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Abstract.
Objectives. Recent studies have started to explore the implementation of brain-
computer interfaces (BCI) as part of driving assistant systems. The current study
presents an EEG-based BCI that decodes error-related brain activity. Such information
can be used, e.g., to predict driver’s intended turning direction before reaching road
intersections.
Approach. We executed experiments in a car simulator (N = 22) and a real car
(N = 8). While subject was driving, a directional cue was shown before reaching an
intersection, and we classified the presence or not of an error-related potentials from
EEG to infer whether the cued direction coincided with the subject’s intention. In this
protocol, the directional cue can correspond to an estimation of the driving direction
provided by a driving assistance system. We analyze ERPs elicited during normal
driving and evaluated the classification performance in both offline and online tests.
Results. An average classification accuracy of 0.698 ± 0.065 was obtained in offline
experiments in the car simulator, while tests in the real car yielded a performance of
0.682 ± 0.059. The results were significantly higher than chance level for all cases.
Online experiments led to equivalent performances in both simulated and real car
driving experiments. These results support the feasibility of decoding these signals to
help estimating whether the driver’s intention coincides with the advice provided by
the driving assistant in a real car.
Significance. The study demonstrates a BCI system in real-world driving, extending
the work from previous simulated studies. As far as we know, this is the first online
study in real car decoding driver’s error-related brain activity. Given the encouraging
results, the paradigm could be further improved by use of more sophisticated machine
learning approaches and possibly be combined with applications in intelligent vehicles.

Keywords: brain-computer interface, error-related potentials, EEG, driving tasks, online

decoding



EEG-based Decoding of Error-Related Brain Activity in a Real-World Driving Task 2

1. Introduction

Driving a vehicle requires multiple cognitive processes, e.g., sustaining current

vehicle conditions, monitoring environmental events, and action decisions. Currently,

driving assistant systems are mainly based on monitoring the vehicle conditions, e.g.,

the parameters of the car (steering, braking and accelerating), vehicle’s location,

complexity of the environment, and distance from other automobiles. Furthermore,

it has been proposed that these systems can also monitor the driver’s condition

through the recording of physiological signals such as electroencephalography (EEG),

electrocardiography (ECG) or electrooculography (EOG) (Chuang et al., 2010; Haufe

et al., 2011; Haufe et al., 2014).

Brain-computer interfaces (BCI) have been developed to decode cerebral signals

in order to restore communication capabilities for people with motor disabilities, or as

an extra interaction mechanism for healthy individuals (Lebedev and Nicolelis, 2006;

Millán and Carmena, 2010). One possible BCI application for able-bodied people is to

integrate them into driving assistant systems. These BCI systems would decode driver’s

brain activity to estimate his/her cognitive states or action intentions. For instance, the

system can verify whether the driver is paying attention to the driving behavior (Simon

et al., 2011), estimate mental workload (Dijksterhuis et al., 2013), or predict driver’s

intention of action (e.g., braking, traffic lights, and lane changes) (Haufe et al., 2011;

Gheorghe et al., 2013; Haufe et al., 2014; Sonnleitner et al., 2014; Kim et al., 2015;

Khaliliardali et al., 2015).

The present study investigates another signal that may be used by driving assistance

systems, i.e., the error-related brain activity. Error-related processing is a basic brain

function related to learning and regulating goal-directed behavior (Holroyd and Coles,

2002; Taylor et al., 2007). It is considered as an underlying monitoring process for

both endogenous and exogenous conflicting information, e.g., expectation mismatch or

erroneous motor commission (Cavanagh et al., 2012). The error-related brain activity

can be observed in scalp EEG recordings in the form of phase locked event-related

potentials (ERP), around 80 ms after erroneous motor responses (Gehring et al., 1993;

Holroyd and Coles, 2002; Cavanagh et al., 2012), or 250 ms after the stimulus onset in

the case of monitoring of external errors (van Schie et al., 2004; Chavarriaga and Millán,

2010; Chavarriaga et al., 2014). This ERP pattern has been used in BCI for detecting

error activity while human subjects either control moving objects (Parra et al., 2003;

Ferrez and Millán, 2008) or monitor an external system (Chavarriaga and Millán, 2010;

Iturrate et al., 2015). This information can then be used to correct user’s erroneous

decision (Parra et al., 2003), improve the information transfer rate of BCI system (Ferrez

and Millán, 2008), or detect subject’s intentional preferred target (Chavarriaga and

Millán, 2010; Zhang et al., 2015; Iturrate et al., 2015). See Chavarriaga et al. (2014)

for a review.

The current paper extends our previous study of detecting error-related brain

activity in a car simulator (Zhang et al., 2013). In the experiments, a driving assistant
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system presents a directional cue indicating a turning direction before reaching an

intersection, and single trial classification is performed to recognize error-related brain

activity to verify whether the directional cue corresponds to the driver’s intention

(Zhang et al., 2013). In this study, we extend our previous work by performing a

closed-loop experiment with online decoding of the error-related signals in the same

setup. More importantly, in order to assess the feasibility of this protocol in a realistic

driving scenario, we performed similar offline and online experiments in a real car with

8 participants.

