning locks are similar to TICKET (TAS is less efficient—see Section 5.5).

Throughput and Energy Efficiency. In 16 out of the 17 experiments, avoiding the overheads

of MUTEX improves energy efficiency from 2% to 184%. On average, changing MUTEX for either

TICKET or MUTEXEE improves throughput by 31% and TPP by 33%. The results include three

distinct trends.

73

Chapter 5. An Energy Efficiency Analysis of Locking on Multi-Cores

HamsterDB [191]
An embedded key-value store. We run three tests with random reads and writes, varying
the read-to-write ratio from 10% (WT), 50% (WT/RD), to 90% (RD).

Version: 2.1.7
Threads: 4
Kyoto [124]

An embedded NoSQL store. We stress Kyoto with a mix of operations for three database
versions (CACHE, HT DB, B-TREE).

Version: 1.2.76
Threads: 4
Memcached [70] An in-memory cache. We evaluate Memcached using a Twitter-like workload [133]. We

vary the get-to-set ratio from 10% (WT), 50% (WT/RD), to 90% (RD). The server and the
clients run on separate sockets.

Version: 1.4.22
Threads: 8
MySQL [168] An RDBMS. We use Facebook’s LinkBench and tuning guidelines [63] for an in-memory

(MEM) and an SSD-drive (SSD) configurations.Version: 5.6.19
RocksDB [64] A persistent embedded store. We use the benchmark suite and guidelines of Facebook

for an in-memory configuration [65]. We run 3 tests with random reads and writes,
varying the read-to-write ratio from 10% (WT), 50% (WT/RD), to 90% (RD).

Version: 3.3.0
Threads: 12
SQLite [204] A relational DB engine. We use TPC-C with 100 warehouses varying the number of

concurrent connections (i.e., 8, 32, and 64).Version: 3.8.5

Table 5.3 – Software systems and configurations.

First, in some systems/configurations (i.e., Memcached and HamsterDB) sleeping can “kill”

throughput. For instance, on the SET workload on Memcached, MUTEXEE allows for a few

sleep invocations, resulting in lower throughput than TICKET.

Second, in some systems/configurations (i.e., MySQL and RocksDB) MUTEX is less of a problem.

Both of these systems build more complex synchronization patterns on top of MUTEX. MySQL

handles most low-level synchronization with custom-designed locks. Similarly, RocksDB em-

1.
38

1.
38

1.
26

1.
85

1.
71

1.
55

1.
43

1.
17

1.
03

0.
01 0.
16

1.
00

1.
02 1.
12

0.
90

0.
80

0.
25

1.
061.
17

1.
17 1.

42 1.
78

1.
73

1.
52

1.
14

1.
07

1.
03

0.
98

1.
02 1.
10

1.
12

1.
11 1.
25 1.
33 1.
44

1.
26

0
0.5

1
1.5

2
2.5

W
T

W
T/

RD RD

CA
CH

E

HT
 D

B

B-
TR

EE SE
T

SE
T/

GE
T

GE
T

M
EM SS

D

W
T

W
T/

RD RD

16
 C

O
N

32
 C

O
N

64
 C

O
N

HamsterDB Kyoto Memcached MySQL RocksDB SQLite Avg

Th
ro

ug
hp

ut
 (N

or
m

al
ize

d) MUTEX TICKET MUTEXEE

Figure 5.13 – Normalized (to MUTEX) throughput of various systems. (Higher is better)

1.
26

1.
29

1.
31 1.

84

1.
69

1.
47

1.
37

1.
16

1.
03

0.
02 0.
11

1.
06

1.
10

1.
14

0.
86

0.
82

0.
26

1.
051.
16

1.
19 1.

46 1.
73

1.
69

1.
42

1.
13

1.
07

1.
02

0.
99

1.
02 1.
11

1.
12

1.
10 1.
25 1.

57 1.
75

1.
28

0.0
0.5
1.0
1.5
2.0
2.5

W
T

W
T/

RD RD

CA
CH

E

HT
 D

B

B-
TR

EE SE
T

SE
T/

GE
T

GE
T

M
EM SS

D

W
T

W
T/

RD RD

16
 C

ON

32
 C

ON

64
 C

ON

HamsterDB Kyoto Memcached MySQL RocksDB SQLite Avg

TP
P

(N
or

m
al

ize
d) MUTEX TICKET MUTEXEE

Figure 5.14 – Normalized (to MUTEX) energy efficiency of various systems. (Higher is better)

74

5.6. Energy Efficiency of Lock-Based Systems

ploys a write queue where threads enqueue their operations (i.e., a combiner-based approach—

see Chapter 3) and mostly relies on a conditional variable. Therefore, altering MUTEX with

another algorithm does not make a big difference.

Finally, in MySQL and SQLite sleeping is necessary. Both these systems oversubscribe threads

to cores, thus spinlocks, such as TICKET, result in very low throughput. A spinning thread can

occupy the context of a thread that could do useful work. Additionally, on the SSD, TICKET

consumes 40% more power than the other two, as it keeps all cores active. The fairness of

TICKET exacerbates the problems of busy waiting in the presence of thread oversubscription:

TTAS (not shown in the graph) has roughly 6x higher throughput than TICKET, but it is still

much slower than MUTEX and MUTEXEE.

Overall, in five out of the six systems, the energy-efficiency improvements are mostly driven

by the increased throughput. SQLite is the only system where the lock plays a significant role

in terms of both throughput and power consumption. With MUTEXEE, SQLite consumes 15%

and 18% less power than with MUTEX with 32 and 64 connections, respectively.

Tail Latency. MUTEXEE can become more unfair than MUTEX (see Section 5.5). Figure 5.15

includes the QoS of four systems in terms of tail latency. For most configurations, the results

are intuitive: Better throughput comes with a lower tail latency. However, there are a few

configurations that are worth analyzing.

First, MUTEXEE’s unfairness appears in the RD configuration of HamsterDB, resulting in almost

20x higher tail latency than MUTEX, but also in 46% higher TPP. Second, TICKET has high tail

latencies on all oversubscribed executions as a result of low performance.

Finally, MUTEXEE on SQLite achieves better throughput and lower power than MUTEX, without

increasing tail latencies. TPC-C transactions on SQLite have latencies in the scale of tens

of ms. Each transaction consists of multiple accesses to shared data protected by various

locks. MUTEXEE does indeed increase the tail latency of individual locks, but these latencies

are in the scale of hundreds of μs and do not appear in the transaction latencies. However,

0.
01

0.
04 0.

19

0.
87

0.
89 1.

05 1.
22

1.
23 1.

62

0.
64 0.

86 1.
34

0.
91

0.
94 1.
04

0.
96

0.
76

0.
70

0.
65

0.0
0.5
1.0
1.5
2.0
2.5

W
T

W
T/

RD RD SE
T

SE
T/

GE
T

GE
T

M
EM SS

D

16
 C

O
N

32
 C

O
N

64
 C

O
N

HamsterDB Memcached MySQL SQLite

99
th

 La
te

nc
y

(N
or

m
al

ize
d)

MUTEX TICKET MUTEXEE

18
.9

6

22
.0

8

5.
94

Figure 5.15 – Normalized (to MUTEX) tail latency of various systems. (Lower is better)

75

Chapter 5. An Energy Efficiency Analysis of Locking on Multi-Cores

this low-level unfairness brings huge contention reductions. For instance, on 64 CON, the

SQLite server with MUTEX puts threads to sleep for 472 μs on average, compared to 913 μs

with MUTEXEE. The result is that with MUTEX, SQLite spends more than 40% of the CPU time

on the ����������	
�� function of the kernel due to contention on ����� calls. In contrast,

MUTEXEE spends just 4% of the time on kernel locks, and 21% on the user-space lock functions.

Implications. Changing MUTEX in six modern systems results in 33% higher energy effi-

ciency, driven by a 31% increase in throughput on average. Clearly, the POLY conjecture (i.e.,

throughput and energy efficiency go hand in hand in locks) holds in software systems and

implies that we can continue business as usual: To optimize a system for energy efficiency, we

can still optimize the system’s locks for throughput.

Additionally, we show that MUTEX locks must be redesigned to take the latency overheads of

����� calls into account. MUTEXEE, our optimized implementation of MUTEX, achieves 26%

higher throughput and 28% better energy efficiency than MUTEX. Furthermore, the unfairness

of MUTEXEE might not be a major issue in real systems: MUTEXEE can lead to high tail latencies

only under extreme contention scenarios, that must be avoided in well engineered systems.

In conclusion, we see that optimizing lock-based synchronization is a good candidate for

improving the energy efficiency of real systems. We can modify the locks with minimal effort,

without affecting the behavior of other system components, and, more importantly, without

degrading throughput.

5.7 Conclusions

In this chapter, we thoroughly analyzed the energy/performance trade-offs in lock-based

synchronization in order to improve the energy efficiency of systems. Our results support the

POLY conjecture: Energy efficiency and throughput go hand in hand in lock algorithms. POLY

has important software and hardware ramifications.

For software, POLY conveys the ability to improve the energy efficiency of systems in an simple

and systematic way, without hindering throughput. We indeed improved the energy efficiency

of six popular software systems by 33% on average, driven by a 31% increase in throughput,

These improvements are mainly due to MUTEXEE, our redesigned version of pthread mutex

lock, that builds on the results of our analysis.

We considered the energy-efficiency trade-offs of lock-based synchronization. Nevertheless,

most of our results directly or indirectly apply to other forms of synchronization. In particular,

any type of waiting can be either implemented with sleeping (via �����, signals, interprocess

interrupts, etc.) or busy waiting. For instance, thread barriers, conditional variables, and

reader-writer locks essentially offer the same trade-offs as mutually exclusive locks. Similarly,

lock-free synchronization frequently resolves to backoff techniques, which again falls under

the same performance/energy trade-off described in this chapter.

76

5.7. Conclusions

For hardware, POLY highlights the lack of adequate tools for reducing the power consumption

of synchronization, without significantly degrading throughput. We performed our analysis

on two modern Intel platforms that are representative of a large portion of the processors used

nowadays. We argue that our results apply in most multi-core processors, because without

explicit hardware support for synchronization, the power behavior of both busy waiting and

sleeping will be similar regardless of the underlying hardware.

Overall, similarly to Chapter 4, we conclude that multi-core hardware largely dictates the

energy efficiency of (lock-based) synchronization. Current hardware only enables developers

to optimize the throughput of synchronization: As we showed, any effort to reduce power con-

sumption is either futile or significantly degrades throughput. Consequently, hardware (i) does

not allow for power-related optimizations, and (ii) dictates the scalability of synchronization

in terms of throughput and latency (per Chapter 4).

77

Part III

Scaling Synchronization

In Part II, we empirically showed that scalability of synchronization, in terms of
throughput, latency, and energy, is mainly dictated by the underlying hardware. This
finding entails that the performance portability of concurrent software across plat-
forms is significantly hampered by synchronization: Software developers have to
fine-tune synchronization for the specifics of the underlying multi-core. In this part,
we show that it is still feasible to design portable and scalable concurrent software by
hiding the intricacies of multi-cores behind design patterns and abstractions.

6 Designing Concurrent Data Structures
with OPTIK1

An effective approach to abstracting synchronization away from software developers is to

encapsulate data sharing with concurrent data structures. Designing and implementing fast,

scalable, and portable concurrent data structures is far from trivial. This chapter introduces

OPTIK, a new practical design pattern for designing and implementing portable and scalable

concurrent data structures. OPTIK relies on the commonly-used technique of version numbers

for detecting conflicting concurrent operations. We illustrate the power of our OPTIK pattern

and its implementation by introducing five new algorithms and by optimizing four state-of-

the-art algorithms for linked lists, skip lists, hash tables, and queues. Our results show that

concurrent data structures built using OPTIK are more scalable than the state of the art.

6.1 Introduction

Building concurrent data structures (CDSs) in a pessimistic manner is easy, but typically does

not lead to good performance. For example, one can design a linked list protected by a global

lock in a few minutes, but inevitably, this list will be non-scalable. Accordingly, optimistic

concurrency is deployed in every state-of-the-art data structure algorithm (e.g., lists [93, 105],

hash tables [151, 196], trees [30, 161], queues [153, 159]). With optimistic concurrency, op-

erations perform some non-synchronized work, before employing synchronization (i) for

validating this optimistic work, and (ii) for possibly modifying the data structure. Perform-

ing non-synchronized work allows concurrent threads to execute truly in parallel (modern

hardware is very good at executing read-only code).

Nevertheless, optimistic concurrency additionally introduces the need for validating the non-

synchronized parts of the operation in order to detect conflicting concurrent operations.

Validating this optimistic work is far from being trivial. Every new scalable CDS algorithm

introduces a new neat technique for efficiently handling validation. Concrete examples are

1 Appeared in: (i) Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. “Asynchronized concurrency: The
secret to scaling concurrent search data structures.” ASPLOS 2015, (ii) Rachid Guerraoui, and Vasileios Trigonakis.
“Optimistic concurrency with OPTIK.” PPoPP 2016.

81

Chapter 6. Designing Concurrent Data Structures with OPTIK

Figure 6.1 – The OPTIK pattern (high-level view).

the linked list by Tim Harris [93] that marks the least significant bit of a pointer to indicate

deletions, as well as the binary search tree by Natarajan et al. [161] that marks edges instead of

nodes to minimize the number of stores. These techniques are great, but are very specific to

the corresponding data structure and are thus hardly generalizable to other structures.

We begin this chapter by showcasing the complexities of designing lock-based and lock-free

optimistic concurrent data structures. In detail, we use the results of Chapter 4 and the ideas

that we develop for asynchronized concurrency [51] to design CLHT, a concurrent hash table

that places each hash-table bucket on a single cache line and performs in-place updates so

that operations complete with at most one cache-line transfer. CLHT outperforms state-of-

the-art hash tables in virtually every scenario. CLHT showcases that (i) we can use the results

of Part II of this thesis to design scalable synchronization, and (ii) that ad-hoc validation in

optimistic concurrency is indeed a very difficult problem.

Ideally, general-purpose design patterns could assist developers in creating efficient CDSs.

Design patterns are commonplace in software engineering as they allow for easy and efficient

solutions to recurring problems. In concurrent programming, commonly-used software

constructs such as locks, semaphores, monitors, and thread pools can be viewed as design

patterns. However, these patterns are very low level. Higher-level patterns are required

for systematically designing and implementing efficient CDSs. Of course, as we discuss in

Chapter 3, there are various techniques for simplifying the design of optimistic CDSs that could

be viewed as high-level design patterns. However, all existing patterns trade programming

simplicity off for performance.

In this chapter, we introduce OPTIK,2 a new pattern for devising and implementing fast and

scalable concurrent data structures. OPTIK relies on version numbers for detecting concur-

rency. A version number is coupled with a lock that protects a set of data (e.g., one list node).

The version number has the same granularity as the lock, thus we can devise both coarse-

and fine-grained algorithms with OPTIK. An optimistic operation, such as an insertion in a

hash-table bucket, uses the version number in the following steps (Figure 6.1): (i) it locally

stores the current value of the version in order to later use it for validation, (ii) it performs some

optimistic, non-synchronized work, (iii) it grabs the corresponding lock, (iv) it validates that

the version number has not changed, (v-a) if validation fails, it releases the lock and restarts

2 The name OPTIK stands for “optimistic concurrency with ticket locks,” as our first implementation of OPTIK locks
builds on top of ticket locks [50, 51].

82

6.1. Introduction

Figure 6.2 – The OPTIK pattern implemented with OPTIK locks.

the operation, otherwise (v-b) it performs the critical-section work, and then (vi) it increments

the version number to indicate to other threads that the protected data has been modified,

and finally, (vii) it releases the lock.

Intuitively, the validation in step (v) can fail because the version number has been incremented

between steps (i) and (iii). This alteration indicates that a concurrent thread completed a

modification on the protected data, rendering the optimistically accessed data inconsistent.

Naturally, the reader might wonder about (a) the genuineness of OPTIK, and (b) why it has

not been recognized in the past as a pattern for designing CDSs. Version numbers have been

extensively used in databases [123], STMs [47, 55], and distributed systems [4, 59]. However,

we are the first to recognize that the underlying idea can be expressed in a general way that

offers a fast technique for detecting concurrency in CDSs. We argue that the main reason why

the OPTIK pattern has not appeared in the past is the lack of an efficient implementation.

Consider the steps taken in Figure 6.1. To detect concurrency with versions, we must include

the “overhead steps” (i), (iv), and (vi). To make things even worse, if validation in step (iv) fails,

the thread has acquired the lock, possibly after contending for it, just to fail the validation and

restart. To the best of our knowledge, most existing state-of-the-art lock-based algorithms,

such as the linked-list by Heller et al. [97] and the skip list by Herlihy et al. [105], include

exclusively the overhead for step (iv), namely for validating that the optimistic results are still

consistent. Consequently, implementing the OPTIK pattern as described above, would not

only include the same overheads as existing algorithms, but also the ones for keeping track of

and incrementing the version numbers.

We solve the aforementioned limitations of the OPTIK pattern by introducing the OPTIK-lock ab-

straction that merges locking with validation. OPTIK locks rely on the simple observation that

existing lock algorithms, such as ticket locks, employ version numbers in their implementation.

Accordingly, we design the OPTIK-lock abstraction that offers an extended interface to tradi-

tional locks. In particular, OPTIK locks offer the

function that acquires the lock iff (a) the is free, and (b) the current version in the

is the same as the version. We concretely implement the OPTIK-lock abstraction on

top of ticket and versioned locks. As the unlock function of ticket locks simply increments the

version, we can also merge unlocking with incrementing the version number.

Accordingly, as we show in this chapter, we can efficiently implement the OPTIK pattern using

OPTIK locks (Figure 6.2). The resulting implementation guarantees that if the lock is acquired,

83

Chapter 6. Designing Concurrent Data Structures with OPTIK

then the critical section will be performed. Therefore, we are able to reduce contention behind

the lock and to avoid the wasted work of waiting for the lock only to fail the validation. Locking

and validation are performed with a single compare-and-swap. In a sense, OPTIK locks bring

lock-based algorithms closer to their lock-free counterparts, where validation and the actual

modifications are performed in single steps with atomic operations.

We illustrate the effectiveness of OPTIK by (a) designing new algorithms and by (b) optimizing

existing state-of-the-art ones for linked lists, hash tables, skip lists, and queues. In particular,

we design two new linked list algorithms, one based on global and one on fine-grained locks,

and we introduce the concept of node caching for speeding up list traversals. Based on these

lists, we design two corresponding hash tables. Additionally, we design a new concurrent

array map and use it in a hash table, and we employ OPTIK locks in optimizing existing

hash tables. Furthermore, we use OPTIK locks to simplify validation in the optimistic skip-

list algorithm [105] and we design a novel, simple skip-list algorithm based on the OPTIK

pattern. Finally, we design three variants of the classic Michael-Scott queues [153] and we

also introduce the concept of victim queues for reducing enqueue contention. Our OPTIK-lock

library, together with the data structures we design and optimize with OPTIK are available at

�����������	�
������
�	����
�.

The main contributions of this chapter are as follows:

• We identify the OPTIK design pattern that can be used to easily design and optimize

concurrent data structures.

• We introduce OPTIK locks that offer an efficient implementation of the OPTIK pattern.

• We design six new highly-efficient data-structure algorithms (CLHT and five based on

OPTIK) and optimize four existing state-of-the-art algorithms.

We focus in this chapter on using OPTIK in CDSs. Nevertheless, we could imagine using OPTIK,

instead of the classic lock interface, wherever a lock can be used. The only requirement is

that the critical section must include a read-only prefix that can be optimistically performed

before acquiring and validating the OPTIK lock. Of course, we do not claim that OPTIK is a silver

bullet for all concurrency problems, but rather that it is an efficient design pattern for various

use cases. For example, OPTIK locks are not very suitable for protecting large chunks of data

that can be independently updated (e.g., the next pointers of a node of a large skip list). In

these cases, OPTIK can lead to false validation failures due to updates on unrelated data (e.g.,

Section 6.5.3). Additionally, an OPTIK lock comprises a single memory location, thus, as every

lock algorithm, it can become a scalability bottleneck if heavily stressed (e.g., Section 6.5.5).

The rest of the chapter is organized as follows. In Section 6.2, we introduce a new concurrent

hash table and illustrate the difficulties correlated to optimistic concurrency in data structures.

We describe the OPTIK pattern/lock and use them in two concrete examples in Sections 6.3

and 6.4, respectively. We then illustrate how to use OPTIK in designing and optimizing various

CDSs in Section 6.5. We conclude the chapter in Section 6.6.

84

6.2. Optimistic Concurrency in Cache-Line Hash Table (CLHT)

6.2 Optimistic Concurrency in Cache-Line Hash Table (CLHT)

In Part II, we clearly show that scalability of synchronization is impacted by the underlying

hardware. This result raises the immediate question of how can we design portably scalable

concurrent software. Asynchronized concurrency (ASCY) [51] answers this question for con-

current search data structures (CSDSs), such as lists and hash tables. ASCY comprises four

guidelines on how to design CSDSs that are portably scalable (i.e., scale across workloads,

performance metrics, and hardware platforms). The four ASCY guidelines are as follows:

ASCY1: The search operation should not involve any waiting, retries, or stores.

ASCY2: The parse phase of an update operation3 should not perform any stores other than

for cleaning-up purposes and should not involve any waiting, or retries.

ASCY3: An update operation whose parse is unsuccessful (i.e., the element not found in

case of a removal, the element already present in case of an insertion) should not perform

any stores, besides those used for cleaning-up in the parse phase.

ASCY4: The number and region of memory stores in a successful update should be close to

those of a standard sequential implementation.

Essentially, ASCY suggests that CSDS designs must resemble their sequential counterparts in

order to reduce synchronization to the minimum. In this section, we employ ASCY, as well as

the results of Chapter 4, on the design of a new hash table algorithm, namely CLHT. For brevity,

we only present the high-level ideas of CLHT and refer the reader to [50] for further details.

CLHT capture the basic idea behind the results of Chapter 4: Cache-line transfers degrade

scalability, hence avoid cache-line transfers as much as possible. To this end, CLHT uses cache-

line-sized buckets and, of course, follows the four ASCY patterns. As a cache-line block is the

granularity of cache-coherence protocols, CLHT ensures that most operations are completed

with at most one cache-line transfer. CLHT uses the 8 words of a cache line as:

����������� �1 �2 �3 	1 	2 	3 ��
�

The first word is used for concurrency-control; the next six are the key/value pairs; the last is

a pointer that can be used to link buckets. Updates synchronize based on the �����������

word and do in-place modifications of the key/value pairs of the bucket. To support in-place

updates, the basic idea behind CLHT is that a search/parse does not simply traverse the keys,

but obtains an atomic snapshot of each key/value pair:

1 ����� ��� � ��	
�� �
�������

2 ������ ���	
�� �

����� ��
�� �� ��	
�� �
������ �� ����

3 �� �����	 �������� ��
�������� ��

For an atomic snapshot to be possible, the memory allocator of the values must guarantee

that the same address cannot appear twice during the lifespan of an operation. Additionally,

the implementation has to handle possible compiler and CPU re-orderings (not shown in the

3 The parse phase of an update operation refers to the traversal of the set towards the vicinity of the target node.

85

Chapter 6. Designing Concurrent Data Structures with OPTIK

pseudo-code). CLHT supports operations with keys up to 64-bits. To support longer keys, the

64-bit keys in CLHT can be used as a first filter. The operation has to compare the full key, that

is stored separately, only if there is a match with the 64-bit filter. This technique has already

been shown to work well in practice [67].

We design and implement two variants of CLHT, lock-based (CLHT-LB) and lock-free (CLHT-LF).

CLHT-LB. The lock-based variant of CLHT uses the ����������� word as a lock. Search

operations traverse the key/value pairs and return the value if a match is found. Updates

(i.e., insertions and deletions) first perform a search to check whether the operation is at all

feasible (recall ASCY3) and if so, they grab the lock, recheck if the operation is feasible, apply

the update, and release the lock. If there is not enough space for an insertion, the operation

either links a new bucket by using the ���	 pointer, or resizes the hash table.

CLHT-LF. The lock-free variant of CLHT is more elaborate than the lock-based, because

key/value-pair insertions have to appear atomic. With locks, we implement atomicity by

allowing for a single concurrent writer per bucket. However, without locks, several updates

can concurrently alter the same key or value. Even worse, if concurrent insertions on the same

bucket do not synchronize, there is no way to avoid duplicate keys on different slots.

In order to solve these complications, we devise the
���

�	�	 object.
���

�	�	 handles

a word (8 bytes) as an array of bytes (map) with a version number:

1 ������������������ �����	
��� �

2 �
������ ����

�� �� � �������
������ ��

3 �
����� ��� ���� �� �� �����
� � ����� ��

4 ��

Naturally,
���

�	�	 occupies the ����������� word of a bucket.
���

�	�	 provides an

interface to atomically get or set the value of an index in the map. The ���
��� number is used

to enable sets/gets to do atomic changes with respect to the other spots in the map. In short,

atomicity is implemented by reading the value of the
���

�	�	 object before the atomic

section and by using the version number to get/set the target index in the map using a CAS on

the whole object. For instance, if another concurrent insertion has already been completed,

the current operation will fail the CAS, because the version number will be different. We then

use the fields of the map as flags that indicate whether a given key/value pair is valid, invalid,

or is being inserted. Note that, due to the 32-bit long version number, if a thread reads the

version number and then “sleeps” for 232 lock acquisitions, the version number could overflow,

resulting in a potentially incorrect validation.

Evaluation. We compare CLHT to a concurrent hash table comprising per-bucket pointer

reversal lists by Pugh [183] (pugh), one of the best performing hash tables (as we showed

in [51]). In contrast to the linked-based hash tables, CLHT performs in-place updates, thus

avoiding memory allocation and garbage collection of hash-table nodes. Nevertheless, for

fairness, we use memory allocated values.

86

6.3. OPTIK

0

300

600
900

1200
1500

0 1 20 100 0 1 20 100 0 1 20 100 0 1 20 100 0 1 20 100

Ivy Opteron Westmere Tilera SPART-T44Th
ro

ug
hp

ut
 (M

op
s/

s)

Update rate (%)

pugh clht-lb clht-lf

Figure 6.3 – CLHT with 4096 elements on 20 threads for various update rates.

Figure 6.3 includes the results. Noticeably, clht-lb and clht-lf outperform pugh by 23% and 13%

on average, respectively. CLHT’s design significantly reduces the number of cache-line transfers.

For example, on the Opteron for 20% updates, clht-lb requires 4.06 cycles per instruction,

clht-lf 4.24, while pugh operates with 6.57. Interestingly, clht-lb is consistently better than

clht-lf on 20 threads. On more threads (e.g., 40), however, clht-lf often outperforms clht-lb.

6.2.1 Discussion

The CLHT algorithm clearly relies on elaborate, context specific concurrency/validation tech-

niques: (i) bucket traversals proceed by acquiring atomic snapshots of each key/value pair,

(ii) CLHT-LB traverses the bucket twice in order to validate the optimistic results after locking,

(iii) CLHT-LF relies on the ���������� object for concurrency control. Evidently, these tech-

niques combined together deliver a fast and scalable concurrent hash table. However, the

aforementioned techniques are quite specific to the context of CLHT and cannot be easily gen-

eralized and reused in other algorithms. In the rest of this chapter, we detail the OPTIK pattern,

which offers a generic approach to designing state-of-the-art concurrent data structures.

6.3 OPTIK

In this section, we detail the OPTIK pattern, we present the OPTIK-lock abstraction, and we

describe two concrete implementations of the OPTIK-lock abstraction. We also then dis-

cuss practical considerations regarding implementing and using OPTIK, such as lock nesting,

memory barriers, and memory reclamation.

6.3.1 The OPTIK Pattern

As we point out in Section 6.1, the OPTIK pattern relies on version numbers to detect potentially

conflicting concurrency (see Figure 6.1). As Figure 6.4 shows, this version number is coupled

with a lock and shares the same granularity as that lock (i.e., it protects the same data). The

version number is incremented upon every successful critical section that modifies the shared

87

Chapter 6. Designing Concurrent Data Structures with OPTIK

Figure 6.4 – The basic building block of the OPTIK pattern.

protected state. Thus, intuitively, we can detect whether there were concurrent modifications

on the protected state if we observe a version change.

Accordingly, with OPTIK we can implement some sort of a transaction (we discuss this re-

semblance with transactions below), where we read the version number before starting the

optimistic part of the transaction. Then, whenever we want to modify the protected data, we

acquire the lock and check whether the version number is still the same. If that is the case,

then no other thread could have completed a concurrent operation. Otherwise, we know that

at least one thread has concurrently committed a modification.

Because the version number has the same granularity as the corresponding lock, we might have

false conflicts. For example, in a linked list protected by a global lock (see Section 6.5.1), every

committed modification conflicts with any concurrent one, although they might operate on

completely unrelated parts of the list. In practice, in most cases we can control the granularity

of the lock, hence the granularity of the version number.4

The OPTIK pattern has three main strengths. First, it offers a concrete way of “thinking” about

optimistic concurrency, similar to STMs. With an STM, the designer makes use of transac-

tions, but then it is up to the STM runtime to optimistically execute and coordinate these

transactions. In contrast, with OPTIK, the designer must explicitly delimit the optimistic and

the synchronized parts of an operation. Still, she does not need to rely on ad-hoc techniques,

such as marking pointers, for validating the optimistic results. Second, the OPTIK pattern

has a concrete, fast implementation based on OPTIK locks. If the pattern is appropriately

employed, the resulting CDS will be efficient and scalable (as we show in Section 6.5). Third,

in our experience (see Sections 6.4 and 6.5), OPTIK-based CDSs are simpler and easier to prove

correct than the state of the art. In many OPTIK-based CDSs, the linearization point of an

insertion or deletion is the actual write that makes a node physically linked or unlinked.

OPTIK vs. STM Transactions. The OPTIK pattern can be viewed as a transaction. OPTIK

shares some common characteristics with traditional STM transactions, especially those that

defer synchronization to the commit phase (e.g., [47, 55, 69]). First, they are both explicitly

delimited (i.e., we know where the transaction begins and where it ends). Second, they both

include an optimistic phase. Finally, the optimistic phase is followed by a validation/commit

phase where conflicting concurrency is typically detected. If there are conflicts, then both

OPTIK and STM transactions are restarted, otherwise they commit their modifications. For

4 Skip lists are somewhat of an exception to this rule (see Section 6.5.3).

88

6.3. OPTIK

instance, OPTIK transactions are very similar to the ones of NOrec STM [47]. NOrec employs a

global lock that is further used as a version number for validation, in a way similar to OPTIK.

However, in contrast with STMs, OPTIK does not offer isolation or atomicity guarantees. STM

transactions are typically opaque [88] (i.e., they are serializable and they disallow even non-

committed transactions from accessing inconsistent state). OPTIK allows transactions to

access the intermediate results of other ongoing transactions. Additionally, STM transactions

typically provide all-or-nothing semantics (i.e., atomicity). With OPTIK, a transaction can

partially complete and then restart. The atomicity control is fully up to the programmer.

Precisely because of this lack of guarantees, OPTIK can operate with zero instrumentation

overhead and with minimal synchronization.

6.3.2 The OPTIK-Lock Abstraction

The OPTIK-lock abstraction merges locking with version-number validation in a single atomic

step.5 By doing so, we can implement the OPTIK pattern without the extravagant overhead

of locking and then failing the validation (compare Figures 6.1 and 6.2). OPTIK locks extend

the traditional lock interface with various functions. The most important ones are listed and

explained below:

• ���������	�
�����
����	�
�� �������� [non-blocking]:

acquires the 	�
� iff the 	�
� is free and the version of the 	�
� is the same as in

�������. Returns a boolean indicating whether the 	�
� was acquired.

• ������	�
�����
����	�
�� �������� [blocking]:

acquires the 	�
� and returns a boolean that shows whether the version that was

acquired is the same as in �������.

• ��������	�
��	�
�� [non-blocking]:

increments the 	�
�’s version number and releases the 	�
�.

• �������������	�
�� [non-blocking]:

reverts the version of the 	�
� to the one before acquiring the 	�
�. It can be used to

release the 	�
� when no modifications were performed in the critical section.

• �������������
����	�
�� [non-blocking]:

returns the current version of the 	�
�.

• �������������
���������	�
�� [blocking]:

waits until the 	�
� is free and returns its current free version.

• �������
�
�������
������� ��� [non-blocking]:

returns a boolean on whether versions �� and �� are the same.

• �������
�	�
������ [non-blocking]:

returns a boolean on whether version � is locked.
5 Of course, it is up to the corresponding implementation of the abstraction to guarantee this single-step locking

and validation.

89

Chapter 6. Designing Concurrent Data Structures with OPTIK

We provide two implementations of the OPTIK-lock abstraction, one on top of ticket and one on

top of versioned locks. For brevity, we detail the versioned-lock-based implementation (as it is

simpler than the one on top of ticket locks) and discuss the additional functionality that OPTIK

locks on top of ticket locks offer. In principle, the OPTIK-lock abstraction can be implemented

on top of more lock algorithms. Nevertheless, ���������	�
�����
��� is in the heart of the

OPTIK pattern, thus we argue that every OPTIK-lock implementation must provide atomic (i.e.,

single compare-and-swap) locking and validation. Such an implementation requires base lock

algorithms which incorporate version numbers.

OPTIK Locks Using Versioned Locks

An OPTIK lock (�������) is just an 8-byte unsigned counter (�������� in C). An odd value

for the counter indicates that the lock is locked, while an even value means unlocked. The

acquire function tries, until successful, to compare-and-swap (CAS) the current (even) value

v with v +1. The release function simply increments the counter value. Figure 6.5 includes

the concrete implementation of the OPTIK abstraction on top of versioned locks. We briefly

discuss this implementation.

First, ���������	�
�����
���, the most important OPTIK function, returns false (lines 6-7)

if the lock is already locked or if the current lock version is not the same as the target version

(�������). The former check is necessary for correctness, otherwise the operation might try to

erroneously CAS an odd value to an even one. The latter check is an optimization for avoiding

unnecessary CAS invocations.

Similarly, ������	�
�����
��� spins while the lock is locked and the tries to acquire the

lock with a CAS. The unlock and revert functions increment and decrement the lock value,

respectively, to indicate that the lock is now free and that a modification was (not) performed.

The �������
�	�
��� function simply checks whether the given version is an odd number.

The �������
��� and �������
�������� functions return the current version of the lock.

The latter spins while the lock is locked and only then returns the version number. Finally,

�������
�
�������
��� compares whether two version numbers are equivalent.

OPTIK Locks Using Ticket Locks

Ticket locks have a number of very unique properties. First, although they typically occupy

just 8-bytes:

������������������ t i c k e t _ t { �����	
������	
������	
� t i c k e t , current ; } ;

they are fair. To acquire the lock, the thread grabs a ticket � with an atomic fetch-and-

increment and waits until ���	�
���
������. To unlock, the owner simply increments

the lock’s
������ field.

90

6.3. OPTIK

1 ��������������������� ��	
��	���	
��	���	
��	� ��
�������
�������
����� ��������������������� ;
2 �������
�����
�����
� OPTIK_INIT 0
3 �������
�����
�����
� OPTIK_LOCKED 0x1LL ����� �
	��� �� 	�����

5 �
��
��
� optik_trylock_version (���������������������* l , ��������������������� targetv) {
6 ������ (optik_is_locked (targetv) | | * l != targetv)
7 �����
�����
�����
 f a l s e ;
8 �����
�����
�����
 CAS(l , targetv , targetv + 1) == targetv ;
9 }

11 �
��
��
� optik_lock_version (���������������������* lock , ��������������������� targetv) {
12 ��������������������� ol_cur ;
13 ������ {
14 ������ {
15 ol_cur = * lock ;
16 } ���	����	����	� (optik_is_locked (ol_cur)) ;
17 } ���	����	����	� (CAS(lock , ol_cur , ol_cur + 1) != ol_cur) ;
18 �����
�����
�����
 ol_cur == targetv ;
19 }

21 ������������ optik_unlock (���������������������* lock) {
22 * lock ++; �� ������	�
��

23 }

25 ������������ optik_revert (���������������������* lock) {
26 * lock−−; �� ������	�
��

27 }

29 �
��
��
� optik_is_locked (��������������������� v) {
30 �����
�����
�����
 (v & OPTIK_LOCKED) ;
31 }

33 ��������������������� optik_get_version (���������������������* lock) {
34 �����
�����
�����
 * lock ; �� ����
������

35 }

37 ��������������������� optik_get_version_wait (���������������������* lock) {
38 ������ {
39 ��������������������� olv = * lock ; �� ����
������

40 ������ (! optik_is_locked (olv))
41 �����
�����
�����
 olv ;
42 } ���	����	����	� (1) ;
43 }

45 �
��
��
� optik_is_same_version (��������������������� v1 , ��������������������� v2) {
46 �����
�����
�����
 v1 == v2 ;
47 }

Figure 6.5 – Code for OPTIK locks on top of versioned locks.

91

Chapter 6. Designing Concurrent Data Structures with OPTIK

Additionally, as we explain in Section 4.4.3, ticket locks show the amount of queuing be-

hind the lock. We can use this information to implement efficient backoff schemes and

to take decisions depending on the levels of contention (see Section 6.5.5 for an example).

Based on these properties of ticket locks, OPTIK locks offer the ��������	�
����� and the

������
���[��������]�������� extensions. The former returns the number of threads wait-

ing for the lock, while the latter implements waiting with backoff that is proportional to the

distance of the thread from acquiring the lock.

A shortcoming of OPTIK on top of ticket locks compared to the implementation over versioned

locks is the 32-bits long version number of the former. If a thread stores the version number

and then “sleeps” for 232 lock acquisitions, then the version number could overflow, resulting

in a potentially incorrect validation.6 In contrast, OPTIK locks on top of versioned locks require

263 acquisitions while the thread is sleeping (two increments per acquisition).

The OPTIK Pattern with and without OPTIK Locks

We illustrate the necessity of OPTIK locks with an experiment. We compare the throughput of

a single OPTIK lock with the throughput of implementing version validation without OPTIK

locks. As we explain earlier, to validate the version number without OPTIK locks the thread

must always acquire the lock. We implement this behavior using 8 bytes; 4 bytes for a test-and-

test-and-set (TTAS) lock and 4 bytes for the version number. The version number is validated

and incremented while holding the lock.

 0

 2

 4

 6

 8

 1 10 20 30 40 50 60

T
hr

ou
gh

pu
t (

M
op

s/
s)

Threads

 0

 12

 24

 36

 48

 1 10 20 30 40 50 60

C

A
S

 p
er

 v
al

id
at

io
n

Threads

TTAS optik-ticket optik-versioned

Figure 6.6 – Locking and validation with and without OPTIK locks.

Figure 6.6 depicts the validated lock-acquisition throughput with and without OPTIK locks,

as well as the average number of CAS operations that are executed per successful validation

on Ivy—an Intel Xeon server (see Section 2.1 for platform details and Section 6.5 for our

experimental settings). The two OPTIK-lock implementations behave identically and deliver

significantly higher throughput than validating with normal locking. OPTIK locks are more

than 10 times faster than TTAS on average, explained by the number of CAS invocations per

validation that grows significantly with TTAS due to lock contention.7 As we explain earlier,

without OPTIK locks the threads might wait behind the lock to later fail the validation.

6 If the lock delivers 100M acquires/s, which is almost impossible on modern hardware (see Figure 4.3), the
thread must sleep for ∼40s for the overflow to happen.

7 If we use a test-and-set lock instead of a TTAS, the number of CAS per validation “explodes.”

92

6.3. OPTIK

6.3.3 Practical Considerations

OPTIK with Transactional Memory. OPTIK locks can be implemented using TM in a straight-

forward manner. In brief, ���������	�
�����
��� can start a transaction and check if the

version has been modified in order to possibly restart the operation. ��������	�
� needs to

increment the version number and commit the transaction. Given that ��������	�
� writes

on the lock, we do not expect TM to bring significant benefits to OPTIK.

OPTIK with Lock Nesting. The OPTIK pattern offers the “read then lock-validate” functionality

for a single OPTIK lock. Lock nesting (i.e., acquiring and holding more than one lock at a time)

requires acquiring the locks one after the other. Therefore, although the validation of an earlier

lock succeeds, the validation of a later one might fail. For example, it might happen that:

���������	�
�����
����	1� �1� → �����

���������	�
�����
����	2� �2� → ��	
�.

Depending on the semantics of the algorithm, failing the second ���������	�
�����
���

can have different outcomes. For example, on the delete operation of a linked list (see Sec-

tion 6.4.2 for details), failing the second trylock results in restarting the whole operation after

reverting the first lock. On our novel OPTIK-based skip-list algorithm (see Section 6.5.3), we

perform incremental insertions: Once the OPTIK lock for a skip-list level is acquired, the new

node is linked to that level. If a subsequent trylock fails, the operation is restarted, but the

locks for the already inserted levels are not reacquired.

OPTIK and Memory Fences. As we show in Figure 6.5, implementing OPTIK locks requires

certain memory ordering guarantees when loading and storing on the shared word of the

lock. In short, loading the version number (e.g., in �������������
���) requires acquire

semantics: No other memory access of the same thread can be reordered before this load.

Similarly, storing on the memory of the lock (e.g., in ������������) requires release semantics:

No other memory access of the same thread can be reordered after this store. Notice that on

��� architectures the implementation of these memory-ordering semantics does not require

any memory fences.

OPTIK and Memory Reclamation. OPTIK decouples concurrency control from memory recla-

mation. Accordingly, OPTIK can be used with practically any memory-reclamation scheme,

such as hazard pointers [152], RCU [146], quiescent states [93, 95]. Our concurrent data

structure implementations with OPTIK use ssmem,8 a simple memory allocator with quiescent-

based memory reclamation.

8 ssmem is available at ������������	
��
����������������.

93

Chapter 6. Designing Concurrent Data Structures with OPTIK

6.4 Concrete OPTIK Examples

We illustrate in detail how to use the OPTIK pattern on two examples: (i) a map structure

(abstract data type), and (ii) a novel concurrent linked-list algorithm.

6.4.1 OPTIK-Based Array Map

A map contains key-value pairs and exports the three main operations of search data structures,

namely search, insert, and delete (see Section 2.3). We implement the map as a fixed-sized

array, hence, insertions that do not find an empty spot return false (we do not employ array

resizing for simplicity). In Section 6.5.2, we use our map design in a concurrent hash table.

We first briefly describe a lock-based array map that protects every operation with a global

lock and then show how to optimize this array map using the OPTIK pattern.

Lock-Based Map. The design of a pessimistic, lock-based array map is straightforward: All

three operations grab the lock and then traverse the array. If search or delete operations

find the target key while traversing, they complete the operation (i.e., read the value of the

key-value pair and, for deletions only, delete the key), unlock the lock, and return. If insertions

find the key while traversing, they release the lock and return false. If they do not, they insert

the new key-value pair in a free spot (if any), release the lock, and return true. If no spot is

empty, insertions return false.

OPTIK-Based Map. We use the OPTIK pattern/lock to introduce optimism in the pessimistic

lock-based map. Intuitively, search operations, as well as updates that return false, do not

modify the data structure. Therefore, ideally, they must complete without locking. Of course,

the actual insertions or deletions in the map have to synchronize for correctness.

The OPTIK pattern splits an operation into three main phases: (i) optimistic, non-synchronized

(read-only) work, (ii) validation and locking, and (iii) pessimistic, synchronized (write-mostly)

work. We transform the map operations to follow these phases. Figure 6.6 contains the code

for the concurrent OPTIK-based array map. In what follows, we describe the code step by step.

Delete. The delete operation (Figure 6.6(a)) follows the three phases of OPTIK. It first stores

the current OPTIK version number (line 9) and traverses the array without synchronization

(lines 10-18), looking for the target key (line 11). If the key is not found in the array, it just

returns ���� without ever locking (line 19). If the key is found in line 11, then the operation

tries to acquire the lock using �����	�
���
�	��
���� with the version that was earlier

stored. If the validation is successful, it deletes the key, releases the lock, and returns the value

(lines 13-16). If �����	�
���
�	��
���� fails, the operation is restarted (line 12).

94

6.4. Concrete OPTIK Examples

Insert. Insertions (Figure 6.6(b)) follow very similar logic with deletions. If the key is found

while traversing the array, the operation returns false without ever acquiring the lock. If not,

it tries to acquire the lock with ���������	�
�����
��� and, if successful, it performs the

insertion (if there is a free array spot).

1 ��������������������� ���	
����	
����	
� { ��������������������� ���	
����	
����	
� {
2 ��������������� key ; ����
��������
��������
����* array ;
3
����
����
���� val ; ������������������ s i z e ;
4 } ����
��������
��������
���� ; ���������������������* lock ;
5 } ��������������� ;

7
����
����
���� optik_map_delete (���������������* map, ��������������� key) {
8 ��������������������� :
9 ��������������������� vn = optik_get_version (map−>lock) ;

10 ��������� (��������� i = 0 ; i < map−>s i z e ; i ++) {
11 ������ (map−>array [i] . key == key) {
12 ������ (! optik_trylock_version (map−>lock , vn)) { ������������ ��������������������� ; }
13 map−>array [i] . key = ������������ ;
14
����
����
���� val = map−>array [i] . val ;
15 optik_unlock (map−>lock) ;
16 ���	�����	�����	�� val ;
17 }
18 }
19 ���	�����	�����	�� ������������ ;
20 }

(a) Delete operation of OPTIK-based concurrent map.

1 ��������� optik_map_insert (���������������* map, key , val) {
2 ��������������������� :
3 ��������������������� vn = optik_get_version (map−>lock) ;
4 ��������� f ree_idx = −1;
5 ��������� (��������� i = 0 ; i < map−>s i z e ; i ++) {
6 ��������������� curr_key = map−>array [i] . key ;
7 ������ (curr_key == key) { ���	�����	�����	�� ��������������� ; }
8 ������������ ������ (curr_key == 0) { free_idx = i ; }
9 }

11 ������ (! optik_trylock_version (map−>lock , vn)) { ������������ ��������������������� ; }
12 ��������� res = ��������������� ;
13 ������ (free_idx >= 0) {
14 map−>array [free_idx] . key = key ;
15 map−>array [free_idx] . val = val ;
16 res = ��	���	���	� ;
17 }
18 optik_unlock (map−>lock) ;
19 ���	�����	�����	�� res ;
20 }

(b) Insert operation of OPTIK-based concurrent map.

95

Chapter 6. Designing Concurrent Data Structures with OPTIK

1 ��������������� optik_map_search (���������������* map, �	
���	
���	
�� key) {
2 �	������	������	����� :
3
������
������
������ vn = optik_get_version_wait (map−>lock) ;
4 �
��
��
� (��������� i = 0 ; i < map−>s i z e ; i ++) {
5 ������ (map−>array [i] . key == key) {
6 ��������������� val = map−>array [i] . val ;
7
������
������
������ vnc = optik_get_version (map−>lock) ;
8 ������ (optik_same_version (vn , vnc))
9 �	�����	�����	���� val ;

10 �
�
�
�
�
�
 �	������	������	����� ;
11 }
12 }
13 �	�����	�����	���� ������������ ;
14 }

(c) Search operation of OPTIK-based concurrent map.

Figure 6.6 – An OPTIK-based concurrent array map data structure.

Search. We want the search operation to not acquire the lock, otherwise, the total throughput

of the map will be dictated by the maximum lock throughput. Nevertheless, we must guarantee

the atomicity of reading key-value pairs. In other words, we have to ensure that between

matching an array key with the target key and reading the value, there was no concurrent

modification on this key-value pair.

We achieve this guarantee using the OPTIK version number. The search operation (Figure 6.6(c))

reads the version number in the beginning of the operation (line 3), like update operations

do. This time, however, we employ the ����������	�
�����
��� function that blocks until

the lock is free. Once the key is matched (line 5), we read the corresponding value and check

whether the version has changed (lines 6-8). If it did change, then the operation is restarted,

otherwise the value is returned. The reason for acquiring an unlocked version in line 3 is that

we need to ensure that the search operation was not concurrent with any update operations

on the same key during the execution of lines 5-6.

We could decrease the “granularity” of the version number for search operations, by reading

the version before line 5. We would still be able to acquire atomic snapshots of the key-value

pairs. However, doing so puts a lot of stress on the cache line of the OPTIK lock, resulting in

lower performance than the design in Figure 6.6. (Actually, we can devise various schemes for

validating the key-value snapshot using the version number.)

In terms of correctness, successful updates are serialized behind the lock. Successful

searches are trivially correct, as they complete iff there were no concurrent modifications.

Unsuccessful search operations can be linearized so that they never observe the target key.

Similarly, unsuccessful updates can be linearized so that they do (not) observe the target key.

96

6.4. Concrete OPTIK Examples

Lock-Based vs. OPTIK-Based Array Map. We compare the two map implementations on

two workloads on an Ivy (see Section 2.1 see for platform details and Section 6.5 for our

experimental settings). Figure 6.7 depicts the results, where MCS represents the lock-based

map protected by an MCS lock. On both the small and the large maps, the OPTIK version (optik)

is faster than the lock-based one. optik has two main benefits compared to MCS. First, search

operations (80% of the workload) do not acquire the lock. Second, unsuccessful updates

(∼10% of the operations) also do not need to synchronize.

If we exclude the results on multiprogramming (i.e., more threads than hardware contexts),

where MCS suffers, optik is on average 4.7 and 1.4 times faster than MCS on the small and the

large map, respectively. On the small workload, since there are just four spots in the map array,

many operations fail (e.g., deletions do not find the key they are looking for). For example,

on 10 threads, only 25% of the updates are successful, resulting in 5% total effective updates.

Overall, the results can be largely explained by the latency distributions. optik significantly

reduces the latencies for search operations and for unsuccessful deletions. The reduction is

less profound on unsuccessful insertions, as a portion of those failures is due to insufficient

space in the array. In these cases, both optik and MCS acquire and release the lock before

returning false. Additionally, the effects of failing ���������	�
�����
��� and restarting are

visible on the tail latencies of successful updates.

 0

 20

 40

 60

 80

 1 10 20 30 40 50 60T
hr

ou
gh

pu
t (

M
op

s/
s)

Threads

Small map
(4 elements, 10% updates)

 0

 1

 2

 3

 1 10 20 30 40 50 60
Threads

Large map
(1024 elements, 10% updates)

 0

 10

 20

 30

 40

MCS optikLa
te

nc
y

di
st

rib
ut

io
n

(K
cy

cl
es

)

05%
25%
50%
75%
95%

 0

 100

 200

 300

 400

MCS optik

MCS optik

srch-suc insr-suc delt-suc srch-fal insr-fal delt-fal

Figure 6.7 – Lock-based vs. OPTIK-based map. The latency-distribution results use 10 threads.

97

Chapter 6. Designing Concurrent Data Structures with OPTIK

6.4.2 OPTIK-Based Linked List

The main idea behind a sorted OPTIK-based linked list is to keep track of the necessary version

numbers while traversing the list. In a sense, similarly to hand-over-hand locking [103], the

OPTIK-based list performs hand-over-hand version tracking. Figure 6.8 includes the code of

our implementation. We defer the evaluation of our list to Section 6.5.

Delete. The delete operation (Figure 6.8(a)) is the most complex operation of the OPTIK-

based linked list, because it requires locking two nodes; the one being deleted and its prede-

cessor node. Traversing the list (lines 11-14) keeps track of these two version numbers that are

later used for locking with ���������	�
�����
��� (lines 17-20). If locking the predecessor

node fails, the operation is restarted, otherwise the node to be deleted is locked. If this latter

���������	�
�����
��� fails, the predecessor’s OPTIK lock is reverted, instead of unlocked,

in order to avoid false conflicts with other concurrent operations. Notice that due to OPTIK,

(i) no deleted flag is required (as in [97]), and (ii) the OPTIK lock of the deleted node is never

released, which prohibits updates from reusing this node. Essentially, the linearization point

of a deletion is the actual write on the ���������� pointer in line 21.

1 ��������������������� ���	
����	
����	
� node { ��������������������� ���	
����	
����	
� {
2 ��������������� key ;
����
����
���� val ; ������������������* head ;
3 ��������������������� lock ; } ������������ ;
4 ���	
����	
����	
� node* next ;
5 } ������������������ ;

7
����
����
���� o p t i k _ l l _ d e l e t e (������������* l i s t , ��������������� key) {
8 ��������������������� :
9 ������������������ *pred , * cur = l i s t −>head ;

10 ��������������������� predv = curv = optik_get_version (&cur−>lock) ;
11 ������ {
12 pred = cur ; predv = curv ; cur = cur−>next ;
13 curv = optik_get_version (&cur−>lock) ;
14 } ��������������� (cur−>key < key) ;
15 ������ (cur−>key != key) { ���	�����	�����	�� ������������ ; }

17 ������ (! optik_trylock_version (&pred−>lock , predv)) { ������������ ��������������������� ; }
18 ������ (! optik_trylock_version (&cur−>lock , curv)) {
19 optik_revert (&pred−>lock) ; ������������ ��������������������� ;
20 }
21 pred−>next = cur−>next ;
22
����
����
���� r e s u l t = cur−>val ;
23 optik_unlock(&pred−>lock) ;
24 node_gc_free (cur) ;
25 ���	�����	�����	�� r e s u l t ;
26 }

(a) Delete operation of OPTIK-based concurrent linked list.

98

6.5. OPTIK in Concurrent Data Structures

1 ��������� o p t i k _ l l _ i n s e r t (������������* l i s t , key , val) {
2 ����	������	������	�� :
3 �
�����
�����
���� *pred , * cur = l i s t −>head ;
4
���
��
���
��
���
�� predv = curv = OPTIK_INIT ;
5 �
�
�
 {
6 curv = optik_get_version (&cur−>lock) ;
7 pred = cur ; predv = curv ; cur = cur−>next ;
8 } ��������������� (cur−>key < key) ;
9 ������ (cur−>key == key) { ������������������ �	����	����	��� ; }

11 ������ (! optik_trylock_version (&pred−>lock , predv)) { �
�
�
�
�
�
 ����	������	������	�� ; }
12 �
�����
�����
����* newnode = new_node(key , val , cur) ;
13 pred−>next = newnode ;
14 optik_unlock(&pred−>lock) ;
15 ������������������ ������������ ;
16 }

(b) Insert operation of OPTIK-based concurrent linked list.

1 �	����	����	��� optik_l l_search (������������* l i s t ,
����
����
���� key) {
2 �
�����
�����
����* cur = l i s t −>head ;
3 ��������������� (cur−>key < key) { cur = cur−>next ; }
4 ������ (cur−>key == key) { ������������������ cur−>val ; }
5 ������������������ ������������ ;
6 }

(c) Search operation of OPTIK-based concurrent linked list.

Figure 6.8 – An OPTIK-based linked-list data structure.

Insert. Inserting in the OPTIK-based linked list (Figure 6.8(b)) requires locking and validating

only the predecessor node (line 11). This OPTIK lock ensures that there are no concurrently

completed modifications on the predecessor node � or on �������.

Search. The search operation (Figure 6.8(c)) of the OPTIK-based linked list is completely

oblivious to concurrency. We can support this 100% sequential search design because the

linearization points of updates are the actual stores on the predecessor node.

6.5 OPTIK in Concurrent Data Structures

In this section, we illustrate the power and usefulness of OPTIK for optimizing and designing

concurrent data structures (CDSs) (i.e., linked lists, hash tables, skip lists, and queues). In

contrast to Section 6.4, we keep the CDS descriptions high-level for brevity. Before that, we

describe the evaluation settings that we use in our experiments and the two platforms that we

evaluate our data structures on.

Experimental Methodology. We evaluate various algorithms via microbenchmarks. Unless

stated otherwise, all OPTIK implementations use OPTIK locks on top of versioned locks. Sim-

99

Chapter 6. Designing Concurrent Data Structures with OPTIK

ilarly, unless stated otherwise, non-OPTIK implementations use test-and-set locks. (Notice

that for highly-contented locks, such as the locks in concurrent queues, we use MCS locks.)

We take the non-OPTIK algorithm implementations from our ASCYLIB library [51] (we use the

optimized versions of the algorithms). Additionally, we use the memory allocator of ASCYLIB

that provides garbage collection and we use 8-byte long keys and values. Backoff schemes

can significantly affect the performance of CDSs (e.g., when an operation fails and must

be restarted). For fairness, all data structures use the exact same backoff function. We use

exponentially increasing backoff times with up to 16k cycles maximum backoff. Furthermore,

after every iteration, threads wait for a short duration, in order to avoid long runs [153].

On every run, we set the initial size of the data structure and the key range that the threads

operate on. On every iteration, each thread selects a key at random within the given range.

We keep the range double the initial size and the percentages of insertions and deletions the

same, so that the size of the structure remains close to the initial. Because the key range is

double the initial, roughly half of the update operations on search data structures return false.

The update rate that we report on the graphs represents the effective percentage of updates,

namely the ones that alter the data structure. For our skewed workloads, we use a zipfian

distribution of keys with a = 0.9, where the largest keys are the most popular. Our results are

the median value of 11 repetitions of 5 seconds each. We do not pin threads to cores, but let

the OS do the scheduling.

For our latency measurements, we use the the per-core timestamp counter [111] for accurately

measuring the duration of an operation in cycles. In detail, every thread holds an array of 16K

latency measurements that, in the end of each experiment, are collected and translated to

latency distribution (boxplots reporting 5th , 25th , 50th , 75th , and 95th percentile latencies).

We use the Ivy and Opteron multi-core processors, described in Section 2.1.

6.5.1 OPTIK in Linked Lists

We use OPTIK in the design of concurrent (sorted) linked lists. The simplest algorithm is of

course a sequential list protected by a scalable global lock, such as an MCS lock. Naturally,

this algorithm does not offer any concurrency as all operations are serialized behind the lock.

An easy optimization on the global-lock algorithm is to implement the search operation so

that it does not acquire the lock (given that memory reclamation is properly handled). The

linearization point of updates is then the actual memory writes that access the predecessor

node of the one being updated.

Nevertheless, updates are fully serialized behind the global lock, resulting in low scalability.

We use OPTIK to introduce optimism to the update operations. The transformation is very

similar to that of the concurrent map in Section 6.4.1. Note that concurrent modifications

might not be conflicting, still, using a global lock will result in false conflicts. Because of this

limitation and of the high load on the global lock, this linked-list design is not expected to

100

6.5. OPTIK in Concurrent Data Structures

scale well on contended scenarios. We can resolve these limitations using fine-grained locking

(see Section 6.4.2 for the design of the fine-grained OPTIK-based linked list).

Additionally, inspired by the fact that version numbers reveal whether a list node has been

modified, we develop the idea of node caching. In short, each thread keeps track of the last

accessed node after each operation, accompanied by the version number that the thread

observed. This node can be subsequently used as the entry point for the next operation on

the list, given that (i) it has not been deleted, and (ii) it is a correct entry point (i.e., in a sorted

list, the key of the cached node is less than the target key). Of course, we must ensure that the

memory of deleted nodes is not re-used while the node is still referenced by any node cache.

Node-caching can be also applied on non-OPTIK algorithms, given that we can avoid the ABA

problem and that we can detect whether a node is valid.

Correctness. The OPTIK-based global-lock list is trivially correct as it disallows concurrency

of modifications. The linearization point of both insertions and deletions can be set to the

actual write on the predecessor’s next pointer. Search operations either observe the concurrent

modifications in the vicinity of the target key, or not.

Evaluation. Figure 6.9 depicts the throughput of the aforementioned linked-list algorithms

on various workloads. For comparison, we include the results of the lazy linked-list algo-

rithm [97] (lazy), that we have shown to be very efficient [51], as well as the lock-free list by

Harris [93] (harris). We implement the node-caching idea on the lazy list (lazy-cache) and on

the fine-grained OPTIK-based list (optik and optik-cache in the graph). mcs-gl-opt represents a

global-lock list protected by an MCS lock, including the non-synchronized search optimization

we describe earlier.

Clearly, the node-cache optimization (optik-cache, lazy-cache) brings important performance

benefits as it probabilistically reduces the list-traversal duration. For instance, on the large list,

49.8% of the operations make use of the node cache, while on the small list the hit rate drops

 0
 0.2
 0.4
 0.6
 0.8

 1 20 40 60

T
hr

ou
gh

pu
t (

M
op

s/
s)

Large
(8192 elements)

O
pt

er
on

Iv
y

 0
 2
 4
 6
 8

 1 20 40 60

Medium
(1024 elements)

O
pt

er
on

Iv
y

 0
 10
 20
 30
 40
 50

 1 20 40 60

Small
(64 elements)

O
pt

er
on

Iv
y

 0

 0.2

 0.4

 0.6

 1 20 40 60

Large skewed
(8192 elements)

O
pt

er
on

Iv
y

 0
 8

 16
 24
 32
 40

 1 20 40 60

Small skewed
(64 elements)

O
pt

er
on

Iv
y

 0
 0.4
 0.8
 1.2
 1.6

 1 12 24 36 48 64
Threads

O
pt

er
on

Iv
y

 0
 2
 4
 6
 8

 10

 1 12 24 36 48 64
Threads

O
pt

er
on

Iv
y

 0
 3
 6
 9

 12
 15

 1 12 24 36 48 64
Threads

O
pt

er
on

Iv
y

 0

 0.4

 0.8

 1.2

 1 12 24 36 48 64
Threads

O
pt

er
on

Iv
y

 0
 3
 6
 9

 12

 1 12 24 36 48 64
Threads

O
pt

er
on

Iv
y

harris

lazy

mcs-gl-opt

optik-gl

optik

optik-cache

lazy-cache

Figure 6.9 – Throughput of linked-list algorithms on Ivy and Opteron on various workloads.

101

Chapter 6. Designing Concurrent Data Structures with OPTIK

to approximately 40%. On these two workloads, optik-cache delivers 50% and 15% higher

average throughput than the version without the cache (optik).

Additionally, the OPTIK-based global-lock list (optik-gl) delivers higher throughput than mcs-gl-

opt in all workloads. optik-gl mostly benefits from the fact that for 20% of the operations—the

unsuccessful ones—it returns without acquiring the lock.

Finally, the fine-grained OPTIK-based list (optik) performs similarly to lazy and harris for the

low-contention workloads (i.e., large, large-skewed, and medium). However, optik is more

scalable than lazy on high-contention levels. On 64 elements, optik is on average 22% faster

than lazy. Note that optik stresses the locks less than lazy, because the operations do not

acquire the lock if they are going to fail the validation. This difference is clear on the small-

skewed workload, where neither lazy, nor lazy-cache can sustain the contention of the highly-

contented nodes.9 Additionally, optik behaves much better than lazy on multiprogramming

and is, on average, just 5% slower than harris even on the small workloads.

6.5.2 OPTIK in Hash Tables

We adapt and use the two OPTIK-based linked lists (Section 6.4.2, Section 6.5.1) in the design

of two novel hash tables. Intuitively, the list protected by a global lock, resulting in per-bucket

locking, is more suitable for hash tables. We also use the array map of Section 6.4.1 in the

design of a third hash table.

We further use OPTIK locks to optimize existing hash tables. In a hash table, an update oper-

ation (i.e., an insertion or a deletion) might not be feasible: Delete (resp. insert) operations

return false if the corresponding key is not found (resp. is found). Many hash-table algorithms

(e.g., Java ����������	
��

� [127]) implement updates by directly locking the correspond-

ing bucket, regardless if the operation is feasible. This unnecessary locking hinders scalability.

In these algorithms, in order to return false without locking if an update is not feasible, we

must add an extra read-only traversal of the bucket. If the operation cannot be performed, no

lock is acquired and the operation simply returns false after this first traversal. Otherwise, if

the operation can be performed, we must acquire the bucket lock and then re-traverse the

bucket to ensure that no concurrent modification operated on the target key. Consequently,

for every successful update, we have two traversals of the bucket. We can avoid the second

traversal with OPTIK locks, using either ������������������ or ���������������������.

In the beginning of the operation, we keep track of the version number of the bucket and use

this version in the OPTIK-lock call. If the version is validated, no concurrent modification has

completed on this bucket, hence we do not need to re-traverse the bucket.

9 The most contented node is accessed by 15% of the requests.

102

6.5. OPTIK in Concurrent Data Structures

Correctness. The three hash tables that are based on the two OPTIK lists and the map are

correct because of the correctness of these base data structures. The optimizations for avoiding

double traversal with OPTIK are correct because the bucket cannot be modified without

increasing the version number of the bucket lock.

Evaluation. Figure 6.10 includes the results of various hash tables. We set the number of

buckets to be equal to the number of initial elements, so that initially every bucket con-

tains on average one element. For brevity, we only show the results with medium and

small-skewed sized hash tables. On the missing graphs, the behavior of the hash tables

is in accordance with the results shown in Figure 6.10. Apart from the three OPTIK-based

hash tables (optik, optik-gl—for per-bucket locking, and optik-map), we create a hash ta-

ble with lazy linked lists adapted to use per-bucket locking (lazy-gl). Additionally, we eval-

uate Java’s ����������		
��������		
���
���
� [127] (java), as well as a modified ver-

sion that avoids double parsing using �������	�������
	����, as we describe above. The

�����		
���
���
� algorithm uses lock striping: It partitions the buckets into n segments.

Each segment (and its buckets) is protected by a single lock and can be individually resized.

We configure n to be 128, based on Java’s documentation [170] “Ideally, you should choose a

value to accommodate as many threads as will ever concurrently modify the table.”

Optimizing java with OPTIK (java-optik) brings benefits only in the presence of (high) con-

tention. On the large hash table (65536 elements—not shown in the graph), the improvement

is just 1.9%, because there are practically no validation failures. Additionally, the second

bucket pass of java is very fast, as the first pass brings the bucket data in the L1 cache.

 0

 150

 300

 450

 600

 1 10 20 30 40 50 60T
hr

ou
gh

pu
t (

M
op

s/
s)

Medium
(8192 elements, 20% updates)

O
pt

er
on

Iv
y

 0

 50

 100

 150

 200

 1 10 20 30 40 50 60

Small skewed
(512 elements, 20% updates)

O
pt

er
on

Iv
y

 0

 40

 80

 120

 160

 1 12 24 36 48 56 64

T
hr

ou
gh

pu
t (

M
op

s/
s)

Threads

O
pt

er
on

Iv
y

 0
 15
 30
 45
 60
 75

 1 12 24 36 48 56 64
Threads

O
pt

er
on

Iv
y

lazy-gl
java

java-optik
optik

optik-gl
optik-map

Figure 6.10 – Throughput of hash-table algorithms on Ivy and Opteron on various workloads.

103

Chapter 6. Designing Concurrent Data Structures with OPTIK

Furthermore, optik-map does not scale well on the small workloads on Ivy due to the hard-

ware. In brief, the buckets of optik-map are allocated in consecutive memory locations, thus

occupying a few contiguous cache lines, resulting in increased hardware prefetching on Ivy in

our experiments. For example, on 20 threads, the small hash table triggers three orders of mag-

nitude more last-level-cache prefetches than the medium one. This inaccurate prefetching

leads to low scalability due to high coherence traffic. Once the size of the hash table is large

enough, optik-map becomes the fastest hash table on both platforms. The other hash tables

do not face the aforementioned problem, because they dynamically allocate each node that is

inserted in the hash table.

Regarding the remaining three hash tables, optik-gl is the fastest. optik-gl is 2-times faster

than lazy-gl on average (31% faster on the non-skewed workloads). optik is on average 9%

slower than optik-gl, as for some operations optik acquires two locks instead of the one lock in

optik-gl. On the small-skewed workload, we see the power of the OPTIK pattern compared to

normal locking: optik-gl and optik are both 3.7-times faster than lazy-gl on average. Even on

the large-skewed workload (not in the graph), lazy-gl is on average more than 2-times slower

than the OPTIK-based hash tables.

6.5.3 OPTIK in Skip Lists

In theory, OPTIK is not very suitable for skip lists. With per-node lock granularity, the same

version protects all the next pointers of the node. Consequently, validating the node with

OPTIK results in false conflicts. Still, using OPTIK in skip lists results in simpler designs than

the existing state-of-the-art ones [75, 105]. We first simplify validation in the optimistic skip

list by Herlihy et al. [105], using �����������	
����
. If the validation is successful, then the

corresponding node has not been modified, thus we do not need to validate the optimistic

results in another way. This specific skip lists checks that the node is not logically deleted and

that the next pointer at the corresponding level has not been altered.

We also use OPTIK in the design of a new skip-list algorithm. As in any skip list, update

operations parse the list and keep track of the predecessor and successor nodes at each level.

Due to OPTIK, parsing also keeps track of the version number of each predecessor node. These

version numbers are later used for validation. Once the parsing finds the spot to modify, it locks

and validates the predecessor nodes and then performs the modifications. If the validation

fails, the locks are released and the operation is restarted. We implement two variants of

the OPTIK-based skip list. The first one, in case validation fails, performs more fine-grained

validation (same one as in [105]). The second one immediately restarts the operation if an

OPTIK validation fails.

Correctness. The modified Herlihy skip list maintains the correctness of the initial algorithm.

Our modifications only involve reducing validation in case the �����������	
����
 function

is able to validate the previously observed version.

104

6.5. OPTIK in Concurrent Data Structures

For brevity, we only describe the correctness sketch of the OPTIK-based skip list that imme-

diately restarts on a trylock failure. Both insertions and deletions traverse the list and keep

track of the predecessor nodes and their version at each level. As the OPTIK lock protects the

whole predecessor node �, we do not need to keep track of the successor nodes for validating

�������. Insertions try to acquire the lock and perform the insertion of the new node eagerly

(i.e., they do the physical linking of the node immediately after acquiring the lock of that level).

If an ���	
���
���
�����	�� call fails, the operation is restarted and, after re-parsing the

list, the insertion continues from the level that failed. A flag, similar with the fullylinked flag

in Herlihy skip list, ensures that a partially inserted node will not be concurrently deleted.

Similarly, a deletion atomically sets the flag of the target node to deleted and unlinks the node

after acquiring all predecessor locks. We can devise a variant of the algorithm where deletions

proceed progressively like insertions. However, the coordination overhead between insertions

and deletions on the same node surpasses the benefits of being eager.

Evaluation. Figure 6.11 compares the Herlihy skip list (herlihy), and the lock-free one by

Fraser [75] (fraser), with the three lists that we describe above. For brevity, we only show the

results on large-skewed and small-skewed lists. On low-contention levels (large, medium

non-skewed—not shown in the graph), all algorithms behave similarly. Intuitively, all five

implementations follow almost identical code paths in the absence of conflicts: Most of the

time is spent traversing the list.

Using ���	
����
�����	�� in the Herlihy skip list (herl-optik) slightly affects the perfor-

mance on the Opteron, but has a large effect on Ivy. In brief, the faster validation with OPTIK

results in an important reduction of operation restarts. For instance, on the small-skewed

 0

 15

 30

 45

 60

 1 10 20 30 40 50 60T
hr

ou
gh

pu
t (

M
op

s/
s)

Large skewed
(65536 elements, 20% updates)

O
pt

er
on

Iv
y

 0
 10
 20
 30
 40
 50

 1 10 20 30 40 50 60

Small skewed
(1024 elements, 20% updates)

O
pt

er
on

Iv
y

 0
 4
 8

 12
 16
 20
 24

 1 12 24 36 48 56 64

T
hr

ou
gh

pu
t (

M
op

s/
s)

Threads

O
pt

er
on

Iv
y

 0
 3
 6
 9

 12
 15

 1 12 24 36 48 56 64
Threads

O
pt

er
on

Iv
y

fraser herlihy herl-optik optik1 optik2

Figure 6.11 – Throughput of skip-list algorithms on Ivy and Opteron on various workloads.

105

Chapter 6. Designing Concurrent Data Structures with OPTIK

workloads, on 20 threads on Ivy, without OPTIK 30% of update operations have to restart due to

concurrency, compared to 24% with OPTIK. Contrarily, on the Opteron due to the overall lower

throughput than Ivy, both herlihy and herl-optik have 50% operation restarts on 20 threads.

On skewed workloads, we also notice the benefits of using OPTIK, even though it can in-

troduce unnecessary operation restarts. In particular, optik2, which is the variant that

immediately restarts if there is a trylock failure, is more scalable than optik1, that uses

�����������	
����
 and does fine-grained validation if the version is not validated. For

example, on very-high contention, on 20 threads, 40% of the operations have to restart with

optik2, while just 20% with fraser. Still, optik2 delivers 10% higher throughput than fraser on

20 threads. The main reason for optik2 being more scalable than the rest is the important

property of OPTIK that we have already extensively discussed: Threads fail the validation with a

single atomic operation, without waiting behind the occupied lock. The other three lock-based

skip lists do not include false restarts, they do however include false contention behind the

per-node locks. optik2 also benefits from (i) simpler implementation than the rest, as it does

not include the fine-grained validations, and (ii) the eager node insertion. Overall, optik2 is

faster than fraser. However, optik2’s throughput significantly drops on multiprogramming,

while fraser is able to sustain its throughput.

6.5.4 OPTIK in Binary Search Trees (BSTs)

In our asynchronized concurrency (ASCY) work [51], we observe that none of the existing

lock-based BST algorithms follows all four ASCY guidelines: Most algorithms tend to acquire

(on average) a large number of locks. We use OPTIK to design BST Ticket (BST-TK), an external

tree, where every internal router node is protected by an OPTIK lock. The BST-TK algorithm is

essentially the same as the fine-grained OPTIK-based linked list—traversing and then locking

nodes is based on hand-over-hand version tracking. Overall, BST-TK acquires one lock for

successful insertions and two locks for successful removals.

Correctness. The correctness sketch for BST-TK follows the same ideas as the OPTIK-based

linked list. We provide a complete correctness proof of BST-TK in our technical report [50].

Evaluation. Figure 6.12 compares BST-TK to the state-of-the-art lock-free BST by Natarajan

et al. [161] (natarajan), as well as the fastest pre-existing lock-based BST by Bronson et al. [30]

(bronson). Clearly, bronson is significantly less scalable than the other two, because it includes

much heavier synchronization. BST-TK and natarajan show similar performance, however,

the OPTIK-based BST is on average 3% faster than natarajan.

6.5.5 OPTIK in Queues

We use OPTIK in various concurrent queue designs. First, we optimize the classic Michael-

Scott queues [153] (MS-queue) using OPTIK locks. The first lock-based MS-queue variant

106

6.5. OPTIK in Concurrent Data Structures

 0
 25
 50
 75

 100

 1 20 40 60

T
hr

ou
gh

pu
t (

M
op

s/
s)

Large
(65536 elements)

O
pt

er
on

Iv
y

 0
 30
 60
 90

 120

 1 20 40 60

Medium
(16384 elements)

O
pt

er
on

Iv
y

 0
 40
 80

 120
 160

 1 20 40 60

Small
(1024 elements)

O
pt

er
on

Iv
y

 0
 25
 50
 75

 100

 1 20 40 60

Large skewed
(65536 elements)

O
pt

er
on

Iv
y

 0
 20
 40
 60
 80

 1 20 40 60

Small skewed
(1024 elements)

O
pt

er
on

Iv
y

 0
 15
 30
 45
 60

 1 12 24 36 48 64
Threads

O
pt

er
on

Iv
y

 0
 15
 30
 45
 60

 1 12 24 36 48 64
Threads

O
pt

er
on

Iv
y

 0
 15
 30
 45
 60

 1 12 24 36 48 64
Threads

O
pt

er
on

Iv
y

 0
 10
 20
 30
 40

 1 12 24 36 48 64
Threads

O
pt

er
on

Iv
y

 0
 6

 12
 18
 24

 1 12 24 36 48 64
Threads

O
pt

er
on

Iv
y

bronson natarajan optik (BST-TK)

Figure 6.12 – Throughput of BST algorithms on Ivy and Opteron on various workloads.

employs the �����������	
����
 function to optimize the �
��
�
 function: The operation

is optimistically prepared so that if the validation succeeds, only a single store is performed in

the critical section. If the validation fails, the �
��
�
 operation is prepared and performed in

the critical section, as usual. The second (lock-based) variant is very similar to the first one,

however, it uses ��������������	
����
 instead of the lock function. If the validation fails,

then the operation is restarted. The third variant is a lock-based/lock-free MS-queue hybrid.

We use the lock-free

��
�
 implementation of the MS-queue unaltered. We opt for this

approach because the enqueue operations do not offer any opportunities for optimism. For

the �
��
�
 function we use the OPTIK trylock implementation.

The final variant of MS-queue introduces the idea of victim queues. The �
��
�
 function uses

the same trylock implementation as the last two designs. The

��
�
 implementation utilizes

the ������
�����
�
� function of OPTIK locks (on top of ticket locks—see Section 6.3). If

the number of waiting nodes is large (e.g., more than two in our implementation), then the

thread performs the insertion in a secondary victim queue, instead of waiting behind the lock.

The first thread to put a node in the empty victim queue is responsible for linking the victim

queue to the main one. The results are (i) lower contention behind the lock, and (ii) a simple

victim-queue design as it does not interact with �
��
�
 operations.

Correctness. The first three variants of MS-queue do not essentially affect the correctness of

the original designs. The fourth design employs the victim-queue idea. Enqueue operations

either wait behind the lock to normally perform their operation, or insert the element in the

secondary victim queue. This secondary queue is linked to the main one, once the first thread

to use it gets the lock. This same thread is also responsible for emptying the victim queue so it

can be reused. Operations that utilize the victim queue have to wait until the victim queue has

been emptied, thus their elements are visible in the main queue. This waiting ensures that

they can be linearized properly.

107

Chapter 6. Designing Concurrent Data Structures with OPTIK

 0
 2
 4
 6
 8

 10

 3 20 40 60

T
hr

ou
gh

pu
t (

M
op

s/
s)

Decreasing size
(40% enq., 60% deq.)

O
pt

er
on

Iv
y

 0
 2
 4
 6
 8

 3 20 40 60

Stable size
(50% enq., 50% deq.)

O
pt

er
on

Iv
y

 0
 2
 4
 6
 8

 10

 3 20 40 60

Increasing size
(60% enq., 40% deq.)

O
pt

er
on

Iv
y

 0
 1
 2
 3
 4

 3 12 24 36 48 64
Threads

O
pt

er
on

Iv
y

 0
 1
 2
 3
 4

 3 12 24 36 48 64
Threads

O
pt

er
on

Iv
y

 0
 1
 2
 3
 4

 3 12 24 36 48 64
Threads

O
pt

er
on

Iv
y

 0
 10
 20
 30
 40

ms-lf
ms-lb

optik0
optik1

optik2
optik3

La
te

nc
y

di
st

rib
ut

io
n

(K
cy

cl
es

)

Stable size
(on 10 threads)

O
pt

er
on

Iv
y

 0
 15
 30
 45
 60

ms-lf
ms-lb

optik0
optik1

optik2
optik3

O
pt

er
on

Iv
y

ms-lf

ms-lb

optik0

optik1

optik2

optik3

enqueue dequeue

Figure 6.13 – Throughput and latency distribution of queue algorithms on Ivy and Opteron on
various workloads.

Evaluation. We evaluate the lock-based (ms-lb) and the lock-free (ms-lf) MS-queues. We use

ms-lb with MCS locks. We also evaluate the three MS-queue variants (optik0, optik1, optik2), as

well as the one using victim queues (optik3). We initialize the queues with 65k elements. The

results include several interesting points (Figure 6.13).

First, ms-lb delivers stable performance, regardless of the contention levels, due to the MCS

locks. If we use any simple spinlock algorithm (e.g., test-and-set) instead of MCS, the through-

put of ms-lb degrades as we increase contention. However, when the number of threads

becomes more than the number of hardware contexts, the combination of locking and the

fairness of MCS kills throughput.10

Second, the remaining queue algorithms do not scale and do not even keep stable performance

as we increase contention, especially on Opteron. Unlike ms-lb with MCS locks, all other

designs have two single points—cache lines—of contention, namely the head and the tail of

the queue. Opteron is an 8-socket machine, thus increasing the number of threads, increases

the non-uniformity as well, resulting in more expensive cache-coherence traffic (Table 4.3).

Still, on both platforms, ms-lb is slower than the rest on less than 6-7 threads.

Third, it is worth comparing the two MS-queues with the different OPTIK-based queue imple-

mentations. optik2 (lock-free enqueue, OPTIK-based dequeue) behaves practically the same

as ms-lf , showing that the simple CAS validation of OPTIK locks does resemble lock-freedom.

Then, the victim-queue technique of optik3 does bring some benefits that are mostly visible

on the increasing-size workload which stresses enqueues. optik3 is on average 28% faster than

ms-lf on this workload, while overall it is 7% faster.

Regarding optik1, on the one hand it contains the enqueue implementation of ms-lb, thus

on the increasing-size workload it behaves similar to ms-lb. On the other hand, it uses the

10 There are techniques, such as time-published queue-based locks [96], for alleviating this problem.

108

6.6. Conclusions

���������	�
�����
��� implementation for dequeuing, showing similar performance to

optik2 and ms-lf . Furthermore, optik0 on the Opteron shows that using OPTIK locks with the

lock/unlock interface, under high contention, is not a good idea. At the end of the day, OPTIK

locks are simple spinlocks.

Finally, the latency-distribution graphs reveal the power and the weaknesses of each imple-

mentation. For example, dequeuing an element is very fast with ms-lf , however, enqueuing is

very expensive. Similarly, enqueuing with optik3 is fast because of the victim-queue approach,

but dequeuing is slow.

6.5.6 Summary

The combination of the OPTIK pattern with OPTIK locks is a very strong concurrency tool.

The resulting algorithms are simple, include minimal synchronization, and follow our ASCY

patterns. We illustrate the power of OPTIK by:

• designing five new CDSs: (i) an array map with a corresponding hash table, (ii-iii) a

global-lock and a fine-grained linked list with two corresponding hash tables, (iv) a

concurrent BST (BST-TK), and (iv) a skip list;

• optimizing four state-of-the-art CDSs: (i) the ���
��������
���� algorithm in

Java [127], (ii) the optimistic skip list by Herlihy et al. [105], and (iii-iv) both the lock-free

and lock-based Michael-Scott queues [153];

• introducing two concurrency techniques: (i) node caching for list structures, and (ii) vic-

tim queues for concurrent queues.

Of course, OPTIK is not always a suitable solution. The most prominent example of such a case

is stack data structures. We briefly experiment with stacks (not shown in the graphs). More

precisely, we redesign the classic lock-free stack by Treiber [206] using OPTIK. The original and

the OPTIK-based variants behave similarly. Still, the contention levels that can be induced on a

highly parallel stack cannot be sustained by neither the “simple” OPTIK lock, nor the lock-free

solution. There are ways to alleviate this problem, such as aggressive backoff mechanisms, or

elimination [98]. Note that large backoff times might result in large tail latencies.

6.6 Conclusions

Concurrent data structures (CDSs) facilitate concurrent programming by abstracting data

sharing behind an interface, thus removing the need for developers to implement synchro-

nization. Consequently, a well-designed and implemented concurrent data structure offers

portability and scalability of data sharing in concurrent systems, without any effort from the

system developer. Nevertheless, implementing these concurrent data structure in a portably

scalable manner is a daunting task. As we illustrated with our novel concurrent hash table,

namely CLHT, designing scalable data structure algorithms requires devising complicated

concurrency/synchronization techniques. Such techniques are of course non-ubiquitous,

109

Chapter 6. Designing Concurrent Data Structures with OPTIK

leaving the design of CDSs to concurrency experts only. Typically, every new scalable CDS

algorithm results in a publication in one of the top concurrency conferences.

In this chapter, we simplified the design of scalable concurrent data structures by introducing

the OPTIK design pattern and the underlying OPTIK locks. The OPTIK pattern offers a concrete

and simple way of detecting conflicting concurrency in concurrent data structures. Therefore,

it can be used to methodically design portable and scalable data structures. OPTIK locks

provide a concrete and efficient implementation of the pattern. OPTIK-based algorithms

are simple, include minimal synchronization, and follow our asynchronized concurrency

paradigm. We illustrated the power of OPTIK by (a) designing five novel concurrent-data-

structure algorithms, and by (b) optimizing four existing state-of-the-art ones.

110

7 Abstracting Multi-Core Topologies
with MCTOP

As we highlighted earlier in this thesis, portability and efficiency are usually antagonists in

multi-core computing. In order to develop efficient code, one needs to take into account

the topology of the target multi-cores (e.g., for locality). This observation is valid for any

aspect of concurrent programming (not only synchronization) and clearly hampers code

portability. In this chapter, we show that you can achieve portable optimizations (i.e., optimize

concurrent software for the underlying multi-core while maintaining portability), using MCTOP,

an abstraction of multi-core topologies. MCTOP enables developers to accurately and portably

define high-level performance policies. We illustrate that if these policies are designed properly,

they result in portable optimizations.

7.1 Introduction

Since 2000, computing systems are becoming more diverse in terms of the numbers of threads

per core, cores per socket, as well as the on-chip and off-chip interconnects. As we showed in

Part II of this dissertation, this tendency complicates synchronization in concurrent systems.

Apart from synchronization, this tendency generally makes concurrent programming very

challenging, for developers need to fine-tune every aspect of their software for the underlying

hardware in order to achieve performance (e.g., [17, 27, 28, 78]). However, optimizing for spe-

cific multi-core topologies hinders the portability of software. In fact, optimizing software for

multi-cores raises two main questions: (i) how to harvest and expose the details of multi-cores

in software, and (ii) how to fine-tune according to those details, while ensuring portability.

Traditionally, developers have been relying on libraries, such as ������� [120] on Linux,

�����	
 [167] on Solaris, and ���
� [28] for abstracting the topology of multi-cores. These

libraries offer a topology representation of multi-cores as well as a companion interface for

placing threads (and data). However, the provided multi-core representations are low-level

and offer only the limited view of the OS. Developers do not have access to the performance

characteristics of the underlying multi-core processor and still need to manually optimize

their software for each platform.

111

Chapter 7. Abstracting Multi-Core Topologies with MCTOP

We present in this chapter an easier, more portable approach to optimizing software for multi-

cores. We introduce ��������, a library that generates what we call MCTOP, a multi-core

topology abstraction of important low-level information, such as communication latencies

and memory bandwidths. Figure 7.1 depicts the visual representation of the MCTOP of Opteron

(see Section 2.1 for more examples). Of course, a developer could directly use this low-level

information to fine-tune her software for Opteron. For instance, she could decide to use

sockets 0 and 1 as they provide minimum latency. Such optimizations—that rely on the

specifics of a processor—are not portable. Instead, she could write a policy that uses any two

sockets (if available) that minimize latency.

As we show in this chapter, MCTOP enables the design of easy, portable, and efficient opti-

mizations using such high-level performance policies. In turn, these policies make use of the

actual numbers generated by ��������. Essentially, MCTOP allows developers to accurately

capture high-level semantics that utilize the low-level performance details of multi-cores, thus

delivering portable optimizations. For instance, using MCTOP, we can easily define policies

such as “use one hardware context per core,” “use two sockets with maximum bandwidth,” or

even “use as many threads as required to saturate the memory bandwidth of node n,” or “use

the maximum number of threads, in the two most remote sockets, so that each thread has at

least 3 MB of LLC.” If designed properly, such policies result in portable optimizations.

�������� is based on MCTOP-ALG, our novel algorithm for inferring the topology of multi-

cores relying on two fundamental observations: (i) cache-coherence protocols are deterministic

by design, and (ii) communication latencies characterize the topology. MCTOP-ALG leverages

these two observations by collecting accurate core-to-core communication latencies. These

latencies are used to infer the topology of the processor. On top of this topology, ��������

(via plugins) collects additional low-level measurements, such as cache latencies and sizes,

as well as memory latencies and bandwidths. The end result is an automatically-generated

MCTOP representation of the underlying multi-core.

Socket 0 - 117 cycles

000 001 002 003 004 005

Node
0

143 cy
10.9 GB/s

Node
1

247 cy
5.3 GB/s

Node
2

262 cy
3.0 GB/s

Node
3

343 cy
2.0 GB/s

Node
4

261 cy
2.8 GB/s

Node
5

342 cy
3.0 GB/s

Node
6

267 cy
2.9 GB/s

Node
7

346 cy
1.9 GB/s

(a) Intra-socket topology of a socket.

01 197 cy
5.3 GB/s

2

217 cy
3.0 GB/s

4

217 cy
2.8 GB/s

6

217 cy
2.9 GB/s

3

217 cy
2.8 GB/s 5217 cy

4.2 GB/s

7
217 cy

2.7 GB/s

197 cy
5.3 GB/s

217 cy
3.0 GB/s

217 cy
2.8 GB/s

217 cy
2.9 GB/s

217 cy
2.7 GB/s

197 cy
5.3 GB/s

217 cy
2.8 GB/s

217 cy
3.0 GB/s

197 cy
5.3 GB/s

level 4
(2 hops)

300 cy

(b) Cross-socket topology.

Figure 7.1 – Topology representation of an 8-socket AMD processor—Opteron.

112

7.1. Introduction

We argue that MCTOP-ALG’s measurement-based approach is superior to loading multi-

core topologies from the underlying OS or hardware (e.g., using �����) for various reasons:

(i) portability—collecting measurements is almost identical on any architecture or OS, unlike

reading topology info from the OS or the hardware; (ii) forward/backwards compatibility—

measurements do not depend on the OS version; (iii) correctness—numbers do not lie, while

the OS can be misconfigured1; (iv) extensibility—independence from the information that

vendors do or do not want to expose; and (v) accuracy—a measurement-based approach

automatically collects accurate low-level measurements that we need in MCTOP.

We illustrate portable optimizations with MCTOP with four examples on five processors from

Intel, AMD, and Oracle. First, we automate backing off in lock implementations using the

communication latencies of MCTOP. Our optimized TAS, TTAS, and TICKET spinlocks deliver

up to 39% average throughput improvements. Second, we design a topology-aware mergesort

algorithm that builds an optimal cross-socket merge tree on top of MCTOP. This mergesort

algorithm is 19% faster on average than the parallel sort algorithm of C++ standard library

which is topology agnostic.

Furthermore, we design a thread placement library, called MCTOP-PLACE, on top of MCTOP

and use it in optimizing the Metis MapReduce library and OpenMP. MCTOP-PLACE includes

12 high-level performance policies that enable thread placement with locality, bandwidth,

or even power optimizations. We plug MCTOP-PLACE in Metis and achieve 17% better perfor-

mance, while consuming 14% less energy in four workloads. Similarly, we extend OpenMP’s

thread placement functionality with runtime support for adaptation of placement policies.

Consequently, our OpenMP version allows for portable, high-level, and dynamic thread place-

ment. We evaluate Green-Marl’s [108] OpenMP-based graph workloads and improve the

performance of various graph analytics, such as PageRank, by 22% on average.

To summarize, the main contributions of this chapter are as follows:

1. MCTOP, a rich multi-core topology abstraction which enables portable concurrent soft-

ware optimizations;

2. MCTOP-ALG, a portable algorithm for inferring the topology of multi-cores without

relying on the topology information of the OS or the hardware;

3. ���	
��
 and the software we build using ���	
��
, both available at ���
����
��

�
���
�������	
��
.

As we discuss in Section 7.3, ���	
��
 has certain limitations. We have evaluated ���	
��

only on ��� and ����� architectures, and we cannot yet guarantee the effectiveness of MCTOP-

ALG on other architectures (e.g., ���, �����). Additionally, in order to collect accurate mea-

surements, ���	
��
 requires a offline, solo execution on the target processor for the one

run that infers the topology (this means stopping all other applications for the duration of

���	
��
’s first execution).

1 On Opteron, the OS has an incorrect mapping of cores to memory nodes, while MCTOP-ALG infers the correct
mapping. All 48 cores are assigned to four out of eight nodes.

113

Chapter 7. Abstracting Multi-Core Topologies with MCTOP

The rest of the chapter is organized as follows. In Section 7.2, we describe the programming

interface of MCTOP. In Sections 7.3 and 7.4, we show how to create and enrich MCTOPs in a

portable manner. We then describe examples of high-level policies that result in portable

efficiency in Section 7.5 and use these ideas in designing a thread placement library in Sec-

tion 7.6. Finally, we present practical examples and conclude the chapter in Sections 7.7

and 7.8, respectively.

7.2 The MCTOP Topology Abstraction

The first step for achieving portable optimizations is to provide a programming abstraction of

multi-core topologies. That way, software can build on this abstraction and avoid using the

limited view of the multi-core that is exposed by the OS. Accordingly, �������� includes a

portable topology abstraction, called MCTOP (shorthand for multi-core topology).

MCTOP has two important characteristics. First, MCTOP is generic, so that it can be used to

describe any modern multi-core processor. Second, MCTOP is extensible, in that it supports

the low-level details of multi-cores, which are necessary to achieve fine-tuning of software

and portability at the same time.

In the remainder of this section, we first describe the programming interface of MCTOP, and,

then, we illustrate several examples of MCTOP topologies. In Section 2.1, we have described

important multi-core characteristics that affect the design of ��������. In Section 7.3, we

introduce a generic algorithm for harvesting MCTOP topologies of multi-cores, while in Sec-

tion 7.4, we present the plugin system of �������� for extending MCTOP topologies.

�������� Programming Interface. MCTOP is a multi-core topology abstraction which in-

cludes the basic topology of multi-cores (e.g., how cores or sockets are interconnected), as well

as low-level performance measurements (e.g., memory latencies and bandwidths). MCTOP

topologies are stored in description files, which are created by �������� once, as we describe

later, and are then used to load the topology. Once a topology is loaded, the developer can

either use ��������’s programming interface to access the MCTOP topology, or visualize the

topology on screen or as a graph. �������� represents MCTOP topologies as a set of structures

that are linked together to describe the processor. The most important structures of MCTOP

are shown in Table 7.1.

These structures essentially represent graphs which are interconnected (i) vertically, in order

to represent the actual hierarchical topology, and (ii) horizontally, for simplifying the traversal

of all objects at each level. For instance, a 	
�����
�� holds pointers to its parent 	
�������,

its parent ����
�, as well as its successor (in terms of proximity) 	
�����
��. Additionally,

every structure holds a pointer to additional low-level information, such as memory latencies.

114

7.3. MCTOP-ALG: Inferring Topologies

��������	� The lowest scheduling unit of the processor. If SMT exists, ��������	�
represents a hardware context, otherwise it represents an actual core.

����
���
 A group of ��������	�s. This could for example be a core that contains two
hardware contexts, or a group of cores that share the L2 cache. There might be
multiple levels of ����
���
 within a socket.

������ A ����
���
 with additional information about the NUMA memory nodes
and the interconnection with other sockets.

���� A memory node with information such as capacity.
������������ The interconnection between two ������s. Contains info such as the

communication latencies.
����
 The structure that represents a processor and links everything together.

Contains info about latency levels, SMT, the number of sockets and cores, etc.

Table 7.1 – The main structures of MCTOP.

We opt for a representation that uses terms that match any modern modern processor and

are extensible for future designs. That way, the interface of �������
 uses terms which are

familiar to system designers, such as:

• ����
�
�������������������	� to get the local node of a ��������	�;

• ����
��������
���������������� to get the cores of a ������; and

• ����
�
��������������� ���� to get the latency between any two components.

7.2.1 Examples of MCTOP Topologies

�������
 can generate a simplified visual representation of the processor in order to make

the topology more accessible to developers. �������
 uses the Graphviz [86] visualization

library for graphs. �������
’s visual representation includes two main graphs, depicting the

intra- and the cross-socket topologies respectively. We illustrate �������
 on various 	��

and �� !" processors. In Section 2.1, we present the automatically generated graphs and

provide details of each platform. In Section 7.7, we use five of these platforms (i.e., Ivy, Opteron,

Haswell, Westmere, SPARC-T44) in our experiments.

7.3 MCTOP-ALG: Inferring Topologies

The first step for creating the enriched MCTOP representation of a processor is to generate the

basic topology of the hardware. Essentially, this basic representation describes how hardware

contexts are placed in sockets, how these sockets are interconnected, and how contexts are

connected within each socket.

We name our algorithm that infers the basic topology of cache-coherent shared memory

processors using only latency measurements MCTOP-ALG. In Section 7.4, we describe how

these basic MCTOP topology abstractions are augmented with additional measurements, such

as memory latencies and bandwidths, in order to enable portable optimizations. MCTOP-ALG

relies on two simple, yet important observations regarding cache-coherence protocols of

modern multi-core processors.

115

Chapter 7. Abstracting Multi-Core Topologies with MCTOP

Figure 7.2 – Coherence traffic for an RFO request.

OBSERVATION 1: Cache-coherence protocols are deterministic. Cache-coherence proto-

cols are responsible for keeping data consistent in the various caches of the multi-core. Most

modern processors implement (variants of) the MESI coherence protocol [174].

Hardware cache-coherence protocols are deterministic by design. Still, non-deterministic

schedules can appear, but only under contention (e.g., if multiple threads contend for a cache

line, then the schedule of coherence messages is naturally not deterministic). In the absence of

contention, hardware coherence protocols deliver deterministic schedules. In simple words, a

given request type (e.g., requesting for writing), on a given multi-core, for a block of data in a

specific MESI state and the same placement, always takes the same steps.

Consider the simplified example of Figure 7.2, where a cache line cl is in the modified state2

in the caches of core o and another core r is requesting the data for writing—a request known

as request for ownership (RFO). The RFO request for cl misses in the private caches of r . The

request finds that o has the only copy of cl through the last-level cache (LLC) (or using a

directory, depending on the specific implementation of MESI). Once the copy is found, an

invalidation request is sent to o’s private caches to discard their copy of cl , after which the

RFO request is granted to r . If r is not in the same socket as o, the RFO request is propagated

to the correct socket.

Overall, the coherence request takes deterministic steps. Hence, we can devise thread sched-

ules that accurately measure the communication latency between any two hardware contexts.

OBSERVATION 2: Communication latencies characterize the topology. Multi-cores include

several cache levels for minimizing latency to data. The latency of a request defines at large

the distance between the source of the request and the placement of data. For instance, on

Ivy (i.e., the 2-socket Intel Xeon Ivy Bridge), 4, 12, and 42 cycles are the latencies to access the

three levels of caches, while 112 and 308 cycles represent the latencies to access data that are

in the private caches of another core within the same socket and across sockets, respectively.

Two communicating threads can potentially detect their relative placement based on their

communication latency. For example, on Ivy, if two threads communicate in approximately 4

2 The modified state means that this cache line is the only fresh copy of this data and this data is stale in memory.

116

7.3. MCTOP-ALG: Inferring Topologies

cycles, they have to reside on the same core as the L1 cache delivers this latency. In contrast,

communication latency of 300+ cycles reveals that the two threads are on different sockets.

MCTOP-ALG Algorithm. MCTOP-ALG takes advantage of the aforementioned observations

by collecting accurate hardware-context-to-hardware-context communication latency mea-

surements and using them in inferring the topology of the machine. The implementation of

MCTOP-ALG in �������� requires three functionalities from the underlying OS: A way to read

the number of available hardware contexts and the number of memory nodes, and a way to

pin threads to specific contexts.

MCTOP-ALG takes the following four steps:

1. Collects context-to-context latency measurements → latency table;

2. Clusters close values into groups and normalizes the latencies accordingly→normalized

latency table;

3. For each latency value l , categorizes hardware contexts into groups of contexts that

communicate with latency l with each other and with the same latency with other

groups → per latency level components;

4. Creates the multi-core representation by assigning roles to components → topology;

We detail below these four steps using Ivy as an example—Figure 7.4. We then discuss several

practical considerations regarding MCTOP-ALG.

7.3.1 Context-to-Context Latencies

MCTOP-ALG uses two threads that move from hardware context to hardware context and fill

up an N ×N latency table, where N is the number of hardware contexts of the processor. For

each data point, the two threads execute in lock step as shown in Figure 7.3. Thread y brings

the data in a modified state in its local caches and then thread x measures the latency of its

own access to the shared data using the timestamp counter of the core [111].

The use of an atomic operation, such as compare-and-swap (CAS), is crucial for two reasons.

First, CAS includes a memory fence, hence it preclude the effects of memory consistency

models [201]. Second, CAS brings the data in the modified MESI state. The modified state is

Thread x Thread y
thread_barrier()

CAS(shared_line)
thread_barrier()

s = rdtsc()
CAS(shared_line)

lat[x][y] = rdtsc() - s

Figure 7.3 – Lock-step execution of MCTOP-ALG’s threads.

117

Chapter 7. Abstracting Multi-Core Topologies with MCTOP

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
0 0 124 124 120 120 108 104 104 128 128 320 320 320 320 316 304 304 300 324 324 28 124 124 120 120 108 104 104 128 128 320 320 320 320 316 304 304 300 324 324
1 124 0 128 124 120 112 108 108 128 128 324 324 324 320 320 308 304 304 324 328 128 28 128 124 120 112 108 108 128 128 324 324 324 320 320 308 304 304 324 328
2 124 128 0 124 124 112 108 108 128 128 328 328 328 328 324 316 312 308 328 328 128 128 28 124 124 112 108 108 132 128 328 328 328 328 324 316 312 308 328 328
3 120 124 124 0 124 108 108 104 128 128 328 328 328 328 324 312 312 312 328 328 128 128 128 28 124 108 108 104 128 128 328 328 328 328 324 312 312 312 332 332
4 120 120 124 124 0 108 108 104 128 128 324 324 324 320 320 308 304 304 324 324 124 124 124 120 28 108 108 104 124 124 324 324 324 320 320 308 304 304 324 324
5 108 112 112 108 108 0 96 92 116 116 312 316 312 308 308 296 292 292 316 316 116 116 116 112 108 28 96 92 116 116 312 316 312 308 308 296 292 292 316 316
6 104 108 108 108 108 96 0 92 116 116 308 312 312 308 308 292 292 288 312 312 112 112 112 108 108 96 28 92 116 116 308 312 312 308 308 296 292 288 312 312
7 104 108 108 104 104 92 92 0 108 108 308 308 308 304 304 292 288 288 308 308 108 108 108 104 104 92 92 28 108 108 308 308 308 304 304 292 288 288 308 308
8 128 128 128 128 128 116 116 108 0 116 312 312 312 308 308 296 292 292 316 316 112 112 112 108 104 92 92 88 28 116 312 316 312 308 308 296 292 292 316 316
9 128 128 128 128 128 116 116 108 116 0 312 312 312 308 304 292 292 288 312 312 112 112 112 108 108 96 92 92 116 28 312 312 312 308 304 292 292 288 312 312
10 320 324 328 328 324 312 308 308 312 312 0 124 124 120 120 108 104 104 128 128 324 328 328 324 320 308 308 304 328 328 28 124 124 120 120 108 104 104 128 128
11 320 324 328 328 324 316 312 308 312 312 124 0 128 124 120 112 108 108 128 128 328 328 328 324 320 308 308 308 332 332 128 28 128 124 120 112 108 108 128 128
12 320 324 328 328 324 312 312 308 312 312 124 128 0 124 124 112 108 108 128 128 332 332 332 328 324 312 312 308 332 332 128 128 28 124 124 112 108 108 128 128
13 320 320 328 328 320 308 308 304 308 308 120 124 124 0 124 108 108 104 128 128 328 328 328 324 324 312 308 308 332 332 128 128 128 28 124 108 108 104 128 128
14 316 320 324 324 320 308 308 304 308 304 120 120 124 124 0 108 108 104 128 128 324 324 324 320 320 308 304 304 328 328 124 124 124 120 28 108 104 104 128 128
15 304 308 316 312 308 296 292 292 296 292 108 112 112 108 108 0 96 92 116 116 312 312 312 308 308 296 292 292 316 316 116 116 116 112 108 28 96 92 116 116
16 304 304 312 312 304 292 292 288 292 292 104 108 108 108 108 96 0 92 116 116 312 312 312 308 308 296 292 292 316 316 112 112 112 108 108 96 28 92 116 116
17 300 304 308 312 304 292 288 288 292 288 104 108 108 104 104 92 92 0 108 112 308 312 308 304 304 292 288 288 312 312 108 108 108 108 104 92 88 28 108 108
18 324 324 328 328 324 316 312 308 316 312 128 128 128 128 128 116 116 108 0 116 316 316 316 312 312 296 296 292 316 320 112 112 112 108 104 92 92 88 28 116
19 324 328 328 328 324 316 312 308 316 312 128 128 128 128 128 116 116 112 116 0 316 316 316 308 308 296 296 292 316 316 112 112 112 108 108 96 92 92 116 28
20 28 128 128 128 124 116 112 108 112 112 324 328 332 328 324 312 312 308 316 316 0 124 124 140 140 128 108 104 128 128 320 320 320 320 316 304 304 300 324 324
21 124 28 128 128 124 116 112 108 112 112 328 328 332 328 324 312 312 312 316 316 124 0 128 124 120 112 108 104 128 128 324 324 324 320 320 308 304 304 324 324
22 124 128 28 128 124 116 112 108 112 112 328 328 332 328 324 312 312 308 316 316 124 128 0 124 124 112 108 108 128 128 328 328 328 328 324 316 312 308 332 328
23 120 124 124 28 120 112 108 104 108 108 324 324 328 324 320 308 308 304 312 308 140 124 124 0 124 108 108 104 128 128 328 328 328 328 324 312 312 312 332 328
24 120 120 124 124 28 108 108 104 104 108 320 320 324 324 320 308 308 304 312 308 140 120 124 124 0 108 108 104 124 124 324 324 324 320 320 308 304 304 324 328
25 108 112 112 108 108 28 96 92 92 96 308 308 312 312 308 296 296 292 296 296 128 112 112 108 108 0 96 92 116 116 316 316 316 312 308 296 296 296 316 316
26 104 108 108 108 108 96 28 92 92 92 308 308 312 308 304 292 292 288 296 296 108 108 108 108 108 96 0 92 116 116 312 316 316 312 312 296 296 292 316 316
27 104 108 108 104 104 92 92 28 88 92 304 308 308 308 304 292 292 288 292 292 104 104 108 104 104 92 92 0 108 112 312 312 312 308 304 292 292 288 312 312
28 128 128 132 128 124 116 116 108 28 116 328 332 332 332 328 316 316 312 316 316 128 128 128 128 124 116 116 108 0 116 316 316 316 312 312 296 296 296 316 316
29 128 128 128 128 124 116 116 108 116 28 328 332 332 332 328 316 316 312 320 316 128 128 128 128 124 116 116 112 116 0 312 316 316 312 308 296 296 292 316 316
30 320 324 328 328 324 312 308 308 312 312 28 128 128 128 124 116 112 108 112 112 320 324 328 328 324 316 312 312 316 312 0 124 124 120 120 108 104 104 128 128
31 320 324 328 328 324 316 312 308 316 312 124 28 128 128 124 116 112 108 112 112 320 324 328 328 324 316 316 312 316 316 124 0 124 124 120 112 108 108 128 128
32 320 324 328 328 324 312 312 308 312 312 124 128 28 128 124 116 112 108 112 112 320 324 328 328 324 316 316 312 316 316 124 124 0 124 124 112 108 108 128 128
33 320 320 328 328 320 308 308 304 308 308 120 124 124 28 120 112 108 108 108 108 320 320 328 328 320 312 312 308 312 312 120 124 124 0 124 108 108 104 128 128
34 316 320 324 324 320 308 308 304 308 304 120 120 124 124 28 108 108 104 104 108 316 320 324 324 320 308 312 304 312 308 120 120 124 124 0 108 108 104 128 128
35 304 308 316 312 308 296 296 292 296 292 108 112 112 108 108 28 96 92 92 96 304 308 316 312 308 296 296 292 296 296 108 112 112 108 108 0 96 92 116 116
36 304 304 312 312 304 292 292 288 292 292 104 108 108 108 104 96 28 88 92 92 304 304 312 312 304 296 296 292 296 296 104 108 108 108 108 96 0 92 116 116
37 300 304 308 312 304 292 288 288 292 288 104 108 108 104 104 92 92 28 88 92 300 304 308 312 304 296 292 288 296 292 104 108 108 104 104 92 92 0 108 112
38 324 324 328 332 324 316 312 308 316 312 128 128 128 128 128 116 116 108 28 116 324 324 332 332 324 316 316 312 316 316 128 128 128 128 128 116 116 108 0 116
39 324 328 328 332 324 316 312 308 316 312 128 128 128 128 128 116 116 108 116 28 324 324 328 328 328 316 316 312 316 316 128 128 128 128 128 116 116 112 116 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
0 0 112 112 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 28 112 112 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308
1 112 0 112 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 28 112 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308
2 112 112 0 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 28 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308
3 112 112 112 0 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 28 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308
4 112 112 112 112 0 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 28 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308
5 112 112 112 112 112 0 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 28 112 112 112 112 308 308 308 308 308 308 308 308 308 308
6 112 112 112 112 112 112 0 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 28 112 112 112 308 308 308 308 308 308 308 308 308 308
7 112 112 112 112 112 112 112 0 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 28 112 112 308 308 308 308 308 308 308 308 308 308
8 112 112 112 112 112 112 112 112 0 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 112 28 112 308 308 308 308 308 308 308 308 308 308
9 112 112 112 112 112 112 112 112 112 0 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 112 112 28 308 308 308 308 308 308 308 308 308 308
10 308 308 308 308 308 308 308 308 308 308 0 112 112 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 28 112 112 112 112 112 112 112 112 112
11 308 308 308 308 308 308 308 308 308 308 112 0 112 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 28 112 112 112 112 112 112 112 112
12 308 308 308 308 308 308 308 308 308 308 112 112 0 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 28 112 112 112 112 112 112 112
13 308 308 308 308 308 308 308 308 308 308 112 112 112 0 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 28 112 112 112 112 112 112
14 308 308 308 308 308 308 308 308 308 308 112 112 112 112 0 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 28 112 112 112 112 112
15 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 0 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 28 112 112 112 112
16 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 0 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 28 112 112 112
17 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 0 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 28 112 112
18 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 112 0 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 112 28 112
19 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 112 112 0 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 112 112 28
20 28 112 112 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 0 112 112 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308
21 112 28 112 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 0 112 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308
22 112 112 28 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 0 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308
23 112 112 112 28 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 0 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308
24 112 112 112 112 28 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 0 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308
25 112 112 112 112 112 28 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 0 112 112 112 112 308 308 308 308 308 308 308 308 308 308
26 112 112 112 112 112 112 28 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 0 112 112 112 308 308 308 308 308 308 308 308 308 308
27 112 112 112 112 112 112 112 28 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 0 112 112 308 308 308 308 308 308 308 308 308 308
28 112 112 112 112 112 112 112 112 28 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 112 0 112 308 308 308 308 308 308 308 308 308 308
29 112 112 112 112 112 112 112 112 112 28 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 112 112 0 308 308 308 308 308 308 308 308 308 308
30 308 308 308 308 308 308 308 308 308 308 28 112 112 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 0 112 112 112 112 112 112 112 112 112
31 308 308 308 308 308 308 308 308 308 308 112 28 112 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 0 112 112 112 112 112 112 112 112
32 308 308 308 308 308 308 308 308 308 308 112 112 28 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 0 112 112 112 112 112 112 112
33 308 308 308 308 308 308 308 308 308 308 112 112 112 28 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 0 112 112 112 112 112 112
34 308 308 308 308 308 308 308 308 308 308 112 112 112 112 28 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 0 112 112 112 112 112
35 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 28 112 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 0 112 112 112 112
36 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 28 112 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 0 112 112 112
37 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 28 112 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 0 112 112
38 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 112 28 112 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 112 0 112
39 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 112 112 28 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 112 112 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
0 28 112 112 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308
1 112 28 112 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308
2 112 112 28 112 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308
3 112 112 112 28 112 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308
4 112 112 112 112 28 112 112 112 112 112 308 308 308 308 308 308 308 308 308 308
5 112 112 112 112 112 28 112 112 112 112 308 308 308 308 308 308 308 308 308 308
6 112 112 112 112 112 112 28 112 112 112 308 308 308 308 308 308 308 308 308 308
7 112 112 112 112 112 112 112 28 112 112 308 308 308 308 308 308 308 308 308 308
8 112 112 112 112 112 112 112 112 28 112 308 308 308 308 308 308 308 308 308 308
9 112 112 112 112 112 112 112 112 112 28 308 308 308 308 308 308 308 308 308 308
10 308 308 308 308 308 308 308 308 308 308 28 112 112 112 112 112 112 112 112 112
11 308 308 308 308 308 308 308 308 308 308 112 28 112 112 112 112 112 112 112 112
12 308 308 308 308 308 308 308 308 308 308 112 112 28 112 112 112 112 112 112 112
13 308 308 308 308 308 308 308 308 308 308 112 112 112 28 112 112 112 112 112 112
14 308 308 308 308 308 308 308 308 308 308 112 112 112 112 28 112 112 112 112 112
15 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 28 112 112 112 112
16 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 28 112 112 112
17 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 28 112 112
18 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 112 28 112
19 308 308 308 308 308 308 308 308 308 308 112 112 112 112 112 112 112 112 112 28

3

1 308 112

0 1
0 112 308

Re
du

ce
co
nt
ex
ts

Reduce cores

0
0.2
0.4
0.6
0.8
1

0 100 200 300 400

CD
F

1

2
a

CD
F

No
rm

al
ize

4 clusters

3

b

4

Figure 7.4 – The four steps of MCTOP-ALG: From latency measurements to Ivy’s MCTOP multi-
core topology.

118

7.3. MCTOP-ALG: Inferring Topologies

necessary for avoiding potential whole-machine communication when broadcasting invalida-

tions for a shared cache line (e.g., in Opteron–see Section 4.4.2).

The outcome of this step is a latency table (Figure 7.4 1). Note that in practice we only need

to take measurements for either the upper or the lower triangular of the table as the latency

measurements are symmetric.

In order to improve the accuracy of each latency measurement, the two threads repeat the

lock-step execution for n times on each pair of hardware contexts (n = 2000 by default). These

n measurements are stored in a local array. Thereafter, the median latency and the percentile

standard deviation (stdev) of these latencies are calculated. If stdev is higher than a threshold

(7% by default), the execution is repeated on this configuration, while the maximum allowed

stdev is slightly increased. Retrying the execution for high stdevs ensures stable values, while

increasing the maximum stdev on a retry ensures that the measurements complete, even if

they are not very stable.

7.3.2 Latency Normalization

As the heatmap of Figure 7.4 1 shows, the relations between hardware contexts are rather clear.

The white diagonal represents the individual contexts, the two light gray diagonals represent

the hardware contexts of the same core, and the gray and dark-gray rectangles are the intra-

and cross-socket latencies, respectively. To extract these relations, MCTOP-ALG calculates the

cumulative distribution function (CDF) of the latency table values—Figure 7.4 2a . The value

clusters of CDF represent these aforementioned relations. MCTOP-ALG detects these clusters

and for each cluster generates a triplet with the minimum, median, and maximum latencies.

MCTOP-ALG uses the latency clusters for normalizing the latency table (Figure 7.4 2b). Each

value of the table is replaced with the median value of the cluster that it belongs to. Normaliza-

tion is required for detecting relations among hardware contexts.

7.3.3 Component Creation

MCTOP-ALG uses the normalized latency table to extract the relations among hardware contexts

for each latency level within the socket (e.g., the three first values of Figure 7.4 2a) and

assigns them to components. We recursively define a component Cl of level l > 0 as a set of

components of level l −1 s.t. any two components in Cl communicate with the latency of level

l and have the exact same communication latencies with all the other components of level

l −1. At level 0, with latency 0, every hardware context belongs to its own C0 component.

Using this definition of components, MCTOP-ALG recursively groups hardware contexts to-

gether by performing classification and reduction of the latency table. For example, in Fig-

ure 7.4 3 , the first step is to group the hardware contexts (components C0) of each core with

each other and reduce the table by only keeping the components C1 (i.e., the cores). Then, the

119

Chapter 7. Abstracting Multi-Core Topologies with MCTOP

cores of each socket are reduced to C2 components and we end up with only the cross-socket

latencies table.

The outcome is a set of components for each latency level. This assignment of hardware

contexts into components describes the relations between contexts.

7.3.4 Topology Creation

In this last step, MCTOP-ALG assigns “roles” to the components of different levels according

to MCTOP abstraction of Section 7.2. The result is an abstraction of the actual topology

of the processor as shown in Figure 7.4 4 (the memory measurements are described in

Section 7.4). MCTOP-ALG first detects whether (via measurements—see below) the target

multi-core includes SMT. If the multi-core has SMT, the components of the first non-zero

latency group represent the physical cores of the processor. Similarly, MCTOP-ALG classifies as

socket level the level with as many components as the the number of nodes. Every relation

higher than sockets represents cross-socket connectivity.

7.3.5 Practical Considerations

Removing the Effects of DVFS. Dynamic Voltage and Frequency Scaling (DVFS) is a common

hardware technique for reducing power consumption, where underutilized cores can execute

at various voltage/frequency settings. Our implementation of MCTOP-ALG explicitly waits

for the frequency of both cores to reach the maximum before proceeding to the lock-step

execution. To achieve this, MCTOP-ALG repeatedly measures the execution time of a long-

duration empty loop, until the execution time stabilizes.

Detecting SMT. �������� detects if the processor has symmetric multi-threading (SMT)

using the same idea with “removing the effects of DVFS.” A thread first executes a spin loop

solo on a core and measures the time of this execution. Then, two threads execute the same

loop on two contexts with minimum latency. If these are the hardware contexts of the same

core due to SMT, then the duration of the spin loop will increase.

Performance and Failures. MCTOP-ALG is designed to work solo on the target processor, as

it relies on the accuracy of latency measurements. In a few experiments with �������� on a

utilized machine we observe that MCTOP-ALG is still often able to detect the topology, mostly

depending on whether the threads of the other executing applications are pinned on specific

cores. Nevertheless, the additional measurements of �������� in Section 7.4 always require

an idle processor.

Even on an idle processor, MCTOP-ALG might fail to infer the topology (due to a few spurious

measurements). These spurious measurements are mostly because of (i) effects of DVFS, and

(ii) effects of SMT, where other OS/system processes might execute on the other hardware

120

7.4. Enriching MCTOP Topologies

contexts of the core that is being used by MCTOP-ALG. When MCTOP-ALG is not able to infer

the topology, an error message is printed and the user must retry the execution, possibly

with different settings (e.g., more repetitions). MCTOP-ALG relies on the uniform hierarchy of

topologies to detect failures: If during step 3 (component creation) the reduction of the table

cannot be performed, some of the measurements cannot be clustered properly.

In terms of performance, MCTOP-ALG needs ∼3 seconds to infer the topology of our smallest

platform (Ivy), while it takes 96 seconds to infer the topology of Westmere (160 contexts with

DVFS enabled). MCTOP-ALG is more stable and faster when DVFS is disabled.

Dynamic Changes of Multi-Cores. �������� does not currently support the detection of

dynamic changes of the topology of a multi-core. If, after the execution of MCTOP-ALG, SMT

is disabled through BIOS, or a hardware context is disabled via the OS, MCTOP-ALG must be

re-executed in order to detect the new configuration.

7.4 Enriching MCTOP Topologies

The basic topology representation which is created with MCTOP-ALG includes the communica-

tion latencies of the processor by design (see Section 7.3). These latencies are sufficient for

defining locality-oriented performance policies, such as “find the socket that is the closest to

socket x.” Although locality optimizations are very important on NUMA multi-cores, we argue

that with access to further low-level information in MCTOP abstraction, we can implement a

broader set of performance policies (see Section 7.5 for examples).

Therefore, MCTOP includes (i) the basic topology representation that is created by MCTOP-ALG,

and (ii) a set of additional multi-core measurements. We design �������� to be extensible,

so that developers can write plugins to enrich MCTOP. Essentially, plugins build on top

of �������� and collect measurements. We have implemented four essential plugins that

measure memory latencies and bandwidths, cache-related information, and power-related

information (only available on modern Intel processors).

Memory Latency. To estimate the memory latency, we design a plugin that uses a single

thread T . T allocates a large chunk of memory on the target memory node and creates a

linked list with randomly linked cache-line-sized nodes. T then measures the time it takes to

traverse the list. Because the size of the list is large and the access patterns are random, most

accesses are served by the main memory. T performs this measurement for all socket-node

combinations on top of MCTOP.

Memory Bandwidth. A second plugin estimates the bandwidth from sockets to nodes, using

as many threads as the number of hardware contexts per socket. These threads allocate

and access large chunks of memory sequentially, thus they are able to saturate the memory

bandwidth. The maximum bandwidth is estimated as the summation of the per-thread

121

Chapter 7. Abstracting Multi-Core Topologies with MCTOP

bandwidths. Additionally, this plugin estimates the single-thread read bandwidth, as well as

the single-thread and max write bandwidths.

Cache Latency and Size. The cache plugin estimates both the size and the latency of the

various levels in the cache hierarchy. To estimate latency, the plugin uses the same technique

as the memory latency measurements. The cache size estimation is based on those latency

measurements (i.e., it estimates the size of each level by detecting the data size that causes

latency to increase). Additionally, the plugin loads and includes the cache sizes from the

operating system.

Power Consumption. The latest Intel processors include Intel’s running average power

limit (RAPL) [111] interface for accurately measuring the power consumption of the cores,

the package, and the DRAM. We design a �������� plugin that uses RAPL to gather power

measurements which indicate the breakdown of power to hardware contexts. In order to

estimate the maximum power consumption, we use the same memory intensive workload

that we use for bandwidth measurements. We measure and include in MCTOP measurements

such as: idle processor power, full power (all hardware contexts are active), power of the first

hardware context, and power of the second context of one core.

7.5 Portable Optimizations with MCTOP

Optimizing a concurrent system for the underlying hardware hinders the portability to other

processors. In certain cases, this lack of portability is inevitable. For example, using Intel’s

transactional memory [111] results in software that can only execute on specific processor

models. However, for more traditional topology-oriented optimizations, such as locality or

bandwidth optimizations, we can achieve portable optimizations (i.e., fine-tuning the system

in a portable manner) on top of MCTOP. We can do so because these traditional notions are

accurately defined on MCTOP. For instance, “use the cores that are the closest to core x,” is a

policy that can be easily, accurately, and portably defined on MCTOP. Consequently, we can

define high-level performance policies on top of MCTOP that leverage, but at the same time

abstract the low-level details of the topology of multi-cores.

Essentially, MCTOP provides a query engine for the topology of multi-cores. Of course, software

should not rely on any assumptions regarding the underlying multi-core, but rather build

on top of ��������’s interface to access information in a portable manner. For instance,

an algorithm that explicitly allocates memory on nodes 0 and 1 will not work on a single-

node processor. Instead, the developer can use �����	
��	�
�	����� to provision for the

available resources of any multi-core.

In what follows, we highlight several examples of portable optimizations on top of MCTOP with

policies. We dedicate Section 7.6 to a detailed description of thread placement policies with

MCTOP. In Section 7.7, we implement and evaluate several of these examples.

122

7.5. Portable Optimizations with MCTOP

Optimal Work Stealing. Work stealing [22] is a commonly used technique in parallel run-

times that aims to minimize the imbalance of work across worker threads. In brief, worker

threads have access to work queues from which they dequeue and execute chunks of work. In

order to avoid imbalance, workers with no work must steal work from other worker threads.

Ideally, work stealing must be performed in a way that (i) reduces the overhead of accessing the

non-local queue, and (ii) optimizes the locality/bandwidth of the stealer to the work chunk.

�→ MCTOP Policies. Assume a parallel runtime with per-thread work queues. Then, on top of

MCTOP, we can easily implement the following work-stealing policy: If the local work queue is

empty, steal from the queue of the hardware contexts that are the closest in term of latency.

If unsuccessful, continue with the contexts that are in the next closest distance. Continue

this process until either work is found, or there is not work to steal. This policy defines work

stealing with optimal locality.

Optimal Reduction Trees. Many parallel algorithms and frameworks rely on the fork-join

computation model. The most notable example is of course the MapReduce paradigm [52]. In

the fork-join model, computation is split in chunks that are processed in parallel by multiple

processes. The local results of each process are then reduced (joined) to get the final result.

Intuitively, on a multi-core processor, when these local results represent a sizable amount of

data, the thread and data placement of the reduction process can have a large effect on the

performance of the computation.

�→ MCTOP Policies. We describe policies for cross-socket reduction trees that we believe are

broadly applicable. The following steps assume that multiple threads can operate concurrently

on reducing the same chunk of data. Within sockets, all threads of a socket cooperate on

reducing the same chunks. Across sockets, we build a binary reduction tree such that (i) the

final destination socket/node is the one that requires the final data, and (ii) at each level of the

tree, we choose the sockets to cooperate so that we maximize the bandwidth to data. We use

these policies in a sorting algorithm in Section 7.7.

Estimate Power Consumption. Power consumption and energy efficiency have gained at-

tention in the past few years [25, 32]. MCTOP’s power-related measurements on modern Intel

processors can be used to estimate the power consumption of a specific execution (i.e., a fixed

thread placement) before the actual execution.

�→ MCTOP Policies. Being able to estimate the power consumption of an execution gives us

the opportunity to trade performance off for lower power. For example, a low-power policy

(e.g., Section 7.6) prioritizes the use of hardware contexts that minimize power consumption.

Educated Backoffs. Waiting for a short period of time before retrying an operation, namely

backing off, is an essential technique for alleviating congestion in software. For example,

backoffs are used in lock implementations [3]. Estimating the correct amount of time to back

off is difficult. Small backoffs miss a window for further optimization, while large backoffs

could hurt performance by inducing idle periods of no work.

�→ MCTOP Policies. We define the granularity of backing off on top of MCTOP based on the

123

Chapter 7. Abstracting Multi-Core Topologies with MCTOP

intuition that “messages” on multi-cores travel as fast as coherence protocols. Accordingly,

we set the backoff quantum to be the maximum (or minimum, depending on the workload)

latency between any threads that are involved in the execution. We use this policy in lock

algorithms in Section 7.7.

7.6 Thread Placement with MCTOP

A prominent way of using ��������’s MCTOP is by developing higher-level libraries that rely

on performance policies. As we describe in Section 7.5, libraries such as locality-aware work

queues and reduction trees can deliver practically optimal performance without exposing the

details of the underlying hardware.

Another natural construction on top of MCTOP is a library that abstracts the placement of

threads to hardware contexts given some placement policy. For instance, we might need to

place threads so that they are as close as possible to one specific node where some data reside.

We can easily implement such functionality on top of �������� because of the topology

abstraction and the low-level measurements that MCTOP provides.

We develop MCTOP-PLACE, a thread placement library with 12 policies and runtime support

for changing policies. MCTOP-PLACE is portable: It can completely abstract the underlying

multi-core topology for any platform that �������� supports. MCTOP-PLACE comprises two

main components: (i) the creation of individual thread placements for given configurations

(i.e., policies and number of threads), and (ii) a placements pool that supports runtime

modification of configurations.

MCTOP-PLACE. �������� thread placement (MCTOP-PLACE) creates a mapping of threads

to hardware contexts given a placement policy. Optionally, the user can provide the number

of threads and the number of sockets of the placement. The basic interface of MCTOP-PLACE

includes functions for: (i) initialize a new MCTOP-PLACE object with a given policy, (ii) pin a

thread to the next available context of a MCTOP-PLACE object (if any), and (iii) unpin thread

from the context and return the context to MCTOP-PLACE.

We implement 12 placement policies (Table 7.2). In non-SMT multi-cores, 	
�, 	
���
��, and

�
���	
� policies are equivalent. We believe that these policies cover the most prominent

placement choices a programmer can make, such as compacting or spreading threads as much

as possible. Still, if none of these policies covers a required thread placement, implementing a

new policy is straightforward since the basic data structures for doing so are already in place.

Apart from the mapping of threads to hardware contexts, MCTOP-PLACE provides a plethora of

additional information and function calls to leverage ��������’s topology. Figure 7.5 shows an

example output of ����������������� on our Ivy platform (see Section 2.1). MCTOP-PLACE

calculates and exports details such as the number of cores that will be used, the bandwidth

124

7.6. Thread Placement with MCTOP

Name Short description

���� Threads are not pinned to hardware contexts.

��������	
 Use the sequential OS numbering.

����
�� Choose the socket with maximum local memory bandwidth. Starting from
this socket, place threads as compactly as possible on all hardware contexts
of this socket and then continue to the next-best connected neighboring
socket (i.e., with minimum latency and maximum bandwidth).

���������
�� Same goal as ����
��. Instead of using all hardware contexts, use all
unique cores of the socket before using the second hardware context. Still,
fill the first socket before using the next one.

�������� Same goal as ����
��. Instead of using all hardware contexts, use all
unique cores of all used sockets. Once all cores are used, use the second,
third, etc. hardware context of each core.

�	
	��� Balanced version of the ����� placements. Instead of first filling up a
socket before using the next one, balance threads to sockets.

�� Place threads round robin to sockets. Prioritizes the sockets with maximum
bandwidth to their local memory. Uses unique cores first (�������) or all
hardware contexts of the core (���
��).

����� Place threads so that the estimated maximum power consumption is
minimized. (only for Intel processors which support RAPL [111])

�����	
� Same as �������, but also re-adjusts the number of threads in order to
provide the number of threads per socket that is enough to saturate the
memory bandwidth to their local node.

Table 7.2 – The set of policies offered by MCTOP-PLACE.

proportions of each socket according to the allocation policy, and an estimation of the maxi-

mum power consumption with and without DRAM. Additionally, once a thread is pinned, it

has access to information such as its local node and its hardware context and core IDs within

the socket. In Section 7.7 we use MCTOP-PLACE in various examples.

�� ����� ���	
�
�
 � �������������������

� � ���
� � ��

� �� 	��

�
� ��� � � � � � � � !!!

� "�	#

� � � � ���� ����

� � �� 	
� $ ��	#

 � � ��

� � ���
� $ ��	#

 � �� �

� %� &��&��
'��� � �!(�� �!�)�

� ��� &�* �� +,�� � ((!-)�!) . ���!� ��

� ��� &�* *'
/ +,�� � ���!0 11!- . ��!(��

� ��� ��

�	2 � ��1 	2	�
�

� �'� 3��4*'4
/ �)! 1 5%$�

Figure 7.5 – Example output of MCTOP-PLACE.

125

Chapter 7. Abstracting Multi-Core Topologies with MCTOP

MCTOP-PLACE Pool. MCTOP-PLACE is sufficient to place threads according to a single place-

ment policy. However, software systems might require different placement policies in different

execution phases. To support this functionality we build an MCTOP-PLACE pool object that

offers runtime selection of placement policies. In Section 7.7 we show how we use MCTOP-

PLACE’s pool to extend the thread placement capabilities of OpenMP.

7.7 Examples of Portable Optimizations

We experimentally show how the performance policies on top of MCTOP achieve portable

optimizations in software. Our goal for this section is to illustrate (i) the usefulness of the low-

level measurements of MCTOP, (ii) the ability to optimize existing software using ,

and (iii) the portable efficiency of the resulting software.

Experimental Setup. We execute our experiments on all five platforms described in Sec-

tion 7.2.1. We perform 11 runs of each experiment and present the median performance.

We do not to show error bars for readability as our experiments have small variance. When-

ever there is variability across runs, we discuss it in text. The duration of each of our lock

experiments is 5 seconds.

7.7.1 Using Latencies to Optimize Locking

Traditional spinlock algorithms, such as ticket locks, resort to busy waiting when the lock is not

free [10, 149]. While busy waiting, it can be beneficial to back off before re-accessing the shared

memory location of the lock [3]. As discussed in Section 7.5, with MCTOP it is straightforward

to make educated backoff decisions for such algorithms. We use MCTOP to optimize three

lock algorithms: TAS, TTAS, and TICKET locks (see Table 2.1). We use as backoff quantum

the maximum communication latency between any two threads involved in the execution.

Different lock algorithms employ the backoff quantum in different ways. With ticket locks we

set the back off to be proportional to the position of the thread in the “queue” [119, 149]. With

TAS and TTAS, threads simply back off for one quantum before accessing the lock again.

Evaluation. Figure 7.6 includes the relative throughput of the three lock algorithms with

and without our MCTOP-based backoff schemes. The experiment involves multiple threads

0.5

1

1.5

2

2.5

0 10 20 30 40

Re
la

tiv
e

Th
ro

ug
hp

ut

Ivy

0.5

1

1.5

2

2.5

0 10 20 30 40 50

Opteron

0.5

1

1.5

2

2.5

0 20 40 60 80 100

Haswell
TAS TTAS TICKET

0.5

1

1.5

2

2.5

0 40 80 120 160

Westmere

0.5

1

1.5

2

2.5

0 60 120 180 240 300

SPARC-T44

Threads

Figure 7.6 – Throughput of different lock algorithms using educated backoffs with MCTOP.

126

7.7. Examples of Portable Optimizations

competing for the same lock, performing 1000 cycles of work in the critical section, and then

releasing the lock. Threads pause after each iteration to avoid long runs [153]. On both the ���

and the ����� processors, we use the 	
��
 instruction for pausing [111, 169] as the baseline.

On ���, we invoke 	
��
 in a loop to implement our backoff quantum.

Backing off with the “correct” backoff granularity significantly improves performance: On av-

erage, we improve the performance of TAS, TTAS, and TICKET by 25%, 8%, and 39%, respectively.

These performance gains are consistent across platforms, without requiring reconfiguration

or re-compilation of the applications.

Conclusion. We show how MCTOP’s low-level information can be used to optimize the perfor-

mance of locking algorithms. The optimization is portable across platforms, as �������	’s

interface provides us with the necessary latencies on each platform.

7.7.2 Using �������� in Parallel Mergesort

We use �������	 to devise a very fast, portable mergesort algorithm. Our novelty lies in the

way we perform NUMA-aware merging. The starting point for our algorithm is the parallel sort

algorithm of the C++ standard library (����	
�
��
�������) [200]. ����	
�
��
�������

involves two main steps: (i) it breaks the target array into n chunks and sorts these chunks

with the standard sequential quicksort algorithm (n is the number of available threads), and

(ii) it iteratively performs parallel merging on the sorted chunks until the result is a single

sorted array.

Our mergesort algorithm, namely ����	�����, takes the same first step as

����	
�
��
�������. Nevertheless, ����	����� merges the sorted arrays using the

optimal reduction tree presented in Section 7.5.

Using SMT Cleverly. Merging two sorted arrays using traditional comparison instructions

is suboptimal: The aggressive out-of-order cores are not able to predict the direction of the

merge branch (i.e., which of the two arrays will give the next element). Recent projects [40, 109]

show how to use SIMD instructions for efficient merging. Using 128-bit instructions, we can

create a bitonic merge network that merges 8 elements at a time.

However, SIMD registers are shared across the SMT hardware contexts of a core, hence we

cannot simply let all contexts perform merging. We implement a variant of ����	�����,

namely ����	��������
, that bypasses this limitation. Once the sequential sorting is over,

we let the first hardware context of each core use SIMD for merging, while the remaining

perform traditional non-SIMD merging. To compensate for the faster merging with SIMD,

threads using non-SIMD merging are assigned one-third of the data of SIMD threads.

127

Chapter 7. Abstracting Multi-Core Topologies with MCTOP

1.
00 1.

00

1.
00 1.

00 1.
00

1.
00 1.

00

1.
00 1.
00 1.

000.
74 0.

76

0.
97 0.
82 0.

74

0.
91 0.
73

0.
80 0.
95 0.
740.

70 0.
87 0.
82

0.
89

0.
77 1.
03

0

2

4

6
Iv

y

Op
te

ro
n

Ha
sw

el
l

W
es

tm
er

e

SP
AR

C-
T4

4 Iv
y

Op
te

ro
n

Ha
sw

el
l

W
es

tm
er

e

SP
AR

C-
T4

4

16 Cores Full machine

Ti
m

e
(s

)

sequential part gnu_parallel::sort mctop_sort mctop_sort_sse

Figure 7.7 – Sorting 1GB worth of integers on various platforms. The labels on top of each bar
indicate the execution time relative to .

Evaluation. Figure 7.7 includes a comparison between and

. With , threads are spread to sockets, in order to

benefit from the LLC of each socket (using policy from MCTOP-PLACE). The performance of

our algorithm is stable across runs, since the placement of threads and data is deterministic.

In contrast, we notice big variance for , based on the thread placement

of the OS scheduler.

is consistently faster than (we observe the same behavior

on different data sizes—not shown in the graph), because it always chooses the optimal

placement of threads. On average, is 19% faster than ,

which translates to 41% faster merging if we exclude the sequential part of the sorting that is

the same on both algorithms. delivers similar performance to

on average, but it can be up to 11% faster than (on Haswell).

Conclusion. Building optimal merging is straightforward on MCTOP. We leverage low-level

details (e.g., bandwidth and latency between nodes) of multi-cores without the need for any

platform-specific optimizations.

7.7.3 Using to Improve Metis

We use to optimize the Metis MapReduce library for multi-cores [28, 142]. Metis

pins worker threads to hardware contexts sequentially. The reason for this choice is that

offering multiple placement policies for every platform is cumbersome, given the diverse char-

acteristics of different platforms. Thus, we build a new version of Metis by linking

and using the different placement policies of MCTOP-PLACE (see Section 7.6). As a result, we

can choose any of the high-level placement policies offered by MCTOP-PLACE at runtime.

Evaluation. We evaluate Metis in terms of performance and energy efficiency (wherever

available), using a set of four representative workloads. We identify the needs of each ap-

plication, and then use MCTOP-PLACE with the placement policy that best expresses these

128

7.7. Examples of Portable Optimizations

1.
00 1.
04

0.
82

0.
83

0.
70 1.

00

0.
98

0.
56 0.

84 1.
00

1.
00

0.
60 0.

97

0.
73

0.
7* 1.

01

0.
66 1.

00

0.
97

0.
27

0.
95

0.
60 1.

02

0.
42

0.
99

0.
94

0.
96 0.
99

0.0
0.5
1.0
1.5

Iv
y

Op
te

ro
n

Ha
sw

el
l

W
es

tm
er

e

SP
AR

C-
T4

4 Iv
y

Op
te

ro
n

Ha
sw

el
l

W
es

tm
er

e

SP
AR

C-
T4

4 Iv
y

Op
te

ro
n

Ha
sw

el
l

W
es

tm
er

e

SP
AR

C-
T4

4 Iv
y

Op
te

ro
n

Ha
sw

el
l

W
es

tm
er

e

SP
AR

C-
T4

4

K-Means (CON_CORE_HWC) Mean (CON_HWC) Word Count (RR) Matrix Mult (CON_CORE)

Re
la

tiv
e

Ti
m

e Execution Time Energy

Figure 7.8 – Relative execution time and energy efficiency of Metis with versus without
. All workloads are optimized for performance. (*SPARC-T44 for Word Count uses
MCTOP-PLACE placement.)

needs. We also select the best-performance number of threads for both versions of Metis.

MCTOP-enabled Metis always uses fewer or an equal number of threads than default Metis.

As Figure 7.8 reveals, different workloads have different placement needs. Thus, using the de-

fault sequential policy of Metis delivers suboptimal performance in all workloads for different

platforms. Our version of Metis delivers 17% better performance, across the five platforms,

with 14% less energy on the two Intel processors. It is worth noting that in one workload,

namely Word Count, our SPARC-T44 has different placement requirements than the plat-

forms, delivering the best performance with cores of a single socket. Our performance analysis

shows that Word Count has heavy memory allocation and synchronization that benefit from

intra-socket locality. Finally, note that in this example we aim at performance, although we do

achieve energy gains in some cases. In several Metis workloads, we can trade performance for

energy using different threads placements (i.e.,)—not shown in the graphs.

Conclusion. By modifying the Metis library, we show how a complex software system can be

easily take advantage of MCTOP, in order to achieve portable optimizations. General purpose

frameworks, such as Metis, can get out-of-the-box benefits from using .

7.7.4 Using to Enrich OpenMP

The GNU OpenMP runtime [23, 180] does not pin threads to cores by default. How-

ever, allows users to set the available places of parallel threads on the available

hardware contexts, as well as coarse-grain strategies for assigning parallel threads to places

(e.g., keep them close, or spread them as much as possible). thread placement ca-

pabilities are: (i) offline—they are set through environmental variables before the execution,

(ii) inflexible—placements cannot be modified at runtime and are dependent on the num-

ber of threads used during initialization, (iii) not fully portable—in many cases placements

must be defined differently across platforms to achieve the same effects, (iv) not optimized—

placements do not rely on latency or bandwidth numbers.

129

Chapter 7. Abstracting Multi-Core Topologies with MCTOP

0.
57 0.

84

0.
64

0.
33

0.
94 1.
03

1.
05

0.
79 0.

95 1.
09

0.
94 1.
06

0.
84

0.
78 0.
83

0.
77

0.
69

0.
67

0.
65

0.
16

0.
91

0.
59 0.

84

0.
78

0.0
0.5
1.0
1.5

Iv
y

O
pt

er
on

Ha
sw

el
l

W
es

tm
er

e Iv
y

O
pt

er
on

Ha
sw

el
l

W
es

tm
er

e Iv
y

O
pt

er
on

Ha
sw

el
l

W
es

tm
er

e Iv
y

O
pt

er
on

Ha
sw

el
l

W
es

tm
er

e Iv
y

O
pt

er
on

Ha
sw

el
l

W
es

tm
er

e Iv
y

O
pt

er
on

Ha
sw

el
l

W
es

tm
er

e

Communities
(CON_CORE_HWC)

Hop Distance
(CON_CORE_HWC)

PageRank
(BALANCE)

Potential Friends
(CON_CORE_HWC)

Rand Degr. Samp.
(CON_CORE_HWC)

Combination
(COMBINATION)

Re
la

tiv
e

Ti
m

e

Figure 7.9 – Relative execution time of MCTOP_MP compared to default OpenMP for various
workloads.

We extend the thread placement capabilities of (in gcc v4.9.3) using (and

MCTOP-PLACE) in order to offer richer and higher-level placement policies. In detail, we plug

MCTOP-PLACE in OpenMP and add the function to the OpenMP

interface. Doing so, we enable developers to (i) choose placement policies during runtime,

(ii) change placement policies between parallel regions, and (ii) leverage the high-level seman-

tics of the MCTOP-PLACE placement policies that generate portable thread bindings.

Evaluation. We evaluate our extended OpenMP (MCTOP_MP) runtime against the vanilla

OpenMP library on various graph algorithm workloads produced by Green-

Marl [108]—Figure 7.9.3 We use large datasets (e.g., 100M nodes with 800M edges).

We use MCTOP_MP to enable automatic thread placement policy selection, by running small

parts of the workload using different policies and identifying the optimal policy for each

parallel section.4 In contrast, such online decisions are not possible with OpenMP, since it

does not offer the same high-level semantics and also cannot dynamically adjust the thread

placement at runtime. Overall, our MCTOP_MP version of the algorithms is on average 22%

faster across platforms and workloads.

We further port MCTOP_MP’s thread placements to OpenMP, in order to estimate the amount

of work for reproducing these placements using the default OpenMP capabilities. We observe

that in order to reproduce the exact same configurations (with possibly different number of

threads per platform) we had to design one policy per-platform per-workload with OpenMP. In

terms of performance—not shown in the graphs, our automatic MCTOP_MP solution delivers

very similar results to OpenMP with fixed placements.

Finally, we combine two kernels (PageRank and Potential Friends) into a single application,

namely Combination. With OpenMP, trying to recreate MCTOP_MP’s placement proves im-

possible: We have to choose the optimal placement policy for either of the kernels, while the

performance of the other suffers. This results in 9% lower performance for OpenMP.

3 The available implementation of Green-Marl [107] does not support .
4 Even if the configuration would be manually selected, the developer would need to find which placement policy

matches the characteristic of each algorithm and use this policy across platforms.

130

7.8. Conclusions

Conclusion. MCTOP_MP shows that it is straightforward to offer portable optimizations

through �������� in software libraries such as OpenMP. MCTOP_MP offers high-level place-

ment policies and runtime support for policy selection and adaptation—characteristics that

we believe are useful to OpenMP developers.

7.8 Conclusions

Optimizing concurrent software systems for multi-cores involves fine-tuning not only synchro-

nization, but every aspect of concurrent programming (e.g., thread and memory placement).

Inevitably, performing such optimization is typically platform-specific, hence non-portable.

In this chapter, we introduced ��������, a library that enables developers to optimize their

software on multi-cores in a portable manner. �������� is based on the MCTOP topology

representation that abstracts both the topology and important low-level performance informa-

tion of the processor. We showed how developers can define high-level performance policies

on top of MCTOP to achieve portable optimizations. We illustrated these high-level policies on

various examples, including an extended OpenMP runtime with dynamic support for thread

placement policy selection based on ��������.

131

8 Concluding Remarks

In this dissertation, we studied how to minimize the effects of synchronization on the scala-

bility of concurrent software. To this end, we performed two analyses of synchronization on

modern hardware, one involving traditional performance metrics, such as throughput and

latency, and another focusing on the energy efficiency of locks. The results of these analyses

indicate that scalability of synchronization is mainly a property of the underlying hardware,

meaning that hardware imposes certain limitations that software cannot bypass.

Nevertheless, we further showed that although these hardware limitations cannot be bypassed

by software, they can be hidden in generic and portable ways. In detail, we introduced OPTIK, a

design pattern for devising scalable concurrent data structures and illustrated the effectiveness

of OPTIK by designing five new algorithms. We also showed that these novel OPTIK-based

algorithms are more scalable than the state of the art. Additionally, we introduced MCTOP,

a multi-core topology abstraction which enables developers to portably define high-level

performance policies. These policies utilize low-level characteristics of multi-cores, such as

latencies and bandwidth, without exposing them to the programmer, resulting in portable

software optimizations. We illustrated several such policies, such as automatic lock backoffs,

and the portability of these policies across five processors.

8.1 Implications

Hardware. Modern multi-core hardware is clearly not optimized for synchronization (nei-

ther in terms of performance nor in terms of energy efficiency). Software developers either

employ busy-waiting techniques, which burn the cores at full speed, or rely on thread sleeping,

which is implemented in software and is thus particularly slow.

Recent efforts, such as the introduction of transactional synchronization extensions

(TSX) [113] in Intel processors, attempted to simplify concurrent programming while de-

livering reasonable performance. However, our brief experience with TSX and related re-

133

Chapter 8. Concluding Remarks

search [194, 217] indicate that programming with TSX is not straightforward, mainly because

fall-back mechanisms are required in case transactions repeatedly fail to commit.1

As we have showed in this thesis, hardware largely dictates the expected behavior of synchro-

nization Accordingly, based on the findings of this dissertation, we argue for several potential

hardware improvements.

First, ����������	�� must be exposed in user space.2 Using these instructions properly

can bring several benefits: (i) the waiting thread does not saturate the core with busy wait-

ing, hence the other hardware thread(s) of the core can execute unobstructedly, (ii) waiting

threads consume lower power, as the underlying core can enter a low-power state, (iii) wait-

ing threads do not flood the memory subsystem with requests, hence a lock release (i.e., a

memory store) can propagate faster, and (iv) ��	�� offers a performance/energy trade-off,

as programmers can hint the processor how deep should be the sleep state that ��	�� uses.

Of course, ����������	�� is not a panacea because threads still keep hardware contexts

occupied, causing significant problems, especially in oversubscribed configurations.

Second, the
��
	��� instruction must be redesigned to offer energy efficiency and more rich

functionality. We argue that the duration of
	��� on Intel processors (i.e., a couple of cycles)

is very low and does not bring any actual benefits. Ideally, the
	��� instruction should accept

the pause duration as a parameter (similar to ��
	��� on recent ����� processors [169]). Such

functionality could bring two benefits: (i) developers can directly map backoff techniques to

	���, and (ii) hardware can save energy proportional to the amount of time that a thread

requests to pause for.

Furthermore, synchronization can benefit from other energy-related hardware advances, such

as fast per-core DVFS transitions.3 If cores can transition between voltage-frequency (VF)

settings within a few cycles, then any type of busy waiting (e.g., in locks, thread barriers)

can be immediately optimized for lower power consumption. Of course, this type of power

optimizations should be preferably hidden behind more specialized instructions, such as

����������	�� and
	���, which we previously discussed.

Software. General purpose software systems, such as MySQL and Memcached, require

portability on different platforms. Inevitably, this portability comes with the price of both

wasted time and energy for synchronization. As we showed in this thesis, busy waiting wastes

power and does not play well when many threads (from one or many applications) execute on

the same processor, while sleeping significantly degrades performance. Additionally, we clearly

showed that different synchronization algorithms perform well under different configurations.

1 Actually, in our experience on Haswell (not described in this dissertation), there are cases were small transactions
deterministically abort without any actual contention.

2 Recent AMD and Oracle processors already support user-space ����������	��.
3 As we describe in Chapter 2, DVFS stands for “dynamic voltage and frequency scaling.”

134

8.2. Future Research

Consequently, there is a need for algorithmic adaptivity in synchronization. Synchronization

schemes must be able to adapt to the current configuration in order to perform well under

varying platforms and workloads. Of course, implementing adaptivity is not straightforward

for various reasons. (i) Which algorithms do we need to include? (ii) Which algorithms are

suitable for a specific hardware platform? (iii) How frequently to adapt? and (iv) How to keep

the overhead of adaptivity low?

Similarly, we optimized software using thread placement based on policies. These policies are

deterministically defined on top of our MCTOP topology abstraction. For example, locality can

be precisely defined on any platform as the latencies among cores can be accurately measured.

However, thread and data placement is a subset of a larger, more complicated problem, namely

thread scheduling. In detail, if every software application optimizes its thread placement

locally (e.g., using ��������), two or more applications on the same processor would probably

contend for the same resources, resulting in suboptimal performance. Accordingly, we argue

that OS schedulers should offer functionalities similar to ��������, allowing applications to

hint the scheduler about their needs. The OS scheduler can leverage the global view of the

system and low-level information to take improve scheduling.

8.2 Future Research

As multi-core processors keep growing in terms of processing and memory capabilities, more

scalable concurrent systems are necessary for leveraging the full potential of this hardware.

Additionally, emerging memory technologies promise unprecedented software scalability. We

would be very interested in taking the work of this dissertation one significant step further.

Therefore, our future research directions revolve around “How can we build software systems

that scale both in terms of performance and energy efficiency?” Below, we briefly describe three

potential directions for answering this question.

Scaling Synchronization Further. Our experiences with optimizing systems (Chapters 4, 6

and 7) showed that (i) we can improve scalability with generic solutions (e.g., replacing locks),

and (ii) we can significantly improve scalability with specialized solutions (e.g., our Metis

optimizations). Accordingly, we would first like to further push the limits of locking. We are

currently investigating how to design adaptive lock algorithms that adapt fast to the current

contention levels and have very low overhead. In the future, we would also like to investigate

adaptiveness to the specifics of the underlying hardware using �������� (e.g., on large NUMA

processors, under high contention, the adaptive lock should turn into a hierarchical lock).

Additionally, we would like to further investigate how to design and apply specialized solutions

(i.e., data structures, locks, and other patterns) for improving the scalability of system software.

In this process, hardware transactional memory could help, as it allows for simple solutions to

complex synchronization patterns which are not in the critical path (e.g., tree rebalancing).

135

Chapter 8. Concluding Remarks

Scaling Performance and Energy Efficiency Using Emerging Hardware. Emerging mem-

ory technologies, such as non-volatile memories and near-memory computing, open up great

opportunities for improving the scalability of software systems. To achieve this scalability, we

must develop new techniques and models for taking advantage of their capabilities.

In detail, non-volatile memory (NVM) provides persistent memory with latencies in between

non-volatile flash storage and traditional volatile DRAM memory (NVMs are expected to be

approximately 10x slower than DRAM—100x faster than flash memory). These characteristics

of NVMs enable persistence without the performance costs induced by traditional techniques,

such as write-ahead logging. Nevertheless, NVMs are still slower than DRAM memory, thus we

cannot simply move data on NVM. We intend to work on models for exposing the persistence

of NVM to the programmer. Two concrete approaches are to design persistent software

transactional memory systems and concurrent data structures. These new models will still

need to use DRAM for performance, but will have access to fast persistent NVM storage.

Recent advances in memory technologies have enabled the integration of low-power logic

into conventional DRAM chips, reviving the old idea of near-memory processing (NMP) [91,

171, 175]. The logic inside the memory chips can leverage the abundant internal memory

bandwidth and the proximity to the data to perform memory-intensive operations, minimizing

the energy consumption by avoiding slow and energy-hungry off-chip communication. An

interesting direction for NMP would be to offload complex access patterns that are ill-suited

for modern processors—e.g., traversing graphs and linked data structures—which fully expose

the memory latency. NMP raises thus the questions of (i) designing data structures that achieve

the best efficiency on NMP-based systems, and (ii) how to efficiently implement operations

on the limited capabilities of programmable NMPs.

Reducing Energy Consumption. Modern multi-core servers (from Intel and Oracle) include

accurate energy measurements and voltage-frequency (VF) control. The granularity of these

measurements and the control is still coarse grained, but hardware trends lean towards

more fine-grained control. These capabilities will enable fine-grained power consumption

monitoring and control. We would be interested in designing tools for accurate power profiling.

We can then leverage these tools to improve the energy efficiency of software via, for example,

thread scheduling. Additionally, as the latency of VF control reaches the nanosecond scale,

we will be able to fine-tune energy efficiency by trading in performance for lower power. For

example, spinning behind a lock can be performed in the lowest consumption state, while

traversing a large linked data structure could deliver the maximum energy efficiency in an

intermediate VF setting.

136

Bibliography

[1] José L. Abellán, Juan Fernández, and Manuel E. Acacio. GLocks: Efficient Support for

Highly-Contended Locks In Many-Core CMPs. In IPDPS, pages 893–905. IEEE, 2011.

[Page 3]

[2] Umut A. Acar, Arthur Charguéraud, and Mike Rainey. Scheduling Parallel Programs By

Work Stealing with Private Deques. In PPOPP, pages 219–228. ACM, 2013. [Page 26]

[3] Anant Agarwal and Mathews Cherian. Adaptive Backoff Synchronization Techniques.

In ISCA, pages 396–406. ACM, 1989. [Pages 20, 123, and 126]

[4] Marcos Kawazoe Aguilera, Arif Merchant, Mehul A. Shah, Alistair C. Veitch, and Chris-

tos T. Karamanolis. Sinfonia: A New Paradigm for Building Scalable Distributed Systems.

In SOSP, pages 159–174. ACM, 2007. [Pages 24 and 83]

[5] Brian Aker. libmemcached. ����������	
	����

����. Accessed: 2016-07-29. [Page 51]

[6] Dan Alistarh, Keren Censor-Hillel, and Nir Shavit. Are Lock-Free Concurrent Algorithms

Practically Wait-Free? In STOC, pages 714–723. ACM, 2014. [Page 23]

[7] AMD. Software Optimization Guide for AMD Family 10h and 12h Processors. ������

�����������	
���	��
��������������
�. Accessed 2016-07-29. [Page 35]

[8] Gene M. Amdahl. Validity of the Single Processor Approach to Achieving Large Scale

Computing Capabilities. In AFIPS Spring Joint Computing Conference, pages 483–485.

AFIPS / ACM / Thomson Book Company, 1967. [Page 2]

[9] Nikos Anastopoulos and Nectarios Koziris. Facilitating Efficient Synchronization of

Asymmetric Threads On Hyper-Threaded Processors. In IPDPS, pages 1–8. IEEE, 2008.

[Page 63]

[10] Thomas E. Anderson. The Performance of Spin Lock Alternatives for Shared-Money

Multiprocessors. IEEE Trans. Parallel Distrib. Syst., 1(1):6–16, 1990. [Pages 3, 13, 14, 20, 36,

and 126]

[11] Maya Arbel and Hagit Attiya. Concurrent Updates with RCU: Search Tree as an Example.

In PODC, pages 196–205. ACM, 2014. [Page 23]

137

Bibliography

[12] Maya Arbel and Adam Morrison. Predicate RCU: an RCU for Scalable Concurrent

Updates. In PPOPP, pages 21–30. ACM, 2015. [Page 23]

[13] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing Memory Robustly In Message-

Passing Systems. In PODC, pages 363–375. ACM, 1990. [Pages 14 and 21]

[14] Hagit Attiya, Rachid Guerraoui, Danny Hendler, Petr Kuznetsov, Maged M. Michael, and

Martin T. Vechev. Laws of Order: Expensive Synchronization in Concurrent Algorithms

Cannot Be Eliminated. In POPL, pages 487–498. ACM, 2011. [Pages 10, 12, and 19]

[15] Woongki Baek and Trishul M. Chilimbi. Green: A Framework for Supporting Energy-

Conscious Programming Using Controlled Approximation. In PLDI, pages 198–209.

ACM, 2010. [Page 25]

[16] Luiz André Barroso and Urs Hölzle. The Case for Energy-Proportional Computing. IEEE

Computer, 40(12):33–37, 2007. [Pages 3 and 55]

[17] Andrew Baumann, Paul Barham, Pierre-Évariste Dagand, Tim Harris, Rebecca Isaacs,

Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Singhania. The Multi-

kernel: A New OS Architecture for Scalable Multicore Systems. In SOSP, pages 29–44.

ACM, 2009. [Pages 2, 3, 21, 24, 26, 37, and 111]

[18] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis, and

Edouard Bugnion. IX: A Protected Dataplane Operating System for High Throughput

and Low Latency. In OSDI, pages 49–65. USENIX, 2014. [Page 26]

[19] Luca Benini, Mahmut Kandemir, and J Ramanujam. Compilers and Operating Systems

for Low Power. Springer Science & Business Media, 2011. [Page 25]

[20] Mateusz Berezecki, Eitan Frachtenberg, Mike Paleczny, and Kenneth Steele. Power

and Performance Evaluation of Memcached on the TilePro64 Architecture. Sustainable

Computing: Informatics and Systems, Elsevier, 2(2):81–90, 2012. [Page 26]

[21] Arnd Bergmann. BKL: That’s All, Folks. ����� � � � ��� 	
��
�� 	

��� � ���� � ��
�� �
��
�� � ��� � �������� � ��
�� 	 ��� � ������ � ��� �

���������� !� ��� �"!� #�"����!������"��. Accessed: 2016-07-15. [Page 2]

[22] Robert D. Blumofe. Scheduling Multithreaded Computations By Work Stealing. In FOCS,

pages 356–368. IEEE, 1994. [Page 123]

[23] OpenMP Architecture Review Board. OpenMP Application Program Interface, Version

4.0. �������$$$	���
��	������%������
���&��
'(�	 	 	��", 2013. Accessed:

2016-07-29. [Pages 26 and 129]

[24] Leonid B. Boguslavsky, Karim Harzallah, Alexander Y. Kreinin, Kenneth C. Sevcik, and

Alexander Vainshtein. Optimal Strategies for Spinning and Blocking. J. Parallel Distrib.

Comput., 21(2):246–254, 1994. [Pages 3 and 21]

138

Bibliography

[25] Shekhar Borkar. Design Challenges of Technology Scaling. IEEE Micro, 19(4):23–29,

1999. [Pages 9 and 123]

[26] Shekhar Borkar and Andrew A. Chien. The Future of Microprocessors. Commun. ACM,

54(5):67–77, 2011. [Page 1]

[27] Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao, M. Frans Kaashoek, Robert

Morris, Aleksey Pesterev, Lex Stein, Ming Wu, Yue-hua Dai, Yang Zhang, and Zheng

Zhang. Corey: An Operating System for Many Cores. In OSDI, pages 43–57. USENIX,

2008. [Pages 2, 3, 24, 26, and 111]

[28] Silas Boyd-Wickizer, Austin T. Clements, Yandong Mao, Aleksey Pesterev, M. Frans

Kaashoek, Robert Morris, and Nickolai Zeldovich. An Analysis of Linux Scalability to

Many Cores. In OSDI, pages 1–16. USENIX, 2010. [Pages 2, 3, 25, 26, 31, 111, and 128]

[29] Silas Boyd-Wickizer, M Frans Kaashoek, Robert Morris, and Nickolai Zeldovich. Non-

scalable Locks Are Dangerous. In Proceedings of the Linux Symposium, pages 119–130,

2012. [Pages 2 and 21]

[30] Nathan Grasso Bronson, Jared Casper, Hassan Chafi, and Kunle Olukotun. A Practical

Concurrent Binary Search Tree. In PPOPP, pages 257–268. ACM, 2010. [Pages 23, 81, and 106]

[31] François Broquedis, Jérôme Clet-Ortega, Stephanie Moreaud, Nathalie Furmento, Brice

Goglin, Guillaume Mercier, Samuel Thibault, and Raymond Namyst. hwloc: A Generic

Framework for Managing Hardware Affinities in HPC Applications. In PDP, pages

180–186. IEEE, 2010. [Page 26]

[32] David J. Brown and Charles Reams. Toward Energy-Efficient Computing. Commun.

ACM, 53(3):50–58, 2010. [Page 123]

[33] Davidlohr Bueso. Scalability Techniques For Practical Synchronization Primitives. Com-

mun. ACM, 58(1):66–74, 2015. [Pages 2 and 3]

[34] Irina Calciu, David Dice, Yossi Lev, Victor Luchangco, Virendra J. Marathe, and Nir Shavit.

NUMA-Aware Reader-Writer Locks. In PPOPP, pages 157–166. ACM, 2013. [Page 26]

[35] Bryan Cantrill and Jeff Bonwick. Real-World Concurrency. Commun. ACM, 51(11):34–39,

2008. [Page 2]

[36] Calin Cascaval, Colin Blundell, Maged M. Michael, Harold W. Cain, Peng Wu, Stefanie

Chiras, and Siddhartha Chatterjee. Software Transactional Memory: Why Is It Only a

Research Toy? ACM Queue, 6(5):46–58, 2008. [Page 24]

[37] Milind Chabbi and John M. Mellor-Crummey. Contention-Conscious, Locality-

Preserving Locks. In PPOPP, pages 1–14. ACM, 2016. [Page 26]

139

Bibliography

[38] Milind Chabbi, Michael W. Fagan, and John M. Mellor-Crummey. High Performance

Locks for Multi-Level NUMA Systems. In PPOPP, pages 215–226. ACM, 2015. [Pages 20

and 26]

[39] Jeffrey S. Chase, Darrell C. Anderson, Prachi N. Thakar, Amin M. Vahdat, and Ronald P.

Doyle. Managing Energy and Server Resources in Hosting Centers. In SOSP, pages

103–116. ACM, 2001. [Page 25]

[40] Jatin Chhugani, Anthony D. Nguyen, Victor W. Lee, William Macy, Mostafa Hagog,

Yen-Kuang Chen, Akram Baransi, Sanjeev Kumar, and Pradeep Dubey. Efficient Imple-

mentation of Sorting on Multi-Core SIMD CPU Architecture. PVLDB, 1(2):1313–1324,

2008. [Page 127]

[41] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson Engler. An

Empirical Study of Operating Systems Errors. In SOSP, pages 73–88. ACM, 2001. [Page 2]

[42] Austin T. Clements, M. Frans Kaashoek, and Nickolai Zeldovich. Scalable Address Spaces

Using RCU Balanced Trees. In ASPLOS, pages 199–210. ACM, 2012. [Page 2]

[43] Austin T. Clements, M. Frans Kaashoek, Nickolai Zeldovich, Robert Tappan Morris,

and Eddie Kohler. The Scalable Commutativity Rule: Designing Scalable Software for

Multicore Processors. In SOSP, pages 1–17. ACM, 2013. [Pages 2, 3, and 25]

[44] Clem Cole and Russell Williams. Photoshop Scalability: Keeping it Simple. Commun.

ACM, 53(10):32–38, 2010. [Page 2]

[45] Pat Conway, Nathan Kalyanasundharam, Gregg Donley, Kevin Lepak, and Bill Hughes.

Cache Hierarchy and Memory Subsystem of the AMD Opteron Processor. IEEE Micro,

30(2):16–29, 2010. [Pages 12 and 35]

[46] Travis Craig. Building FIFO and Priority-Queuing Spin Locks From Atomic Swap. Tech-

nical report, University of Washington, Seattle, 1993. [Pages 3, 13, 14, and 20]

[47] Luke Dalessandro, Michael F. Spear, and Michael L. Scott. NOrec: Streamlining STM By

Abolishing Ownership Records. In PPOPP, pages 67–78. ACM, 2010. [Pages 24, 83, 88, and 89]

[48] Tudor David and Rachid Guerraoui. Concurrent Search Data Structures Can Be Blocking

and Practically Wait-Free. In SPAA, pages 337–348. ACM, 2016. [Pages 15 and 23]

[49] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. Everything You Always Wanted

to Know About Synchronization but Were Afraid to Ask. In SOSP, pages 33–48. ACM,

2013. [Page 14]

[50] Tudor David, Rachid Guerraoui, Tong Che, and Vasileios Trigonakis. Designing ASCY-

compliant Concurrent Search Data Structures. Technical report, EPFL, Lausanne, 2014.

[Pages 82, 85, and 106]

140

Bibliography

[51] Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. Asynchronized Concurrency:

The Secret to Scaling Concurrent Search Data Structures. In ASPLOS, pages 631–644.

ACM, 2015. [Pages 23, 52, 82, 85, 86, 100, 101, and 106]

[52] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on Large

Clusters. In OSDI, pages 137–150. USENIX, 2004. [Pages 1 and 123]

[53] Robert H Dennard, Fritz H Gaensslen, V Leo Rideout, Ernest Bassous, and Andre R

LeBlanc. Design of Ion-Implanted MOSFET’s With Very Small Physical Dimensions.

IEEE Solid-State Circuits, 9(5):256–268, 1974. [Page 1]

[54] David Dice and Alex Garthwaite. Mostly Lock-Free Malloc. In MSP/ISMM, pages 269–280.

ACM, 2002. [Page 2]

[55] David Dice, Ori Shalev, and Nir Shavit. Transactional Locking II. In DISC, pages 194–208.

Springer, 2006. [Pages 24, 83, and 88]

[56] David Dice, Virendra J. Marathe, and Nir Shavit. Lock Cohorting: A General Technique

for Designing NUMA Locks. In PPOPP, pages 247–256. ACM, 2012. [Pages 3, 13, 14, 20, 26,

and 37]

[57] Dana Drachsler, Martin T. Vechev, and Eran Yahav. Practical Concurrent Binary Search

Trees Via Logical Ordering. In PPOPP, pages 343–356. ACM, 2014. [Page 23]

[58] Aleksandar Dragojevic and Tim Harris. STM in the Small: Trading Generality for Perfor-

mance in Software Transactional Memory. In EuroSys, pages 1–14. ACM, 2012. [Page 24]

[59] Aleksandar Dragojevic, Dushyanth Narayanan, Miguel Castro, and Orion Hodson. FaRM:

Fast Remote Memory. In NSDI, pages 401–414. USENIX, 2014. [Pages 24 and 83]

[60] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and Franck Van Breugel. Non-Blocking

Binary Search Trees. In PODC, pages 131–140. ACM, 2010. [Page 23]

[61] Hadi Esmaeilzadeh, Emily R. Blem, Renée St. Amant, Karthikeyan Sankaralingam, and

Doug Burger. Dark Silicon and the End of Multicore Scaling. In ISCA, pages 365–376.

ACM, 2011. [Pages 3 and 55]

[62] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, and Doug Burger. Architecture Support

for Disciplined Approximate Programming. In ASPLOS, pages 301–312. ACM, 2012.

[Page 25]

[63] Facebook. Facebook LinkBench Benchmark. ������������	
��
������

��

����
����. Accessed: 2016-07-15. [Page 74]

[64] Facebook. RocksDB. ��������
����
�
��. Accessed: 2016-07-29. [Pages 13, 25, and 74]

141

Bibliography

[65] Facebook. RocksDB In-memory Workload Performance Benchmarks. ������������	
�

�
������

���
����
�������
������ ��� ���
��� �
���
��� ���
�������

����������. Accessed: 2016-07-29. [Page 74]

[66] Babak Falsafi, Rachid Guerraoui, Javier Picorel, and Vasileios Trigonakis. Unlocking

Energy. In ATC, pages 393–406. USENIX, 2016. [Page 14]

[67] Bin Fan, David G. Andersen, and Michael Kaminsky. MemC3: Compact and Concurrent

MemCache with Dumber Caching and Smarter Hashing. In NSDI, pages 371–384.

USENIX, 2013. [Pages 25 and 86]

[68] Panagiota Fatourou and Nikolaos D. Kallimanis. Revisiting the Combining Synchroniza-

tion Technique. In PPOPP, pages 257–266. ACM, 2012. [Pages 22 and 53]

[69] Pascal Felber, Christof Fetzer, and Torvald Riegel. Dynamic Performance Tuning of

Word-Based Software Transactional Memory. In PPOPP, pages 237–246. ACM, 2008.

[Pages 24 and 88]

[70] Brad Fitzpatrick. Memcached. ���������������������
��. Accessed: 2016-07-29.

[Pages 13, 25, 51, and 74]

[71] Marc Fleischmann. LongRun Power Management. Technical report, White Paper of

Transmeta Corporation, 2001. [Page 25]

[72] The Linux Foundation. Linux Kernel MCS lock. ��������!�������������
����
��

�
	������������
���������"�����
����. Accessed: 2016-07-29. [Page 13]

[73] The Linux Foundation. Linux Kernel x86 spinlock. ��������!�������������
���

�
���
	���������!#$�����	������������
����. Accessed: 2016-07-29. [Page 13]

[74] Hubertus Franke, Rusty Russell, and Matthew Kirkwood. Fuss, Futexes and Furwocks:

Fast Userlevel Locking in Linux. In AUUG, pages 85–98, 2002. [Page 21]

[75] Keir Fraser. Practical Lock-Freedom. PhD thesis, University of Cambridge, 2004. [Pages 23,

104, and 105]

[76] Benjamin Gamsa, Orran Krieger, Jonathan Appavoo, and Michael Stumm. Tornado:

Maximizing Locality and Concurrency in a Shared Memory Multiprocessor Operating

System. In OSDI, pages 87–100. USENIX, 1999. [Pages 3, 24, and 26]

[77] Jana Giceva, Gustavo Alonso, Timothy Roscoe, and Tim Harris. Deployment of Query

Plans on Multicores. PVLDB, 8(3):233–244, 2014. [Page 26]

[78] Lokesh Gidra, Gaël Thomas, Julien Sopena, and Marc Shapiro. A Study of the Scalability

of Stop-The-World Garbage Collectors On Multicores. In ASPLOS, pages 229–240. ACM,

2013. [Pages 26 and 111]

142

Bibliography

[79] Lokesh Gidra, Gaël Thomas, Julien Sopena, Marc Shapiro, and Nhan Nguyen. NumaGiC:

A Garbage Collector for Big Data on Big NUMA Machines. In ASPLOS, pages 661–673.

ACM, 2015. [Page 26]

[80] Guy Golan-Gueta, Edward Bortnikov, Eshcar Hillel, and Idit Keidar. Scaling Concurrent

Log-Structured Data Stores. In EuroSys, pages 1–14. ACM, 2015. [Page 25]

[81] James R. Goodman, Mary K. Vernon, and Philip J. Woest. Efficient Synchronization

Primitives for Large-scale Cache-coherent Multiprocessors. In ASPLOS, pages 64–75.

ACM, 1989. [Page 20]

[82] Google. LevelDB. ������������	
��
�. Accessed: 2016-07-29. [Page 25]

[83] Vincent Gramoli. More Than You Ever Wanted to Know About Synchronization: Syn-

chrobench, Measuring the Impact of the Synchronization on Concurrent Algorithms. In

PPOPP, pages 1–10. ACM, 2015. [Page 23]

[84] Vincent Gramoli, Rachid Guerraoui, and Vasileios Trigonakis. TM2C: A Software Trans-

actional Memory for Many-Cores. In EuroSys, pages 351–364. ACM, 2012. [Page 22]

[85] Vincent Gramoli, Petr Kuznetsov, Srivatsan Ravi, and Di Shang. Brief Announcement: A

Concurrency-Optimal List-Based Set. In DISC, 2015. [Page 23]

[86] Graphviz. Graphviz - Graph Visualization Software. ������������
��������
�.

[Page 115]

[87] The Open Group. Pthread Mutex Lock. ���������
�������
�����
����������
��

�����������������
��	����������������, 1997. Accessed: 2016-07-29. [Page 14]

[88] Rachid Guerraoui and Michal Kapalka. On the Correctness of Transactional Memory. In

PPOPP, pages 175–184. ACM, 2008. [Page 89]

[89] Hugo Guiroux, Renaud Lachaize, and Vivien Quéma. Multicore Locks: The Case Is Not

Closed Yet. In ATC, pages 649–662. USENIX, 2016. [Page 20]

[90] Daniel Hackenberg, Daniel Molka, and Wolfgang E. Nagel. Comparing Cache Architec-

tures and Coherency Protocols on x86-64 Multicore SMP Systems. In MICRO, pages

413–422. ACM, 2009. [Page 19]

[91] Mary W. Hall, Peter M. Kogge, Jefferey G. Koller, Pedro C. Diniz, Jacqueline Chame, Jeff

Draper, Jeff LaCoss, John J. Granacki, Jay B. Brockman, Apoorv Srivastava, William C.

Athas, Vincent W. Freeh, Jaewook Shin, and Joonseok Park. Mapping Irregular Appli-

cations to DIVA, a PIM-Based Data-Intensive Architecture. In SC, page 57. ACM, 1999.

[Page 136]

[92] Nikos Hardavellas, Michael Ferdman, Babak Falsafi, and Anastasia Ailamaki. Toward

Dark Silicon in Servers. IEEE Micro, 31(4):6–15, 2011. [Pages 3 and 55]

143

Bibliography

[93] Tim Harris. A Pragmatic Implementation of Non-Blocking Linked-Lists. In DISC, pages

300–314. Springer, 2001. [Pages 23, 81, 82, 93, and 101]

[94] Tim Harris and Stefan Kaestle. Callisto-RTS: Fine-Grain Parallel Loops. In ATC, pages

45–56. USENIX, 2015. [Page 26]

[95] Thomas E. Hart, Paul E. McKenney, Angela Demke Brown, and Jonathan Walpole. Per-

formance of Memory Reclamation for Lockless Synchronization. J. Parallel Distrib.

Comput., 67(12):1270–1285, 2007. [Page 93]

[96] Bijun He, William N. Scherer III, and Michael L. Scott. Preemption Adaptivity in Time-

Published Queue-Based Spin Locks. In HiPC, pages 7–18. Springer, 2005. [Pages 21 and 108]

[97] Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir, William N. Scherer III,

and Nir Shavit. A Lazy Concurrent List-Based Set Algorithm. In OPODIS, pages 3–16.

Springer, 2005. [Pages 5, 23, 83, 98, and 101]

[98] Danny Hendler, Nir Shavit, and Lena Yerushalmi. A Scalable Lock-Free Stack Algorithm.

In SPAA, pages 206–215. ACM, 2004. [Pages 23 and 109]

[99] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat Combining and the

Synchronization-Parallelism Tradeoff. In SPAA, pages 355–364. ACM, 2010. [Pages 22, 24,

and 53]

[100] John L. Hennessy and David A. Patterson. Computer Architecture - A Quantitative

Approach (5. ed.). Morgan Kaufmann, 2012. [Pages 9, 10, and 11]

[101] Maurice Herlihy. Wait-Free Synchronization. ACM Trans. Program. Lang. Syst., 13(1):

124–149, 1991. [Pages 15 and 33]

[102] Maurice Herlihy and J. Eliot B. Moss. Transactional Memory: Architectural Support for

Lock-Free Data Structures. In ISCA, pages 289–300. ACM, 1993. [Pages 3 and 24]

[103] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Programming, Revised First

Edition. Elsevier, 2012. [Pages 2, 13, 14, 15, 36, and 98]

[104] Maurice Herlihy and Jeannette M. Wing. Linearizability: A Correctness Condition for

Concurrent Objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990. [Page 15]

[105] Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir Shavit. A Simple Optimistic

Skiplist Algorithm. In SIROCCO, pages 124–138. Springer, 2007. [Pages 5, 81, 83, 84, 104,

and 109]

[106] Mark D. Hill and Michael R. Marty. Amdahl’s Law in the Multicore Era. IEEE Computer,

41(7):33–38, 2008. [Page 2]

[107] Sungpack Hong, Hassan Chafi, Eric Sedlar, and Kunle Olukotun. Green-Marl. ������

������	
��
�������
�����������������. Accessed: 2016-07-29. [Page 130]

144

Bibliography

[108] Sungpack Hong, Hassan Chafi, Eric Sedlar, and Kunle Olukotun. Green-Marl: A DSL

for Easy and Efficient Graph Analysis. In ASPLOS, pages 349–362. ACM, 2012. [Pages 113

and 130]

[109] Hiroshi Inoue and Kenjiro Taura. SIMD- and Cache-Friendly Algorithm for Sorting an

Array of Structures. PVLDB, 8(11):1274–1285, 2015. [Page 127]

[110] Intel. Intel Xeon Processor E5-1600/ E5-2600/E5-4600 Product Families. �����������

�	�
���
���
	�
	��������������������
	��
���
	���������

����

	�
��

�����������
����������

�����. Accessed: 2016-07-29. [Page 57]

[111] Intel. Intel 64 and IA-32 Architectures Software Developer Manuals. �������

�����	�
���
���
	�
	���������
	���
�
��
���������
����
���
�����
�

�
�
�
�
����	���������. Accessed: 2016-07-29. [Pages 35, 58, 59, 62, 63, 100, 117, 122, 125,

and 127]

[112] Intel. An Introduction to the Intel QuickPath Interconnect. ������������

�����	�
���
���
	�
	���������
	��
������������
��	
�
 !������������

�	�
��
		
����	��
�����
	����
������, 2009. Accessed: 2016-07-29. [Pages 12

and 35]

[113] Intel. Transactional Synchronization Extensions Overview. ���������
�����
��	�
��

�
��
	����	
�
���"���, 2013. Accessed: 2016-07-29. [Pages 3 and 133]

[114] ITRS. 2015 International Technology Roadmap for Semiconductors (ITRS). �����

�������
���
	����
���
� ����	�����#�	�
�	���
	��#�
��	
�
 !#�
�����#

�
�#�
���
	����
��#����. Accessed: 2016-07-26. [Page 1]

[115] Ryan Johnson, Ippokratis Pandis, Nikos Hardavellas, Anastasia Ailamaki, and Babak

Falsafi. Shore-MT: A Scalable Storage Manager for the Multicore Era. In EDBT, pages

24–35. ACM, 2009. [Page 26]

[116] Ryan Johnson, Radu Stoica, Anastasia Ailamaki, and Todd C. Mowry. Decoupling Con-

tention Management From Scheduling. In ASPLOS, pages 117–128. ACM, 2010. [Page 21]

[117] Alain Kägi, Doug Burger, and James R. Goodman. Efficient Synchronization: Let Them

Eat QOLB. In ISCA, pages 170–180. ACM, 1997. [Page 20]

[118] Anna R. Karlin, Kai Li, Mark S. Manasse, and Susan S. Owicki. Empirical Studies of

Competitive Spinning for a Shared-Memory Multiprocessor. In SOSP, pages 41–55.

ACM, 1991. [Page 21]

[119] Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. Scalability in the Clouds!: A Myth

Or Reality? In APSys, pages 1–7. ACM, 2015. [Page 126]

[120] Andi Kleen. A NUMA API for Linux. SUSE Labs white paper, 2004. [Pages 26 and 111]

145

Bibliography

[121] Jonathan Koomey. Growth in Data Center Electricity Use 2005 to 2010. In Analytics Press

Report, 2011. [Page 55]

[122] Konstantinos Koukos, David Black-Schaffer, Vasileios Spiliopoulos, and Stefanos Kaxiras.

Towards More Efficient Execution: A Decoupled Access-Execute Approach. In ICS, pages

253–262. ACM, 2013. [Page 25]

[123] H. T. Kung and John T. Robinson. On Optimistic Methods for Concurrency Control. ACM

Trans. Database Syst., 6(2):213–226, 1981. [Pages 24 and 83]

[124] FAL Labs. Kyoto Cabinet. ������������	
��
����
�
��	����. Accessed: 2016-07-29.

[Page 74]

[125] Christoph Lameter. Effective Synchronization on Linux/NUMA Systems. In Gelato

Federation Meeting, 2005. [Page 24]

[126] Hugh C. Lauer and Roger M. Needham. On the Duality of Operating System Structures.

Operating Systems Review, 13(2):3–19, 1979. [Pages 14 and 21]

[127] Doug Lea. Overview of Package util.concurrent Release 1.3.4. ������������
�

���
�

����������

�
�����

���
��
����������
�������������
�����, 2003. Ac-

cessed: 2016-07-29. [Pages 23, 102, 103, and 109]

[128] Hai Li, Swarup Bhunia, Yiran Chen, Kaushik Roy, and T. N. Vijaykumar. DCG: Determin-

istic Clock-Gating for Low-Power Microprocessor Design. IEEE Trans. VLSI Syst., 12(3):

245–254, 2004. [Page 25]

[129] Beng-Hong Lim and Anant Agarwal. Waiting Algorithms for Synchronization in Large-

Scale Multiprocessors. ACM Trans. Comput. Syst., 11(3):253–294, 1993. [Page 21]

[130] Beng-Hong Lim and Anant Agarwal. Reactive Synchronization Algorithms for Multipro-

cessors. In ASPLOS, pages 25–35. ACM, 1994. [Page 20]

[131] Hyeontaek Lim, Bin Fan, David G. Andersen, and Michael Kaminsky. SILT: a Memory-

Efficient, High-Performance Key-Value Store. In SOSP, pages 1–13. ACM, 2011. [Page 25]

[132] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kaminsky. MICA: A

Holistic Approach to Fast In-Memory Key-Value Storage. In NSDI, pages 429–444.

USENIX, 2014. [Pages 25 and 26]

[133] Kevin T. Lim, David Meisner, Ali G. Saidi, Parthasarathy Ranganathan, and Thomas F.

Wenisch. Thin Servers with Smart Pipes: Designing SoC Accelerators for Memcached.

In ISCA, pages 36–47. ACM, 2013. [Page 74]

[134] Rick Lindsley and Dave Hansen. Bkl: One Lock to Bind Them All. In Ottawa Linux

Symposium, pages 301–309, 2002. [Page 2]

146

Bibliography

[135] David Lo, Liqun Cheng, Rama Govindaraju, Luiz Andre Barroso, and Christos Kozyrakis.

Towards Energy Proportionality for Large-Scale Latency-Critical Workloads. In ISCA,

pages 301–312. IEEE, 2014. [Page 65]

[136] Jean-Pierre Lozi, Florian David, Gaël Thomas, Julia L. Lawall, and Gilles Muller. Remote

Core Locking: Migrating Critical-Section Execution to Improve the Performance of

Multithreaded Applications. In ATC, pages 65–76. USENIX, 2012. [Pages 2, 3, 20, 22, 31, and 53]

[137] Jean-Pierre Lozi, Florian David, Gaël Thomas, Julia L. Lawall, and Gilles Muller. Fast and

Portable Locking for Multicore Architectures. ACM Trans. Comput. Syst., 33(4):13, 2016.

[Pages 22 and 53]

[138] Jean-Pierre Lozi, Baptiste Lepers, Justin R. Funston, Fabien Gaud, Vivien Quéma, and

Alexandra Fedorova. The Linux Scheduler: A Decade of Wasted Cores. In EuroSys, pages

1–16. ACM, 2016. [Page 25]

[139] Victor Luchangco, Daniel Nussbaum, and Nir Shavit. A Hierarchical CLH Queue Lock.

In Euro-Par, volume 4128, pages 801–810. Springer, 2006. [Pages 3, 13, 14, and 20]

[140] Peter S. Magnusson, Anders Landin, and Erik Hagersten. Queue Locks on Cache Coher-

ent Multiprocessors. In IPPS, pages 165–171. IEEE, 1994. [Pages 14 and 20]

[141] Zoltan Majo and Thomas R. Gross. A Library for Portable and Composable Data Locality

Optimizations for NUMA Systems. In PPOPP, pages 227–238. ACM, 2015. [Page 26]

[142] Yandong Mao, Robert Morris, and M Frans Kaashoek. Optimizing MapReduce for

Multicore Architectures. Technical report, MIT-CSAIL-TR-2010-020, MIT, 2010. [Page 128]

[143] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. Cache Craftiness for Fast

Multicore Key-Value Storage. In EuroSys, pages 183–196. ACM, 2012. [Page 25]

[144] Henry Massalin and Calton Pu. A Lock-Free Multiprocessor OS Kernel. Operating

Systems Review, 26(2):8, 1992. [Page 2]

[145] Alexander Matveev, Nir Shavit, Pascal Felber, and Patrick Marlier. Read-Log-Update: A

Lightweight Synchronization Mechanism For Concurrent Programming. In SOSP, pages

168–183, 2015. [Pages 2, 3, and 24]

[146] Paul E McKenney and John D Slingwine. Read-Copy Update: Using Execution History

to Solve Concurrency Problems. In PDCS, pages 509–518, 1998. [Pages 23 and 93]

[147] David Meisner and Thomas F. Wenisch. DreamWeaver: Architectural Support for Deep

Sleep. In ASPLOS, pages 313–324. ACM, 2012. [Page 25]

[148] David Meisner, Brian T. Gold, and Thomas F. Wenisch. PowerNap: Eliminating Server

Idle Power. In ASPLOS, pages 205–216. ACM, 2009. [Page 25]

147

Bibliography

[149] John M. Mellor-Crummey and Michael L. Scott. Algorithms for Scalable Synchronization

on Shared-Memory Multiprocessors. ACM Trans. Comput. Syst., 9(1):21–65, 1991. [Pages 3,

13, 14, 20, 41, and 126]

[150] John M. Mellor-Crummey and Michael L. Scott. Synchronization without Contention.

In ASPLOS, pages 269–278. ACM, 1991. [Page 3]

[151] Maged M. Michael. High Performance Dynamic Lock-Free Hash Tables and List-Based

Sets. In SPAA, pages 73–82, 2002. [Pages 23 and 81]

[152] Maged M. Michael. Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects.

IEEE Trans. Parallel Distrib. Syst., 15(6):491–504, 2004. [Page 93]

[153] Maged M. Michael and Michael L. Scott. Simple, Fast, and Practical Non-Blocking and

Blocking Concurrent Queue Algorithms. In PODC, pages 267–275. ACM, 1996. [Pages 23,

42, 81, 84, 100, 106, 109, and 127]

[154] Sun Microsystems. Multithreading in the Solaris Operating Environment. �����������	

�
�	���	���
�������������������������������������
������������������

��������������
������
������	���. Accessed: 2016-07-29. [Page 21]

[155] Sun Microsystems. UltraSPARC T2 Supplement to the UltraSPARC Architecture. �����

�����	������	�������������������������������������� ��������������

�������������! ""#$	����, 2007. Accessed: 2016-07-29. [Page 36]

[156] Daniel Molka, Robert Schöne, Daniel Hackenberg, and Matthias S. Müller. Memory

Performance and SPEC OpenMP Scalability on Quad-Socket x86_64 Systems. In ICA3PP,

pages 170–181. Springer, 2011. [Page 19]

[157] Gordon E Moore. Cramming More Components Onto Integrated Circuits. Electronics,

38(8):114, 1965. [Page 1]

[158] Tali Moreshet, R. Iris Bahar, and Maurice Herlihy. Energy Implications of Multiprocessor

Synchronization. In SPAA, page 329. ACM, 2006. [Page 21]

[159] Adam Morrison and Yehuda Afek. Fast Concurrent Queues for x86 Processors. In PPOPP,

pages 103–112. ACM, 2013. [Pages 23 and 81]

[160] Jaideep Moses, Ramesh Illikkal, Li Zhao, Srihari Makineni, and Don Newell. Effects

of Locking and Synchronization on Future Large Scale CMP Platforms. In CAECW

Workshop, along with HPCA, 2006. [Page 19]

[161] Aravind Natarajan and Neeraj Mittal. Fast Concurrent Lock-Free Binary Search Trees.

In PPOPP, pages 317–328. ACM, 2014. [Pages 23, 81, 82, and 106]

[162] Umesh Gajanan Nawathe, Mahmudul Hassan, King C Yen, Ashok Kumar, Aparna Ra-

machandran, and David Greenhill. Implementation of an 8-Core, 64-Thread, Power-

Efficient SPARC Server on a Chip. IEEE SSC, 43(1):6–20, 2008. [Page 36]

148

Bibliography

[163] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee, Harry C.

Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David Stafford, Tony Tung,

and Venkateshwaran Venkataramani. Scaling Memcache at Facebook. In NSDI, pages

385–398. USENIX, 2013. [Page 25]

[164] NRDC. America’s Data Centers Consuming and Wasting Growing Amounts of Energy.

������������	
���	
����	
��
���������	��������������������������. Ac-

cessed: 2016-07-29. [Page 55]

[165] Takeshi Ogasawara. NUMA-Aware Memory Manager with Dominant-Thread-Based

Copying GC. In OOPSLA, pages 377–390. ACM, 2009. [Page 26]

[166] Oracle. Java CopyOnWriteArrayList Data Structure. ��������
�����	���������

���������
�����������������������		�����������	����		�����������. Ac-

cessed: 2016-07-29. [Page 56]

[167] Oracle. Memory and Thread Placement Optimization Developer’s Guide. ��������

�����	����������
� !"#$!%$&������ '#'$&���������. Accessed: 2016-07-15.

[Pages 26 and 111]

[168] Oracle. MySQL. ��������������(�����. Accessed: 2016-07-29. [Pages 13 and 74]

[169] Oracle. SPARC T4 Supplement to the Oracle SPARC Architecture 2011. �����

�������	������������������)���	��	����	�
���������	������	�	����

�������������&!$!&*��*�
$*����+��!'$#,�*��
�, 2012. Accessed: 2016-07-29.

[Pages 127 and 134]

[170] Oracle. ConcurrentHashMap in Java Docs. ��������
�����	����������������

��
�����������������������		���������		���-���.�������, 2015. Accessed:

2016-07-29. [Page 103]

[171] Mark Oskin, Frederic T. Chong, and Timothy Sherwood. Active Pages: A Computation

Model for Intelligent Memory. In ISCA, pages 192–203. IEEE / ACM, 1998. [Page 136]

[172] John K Ousterhout. Scheduling Techniques for Concurrent Systems. In ICDCS, pages

22–30, 1982. [Pages 13, 21, and 59]

[173] Venkatesh Pallipadi and Alexey Starikovskiy. The Ondemand Governor. In Ottawa Linux

Symposium, pages 223–238, 2006. [Page 25]

[174] Mark S. Papamarcos and Janak H. Patel. A Low-Overhead Coherence Solution for

Multiprocessors with Private Cache Memories. In ISCA, pages 348–354. ACM, 1984.

[Pages 10 and 116]

[175] David Patterson, Thomas Anderson, Neal Cardwell, Richard Fromm, Kimberly Keeton,

Christoforos Kozyrakis, Randi Thomas, and Katherine Yelick. A Case for Intelligent RAM:

IRAM. IEEE Micro, 17(2):34–44, 1997. [Page 136]

149

Bibliography

[176] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug Woos, Arvind Krishnamurthy,

Thomas E. Anderson, and Timothy Roscoe. Arrakis: The Operating System Is the Control

Plane. In OSDI, pages 1–16. USENIX, 2014. [Page 26]

[177] Darko Petrovic, Thomas Ropars, and André Schiper. Leveraging Hardware Message

Passing for Efficient Thread Synchronization. In PPOPP, pages 143–154. ACM, 2014.

[Pages 22, 23, and 53]

[178] Danica Porobic, Ippokratis Pandis, Miguel Branco, Pinar Tözün, and Anastasia Ailamaki.

OLTP on Hardware Islands. PVLDB, 5(11):1447–1458, 2012. [Page 26]

[179] Michael Powell, Se-Hyun Yang, Babak Falsafi, Kaushik Roy, and TN Vijaykumar. Gated-

Vdd: A Circuit Technique to Reduce Leakage in Deep-Submicron Cache Memories. In

ISLPED, pages 90–95, 2000. [Page 25]

[180] The GNU Project. GNU libgomp. �����������	�
�	�
���
��
�������������.

Accessed: 2016-07-15. [Page 129]

[181] Iraklis Psaroudakis, Thomas Kissinger, Danica Porobic, Thomas Ilsche, Erietta Liarou,

Pinar Tözün, Anastasia Ailamaki, and Wolfgang Lehner. Dynamic Fine-Grained Schedul-

ing for Energy-Efficient Main-Memory Queries. In DaMoN, pages 1–7. ACM, 2014.

[Page 25]

[182] Iraklis Psaroudakis, Tobias Scheuer, Norman May, Abdelkader Sellami, and Anastasia

Ailamaki. Scaling Up Concurrent Main-Memory Column-Store Scans: Towards Adaptive

NUMA-Aware Data and Task Placement. PVLDB, 8(12):1442–1453, 2015. [Page 26]

[183] William Pugh. Concurrent Maintenance of Skip Lists. Technical report, Report No.

UMIACS-TR-90-80, University of Maryland, 1990. [Pages 23 and 86]

[184] Zoran Radovic and Erik Hagersten. Efficient Synchronization for Nonuniform Commu-

nication Architectures. In SC, pages 1–13. IEEE, 2002. [Page 20]

[185] Zoran Radovic and Erik Hagersten. Hierarchical Backoff Locks for Nonuniform Commu-

nication Architectures. In HPCA, pages 241–252. IEEE, 2003. [Page 20]

[186] Ravi Rajwar and James R. Goodman. Speculative Lock Elision: Enabling Highly Concur-

rent Multithreaded Execution. In MICRO, pages 294–305. ACM/IEEE, 2001. [Page 24]

[187] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary R. Bradski, and Christos

Kozyrakis. Evaluating MapReduce for Multi-Core and Multiprocessor Systems. In HPCA,

pages 13–24. IEEE, 2007. [Page 3]

[188] Haris Ribic and Yu David Liu. Energy-Efficient Work-Stealing Language Runtimes. In

ASPLOS, pages 513–528. ACM, 2014. [Page 25]

[189] Efi Rotem, Alon Naveh, Micha Moffie, and Avi Mendelson. Analysis of Thermal Monitor

Features of the Intel Pentium M Processor. In TACS Workshop at ISCA, 2004. [Page 25]

150

Bibliography

[190] Amitabha Roy, Steven Hand, and Tim Harris. A Runtime System for Software Lock

Elision. In EuroSys, pages 261–274. ACM, 2009. [Page 24]

[191] Christoph Rupp. HamsterDB. ������������	
��
���. Accessed: 2016-07-29. [Page 74]

[192] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam, Luis Ceze,

and Dan Grossman. EnerJ: Approximate Data Types for Safe and General Low-Power

Computation. In PLDI, pages 164–174. ACM, 2011. [Page 25]

[193] Michael D. Schroeder and Michael Burrows. Performance of Firefly RPC. In SOSP, pages

83–90. ACM, 1989. [Page 3]

[194] Michael L. Scott. Transactional Memory Today. SIGACT News, 46(2):96–104, 2015.

[Page 134]

[195] Michael L. Scott and William N. Scherer III. Scalable Queue-Based Spin Locks with

Timeout. In PPOPP, pages 44–52. ACM, 2001. [Page 3]

[196] Ori Shalev and Nir Shavit. Split-Ordered Lists: Lock-Free Extensible Hash Tables. In

PODC, pages 102–111. ACM, 2003. [Page 81]

[197] Nir Shavit and Dan Touitou. Software Transactional Memory. In PODC, pages 204–213.

ACM, 1995. [Pages 3 and 24]

[198] Kai Shen, Arrvindh Shriraman, Sandhya Dwarkadas, Xiao Zhang, and Zhuan Chen.

Power Containers: An OS Facility for Fine-Grained Power and Energy Management on

Multicore Servers. In ASPLOS, pages 65–76. ACM, 2013. [Page 25]

[199] Karan Singh, Major Bhadauria, and Sally A. McKee. Real Time Power Estimation and

Thread Scheduling Via Performance Counters. SIGARCH Computer Architecture News,

37(2):46–55, 2009. [Page 25]

[200] Johannes Singler and Benjamin Konsik. The GNU libstdc++ Parallel Mode: Software

Engineering Considerations. In Workshop on Multicore Software Engineering, pages

15–22. ACM, 2008. [Page 127]

[201] Daniel J. Sorin, Mark D. Hill, and David A. Wood. A Primer on Memory Consistency and

Cache Coherence. Synthesis Lectures on Computer Architecture, 6(3):1–212, 2011. [Pages 2,

11, and 117]

[202] Håkan Sundell and Philippas Tsigas. Fast and Lock-Free Concurrent Priority Queues for

Multi-Thread Systems. In IPDPS, page 84. IEEE, 2003. [Page 23]

[203] Herb Sutter. The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in

Software. Dr. Dobb’s Journal, 30(3):202–210, 2005. [Pages 1 and 9]

[204] SQLite Development Team. SQLite. ������������	
�
�. Accessed: 2016-07-29.

[Page 74]

151

Bibliography

[205] Tilera. Tilera TILE-Gx. ������������	
���
�����	��
���
������������	�����

���
���������������� . Accessed: 2016-07-29. [Pages 17 and 36]

[206] R Kent Treiber. Systems Programming: Coping with Parallelism. Technical report, 1986.

[Pages 23 and 109]

[207] Jan Treibig, Georg Hager, and Gerhard Wellein. LIKWID: A Lightweight Performance-

Oriented Tool Suite for x86 Multicore Environments. In ICPP Workshops, pages 207–216.

IEEE, 2010. [Page 27]

[208] Josh Triplett, Paul E. McKenney, and Jonathan Walpole. Resizable, Scalable, Concurrent

Hash Tables Via Relativistic Programming. In ATC, pages 145–158. USENIX, 2011. [Page 23]

[209] Jessica H. Tseng, Hao Yu, Shailabh Nagar, Niteesh Dubey, Hubertus Franke, Pratap

Pattnaik, Hiroshi Inoue, and Toshio Nakatani. Performance Studies of Commercial

Workloads on a Multi-Core System. In IISWC, pages 57–65. IEEE, 2007. [Page 3]

[210] Philippas Tsigas and Yi Zhang. A Simple, Fast and Scalable Non-Blocking Concurrent

FIFO Queue For Shared Memory Multiprocessor Systems. In SPAA, pages 134–143. ACM,

2001. [Page 23]

[211] Dimitris Tsirogiannis, Stavros Harizopoulos, and Mehul A. Shah. Analyzing the Energy

Efficiency of a Database Server. In SIGMOD, pages 231–242. ACM, 2010. [Page 25]

[212] Dean M. Tullsen, Susan J. Eggers, and Henry M. Levy. Simultaneous Multithreading:

Maximizing On-Chip Parallelism. In ISCA, pages 392–403. ACM, 1995. [Page 11]

[213] Jons-Tobias Wamhoff, Stephan Diestelhorst, Christof Fetzer, Patrick Marlier, Pascal

Felber, and Dave Dice. The TURBO Diaries: Application-Controlled Frequency Scaling

Explained. In ATC, pages 193–204. USENIX, 2014. [Pages 11, 21, and 63]

[214] David Wentzlaff and Anant Agarwal. Factored Operating Systems (fos): The Case for a

Scalable Operating System for Multicores. Operating Systems Review, 43(2):76–85, 2009.

[Pages 3, 21, and 24]

[215] Thomas Willhalm, Roman Dementiev, and Patrick Fay. Intel Performance Counter

Monitor-A Better Way to Measure CPU Utilization. ������������
�
����	�

�� ����
���	. Accessed: 2016-07-29. [Page 27]

[216] Qiang Wu, Margaret Martonosi, Douglas W. Clark, Vijay Janapa Reddi, Dan Connors,

Youfeng Wu, Jin Lee, and David M. Brooks. A Dynamic Compilation Framework for

Controlling Microprocessor Energy and Performance. In MICRO, pages 271–282. IEEE,

2005. [Page 25]

[217] Lingxiang Xiang and Michael L. Scott. Software Partitioning of Hardware Transactions.

In PPOPP, pages 76–86. ACM, 2015. [Page 134]

152

Bibliography

[218] Fen Xie, Margaret Martonosi, and Sharad Malik. Compile-Time Dynamic Voltage Scaling

Settings: Opportunities and Limits. In PLDI, pages 49–62. ACM, 2003. [Page 25]

[219] Chao Xu, Felix Xiaozhu Lin, Yuyang Wang, and Lin Zhong. Automated OS-Level Device

Runtime Power Management. In ASPLOS, pages 239–252. ACM, 2015. [Page 25]

[220] Gerd Zellweger, Simon Gerber, Kornilios Kourtis, and Timothy Roscoe. Decoupling

Cores, Kernels, and Operating Systems. In OSDI, pages 17–31. USENIX, 2014. [Page 26]

[221] Yan Zhai, Xiao Zhang, Stéphane Eranian, Lingjia Tang, and Jason Mars. HaPPy:

Hyperthread-Aware Power Profiling Dynamically. In ATC, pages 211–217. USENIX,

2014. [Page 25]

[222] Wenting Zheng, Stephen Tu, Eddie Kohler, and Barbara Liskov. Fast Databases with

Fast Durability and Recovery Through Multicore Parallelism. In OSDI, pages 465–477.

USENIX, 2014. [Page 26]

153

Vasileios Trigonakis

Contact

Information

Bat INR 312, Station 14 Tel: 0041 216 938 121
EPFL IC LPD E-mail: vasileios.trigonakis@epfl.ch
1015 Lausanne, Switzerland Web: people.epfl.ch/vasileios.trigonakis

Research

Interests

software/hardware systems, concurrent programming, synchronization, data structures, distributed
systems, transactional memory

Education EPFL, Lausanne, Switzerland

Ph.D. Candidate, Computer Science September 2011–October 2016

• Dissertation Title: “Towards Scalable Synchronization on Multi-Cores”
• Supervisor: Rachid Guerraoui

KTH, Stockholm, Sweden

M.Sc., Software Engineering of Distributed Systems September 2009–August 2011

• Graduated first in my class
• Thesis: “Design of a Distributed Transactional Memory for Many-core Systems”
• Supervisor: Rachid Guerraoui | Examiner: Seif Haridi

NTUA, Athens, Greece

Dipl.-Ing., Electrical and Computer Engineering September 2003–October 2008

• Thesis: “Design of a GIS System for Automated Filing and Presentation of Electromagnetic
Field Power Measurements”

• Supervisor: Philippos Konstantinou

Publications

(author names in
alphabetical order)

Unlocking Energy
Babak Falsafi, Rachid Guerraoui, Javier Picorel, Vasileios Trigonakis
USENIX ATC ’16 (USENIX Annual Technical Conference)

Optimistic Concurrency with OPTIK
Rachid Guerraoui, Vasileios Trigonakis
PPoPP ’16 (Symposium on Principles and Practice of Parallel Programming)

Locking Made Easy
Jelena Antic, Georgios Chatzopoulos, Rachid Guerraoui, Vasileios Trigonakis
Middleware ’16 (Annual Middleware Conference)

Asynchronized Concurrency: The Secret to Scaling Concurrent Search Data Structures
Tudor David, Rachid Guerraoui, Vasileios Trigonakis
ASPLOS ’15 (International Conference on Architectural Support for Programming Languages and
Operating Systems)

Everything You Always Wanted to Know about Synchronization but Were Afraid to Ask
Tudor David, Rachid Guerraoui, Vasileios Trigonakis
SOSP ’13 (Symposium on Operating Systems Principles)

TM2C: a Software Transactional Memory for Many-Cores
Vincent Gramoli, Rachid Guerraoui, Vasileios Trigonakis
EuroSys ’12 (European Conference on Computer Systems)

155

Internships Oracle Labs, Cambridge, UK

Research Intern August 2014–November 2014

• Project: “Designing Tools and Libraries for Better Leveraging Multi-Cores”
• Supervisor: Tim Harris

EPFL, Lausanne, Switzerland

Research Intern February 2011–August 2011

• Conducted my M.Sc. thesis

Presentations &

Invited Talks

Unlocking Energy
• Conference presentation at USENIX ATC, Denver, Colorado, USA, June 2016

Optimistic Concurrency with OPTIK
• Conference presentation at PPoPP, Barcelona, Spain, March 2016
• Invited talk at Cisco, Lausanne, Switzerland, November 2015

Asynchronized Concurrency: The Secret to Scaling Concurrent Search Data Structures
• Invited talk at MSR, Cambridge, UK, June 2015
• Conference presentation at ASPLOS, Istanbul, Turkey, April 2015

Everything You Always Wanted to Know about Synchronization but Were Afraid to Ask
• Winter School on Hot Topics in Distributed Computing, La Plagne, France, March 2014
• Conference presentation at SOSP, Farmington, Pennsylvania, USA, November 2013
• Invited talk at MIT, Boston, Massachusetts, USA, November 2013
• Invited talk at University of Pennsylvania, Philadelphia, Pennsylvania, USA, November 2013
• EcoCloud Annual Event, Lausanne, Switzerland, June 2013

TM2C: a Software Transactional Memory for Many-Cores
• School on Research Directions in Distributed Computing, Heraklion, Greece, June 2013
• Conference presentation at EuroSys, Bern, Switzerland, April 2012
• ASPLOS Doctoral Workshop, London, UK, March 2012
• Euro-TM Workshop on Distributed Transactional Memory, Lisbon, Portugal, February 2012
• Winter School on Hot Topics in Distributed Computing, La Plagne, France, March 2011 & 2012

Software

Projects

Available at github.com/trigonak and github.com/LPD-EPFL:
• lockin, a library with various lock algorithms optimized for energy efficiency
• ascylib & optik, a concurrent data structure library with over 40 implementations
• clht, a very efficient and scalable concurrent hash table
• ccbench, a tool for measuring the cache-coherence latencies of a processor
• libslock, a cross-platform atomic operation and lock algorithm library
• ssmp, a message passing library built on top of cache-coherent shared memory
• TM2C, a software transactional memory built on top of message passing

Peer Reviews • External reviewer, SPAA (Symposium on Parallelism in Algorithms and Architectures), 2016
• PC member for artifact evaluation, PPoPP (Symposium on Principles and Practice of Parallel

Programming), 2015 & 2016
• External reviewer, IPDPS (International Parallel and Distributed Processing Symposium), 2015
• External reviewer, ICDCS (International Conference on Distributed Computing Systems), 2014
• External reviewer, ICDCN (International Conference on Distributed Computing and Network-

ing), 2014
• Shadow PC member, EuroSys (European Conference on Computer Systems), 2013
• External reviewer, DISC (International Symposium on Distributed Computing), 2011

156

Teaching &

Mentoring

Teaching
• Concurrent Algorithms (CS-453), Graduate class, EPFL, 2012–2015
• Real-time Networks (COM-413), Graduate class, EPFL, 2014
• Distributed Algorithms (CS-451), Graduate class, EPFL, 2012

Mentoring
• M.Sc. thesis, Egeyar Bagcioglu, “Using Hardware Transactional Memory in Concurrent Data

Structures,” February 2016–June 2016
• Semester project, Daniel Vargas, “Porting ASCYLIB to C++,”

February 2016–June 2016
• Semester project, Sebastien Rouault, “Porting ASCYLIB to Go,”

February 2016–June 2016
• Semester project, Alexandru Ciprian, “gcmalloc: Memory Allocation with Garbage Collection,”

September 2015–January 2016
• M.Sc. thesis, Karolos Antoniadis, “Devising a Theory for Asynchronized Concurrency,”

April 2015–November 2015
• M.Sc. thesis, Jelena Antic, “GLS: A Generic Locking Service,”

February 2015–June 2015
• Semester project, Ivo Mihailovic, “Improving the Scalability of Memcached with CLHT,”

February 2015–June 2015
• Semester project, Nemanja Djurkic, “wlock: Doing Work Instead of Waiting in Locks,”

February 2015–June 2015
• Semester project, Egeyar Bagcioglu, “Implementing Randomized Concurrent Data Structures,”

February 2015–June 2015
• Semester project, Chengzhen Wu, “Cross-Platform Implementations of Barrier Algorithms,”

February 2014–June 2014
• Semester project, Radmila Popovic,

• “Optimizing Memcached with CLHT,” September 2015–January 2016
• “Cross-platform Implementations of Reader-Writer Locks,” February 2014–June 2014

• Semester project, David Cervini, “Porting TM2C to Pthreads,”
September 2013–January 2014

• Semester project, Oana Balmau & Igor Zablotchi,
• “Increasing Concurrency of RocksDB,” February 2014–June 2014
• “Concurrent Binary Search Trees on Many-Cores,” September 2013–January 2014

• Research project, Ugur Gurel, “Designing Scalable Concurrent Hash Tables,”
September 2012–February 2013

Language

Skills

Greek: native speaker
English: fluent
French: basic communication skills

Professional

Experience

Pansystems S.A., Athens, Greece

Technical Consultant July 2009

Undertook the software setup of a GIS-based system for the national intelligence service (EYP)
of Greece. Designed, installed, and tuned an Oracle database 11g on a Windows server 2008
cluster of two servers with Oracle Failsafe. Installed and configured two Oracle application
servers and the GIS software running on top.

Geo Information S.A., Athens, Greece

Technical Consultant February 2009–June 2009

Directed the promotion, installation, and modification of the enterprise series of GIS products
of Erdas Inc. The products use Oracle database with spatial option, Oracle application server,

157

Oracle MapViewer, and Java SE & EE. Improved the GIS of the cities of Zografou, Giannitsa,
Koropi, and Perama in Greece.

Professional

Experience

Ministry of Transportation and Communication, Athens, Greece

Call Services April 2007–March 2008

Organized the appointments for the national vehicle control centers of Athens, Greece. Col-
laborated with a team of 16 people and, often, supervised the team.

Extracurricular

Activities

• I love photography and football, I like cooking, and I have started liking biking
• In the past, I played football and volleyball on various (local, school, and university) teams
• Wolfram|Alpha’s beta tester
• Member of Stockholm’s Erlang Users’ Group (2010–2011)

158

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