2. Materials and Methods

2.1. Participants

Twenty-two subjects (three female, age 26.79 ± 3.51) participated in the experiments

in the car simulator. Seven of them (one female, age 27.86 ± 1.95) participated in the

evaluation of online decoding. Seventeen subjects in the experiment in the car simulator

had driving licenses and nine of them were driving frequently.

Eight subjects (two female, age 28.62 ± 2.72) participated in the real car

experiments. Seven of them (two female, age 28.42 ± 2.88) participated in the online

evaluation. All subjects in the real car experiment held valid driving licenses and were

active drivers. One subject participated in both the driving simulator and real car

experiments. The experimental protocols were approved by the local ethical committee

(EPFL-Brain and Mind Institute ethical committee) and subjects provided written

informed consent. All subjects had normal or corrected-to-normal vision, and did not

report any known neurological or psychiatric diseases.

2.2. Experimental settings in car simulator

The first set of experiments was performed on a custom-made simulated car, shown

in Figure 1.A, corresponding to a realistic vehicle with normal-sized car seat, steering

wheel and accelerate and brake pedals. For the experiments, we designed a 3D virtual

environment of a small town including six north-to-south and five east-to-west roads

arranged in a rectangular grid using the software Blender (http://www.blender.org/).

The protocol was run in a customized open source driving simulation program (VDrift

http://vdrift.net/). The virtual driving environment was presented in three 27 inch 3D

monitors, which were about 50 cm away from subject’s eyes. The monitors allowed to

present the scene from 8 directions without requiring the use of 3D glasses. During

the experiment, the car control signals (mainly steering and pedal positions), vehicle

dynamics and its position in the virtual environment were continuously recorded at a

sampling rate of 256 Hz.

Subjects were instructed to drive following static street boards located on top of the

intersections as shown in Figure 1.B. The speed of the vehicle was limited to 60 Km/h.

When the car was less than 80 m away from the intersection, a visual cue composed
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of three gray arrows (pointing left, up and right) appeared at the lower part of the

windshield. One second later, and always before the car reached the intersection, one

of the arrows was highlighted in green, indicating one of the possible driving directions

(directional cue). This cue indicated the turning direction that may have been inferred

by a driving assistance system. All cues disappeared 500 ms after the directional cue.

During the experiment, the probability of the directional cue (green arrow) pointing

to the same direction as the street board was 70%. Twenty-two subjects performed one

offline recording composed of 5 runs, where each run was composed of 30 trials, i.e., 30

intersections, and lasted about 9 to 12 minutes. Seven of these subjects participated in a

subsequent online recording in another day, which contained 4 to 6 runs each depending

on the subject. This yielded to 150 trials for offline runs and an average of 158.57±14.64

trials for the online analysis.

2.3. Experimental settings in the real car

The real car experiments were performed in an vehicle Infiniti FX30, shown in Figure

1.D. Subjects were requested to use the automatic gearshift and keep their hands on

the steering wheel to limit their arm movements. We disabled the built-in driving

assistance systems during the experiments, i.e., intelligent cruise control, lane departure

prevention, and vehicle dynamic control. Similarly to the car simulator, the vehicle was

equipped with a driving logger (provided by the manufacturer) that recorded steering

and pedal positions at a sampling rate of 256 Hz. A 7-inch screen was placed on the

dashboard in front of the subject (behind the steering wheel) to show the task-related

arrows during the experiments. For safety reasons, the real driving experiments were

performed in a closed road without any other vehicle or pedestrians.

Subjects drove the car following direction signs placed along the road, as shown

in Figure 1.C and E. Based on the topology of the real road used for the experiments,

the options of turning were reduced to left and right, thus only these two arrows were

shown as directional cues. The timings of the visual cues were exactly the same as in

the car simulator. Subjects were asked to drive normally as in a secondary road and

limit their speed to 60 km/h. Each run of the real car recording consisted of 5 laps (9

trials per lap), i.e., 45 trials per run, which lasted around 15 to 20 minutes, depending

on the speed of the car. We recorded 3 runs for each subject corresponding to 135 trials.

Eight subjects took part in a first day of recording consisting of offline experiments, and

seven of them participated in a second recording day to test the online decoding. Six

subjects performed directly the online runs using a classifier trained in offline data from

the previous day. The offline data (first day) of the remaining subject was contaminated

by artifacts, therefore she performed two offline runs on the second day, followed by one

online run.

In most runs of the online experiment with the real car (normally from the second

run), subjects were given additional visual feedback 1 s after showing the directional cue

(green arrow). The visual feedback was a red arrow, only shown when an error potential
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Figure 1. Experimental settings and protocols. A. Setup of the experiments in the
car simulator together with the EEG recording system. B. Virtual environment as
perceived by the driver in the car simulator. Directional signs (white panel with black
arrow in the center) shows the direction of turning; while information from the driving
assistant are shown over the dashboard (gray and green arrows). C. Timings for both
experimental protocols. A visual cue is shown to notify subjects that a new trial
is starting, and the directional cue informs a possible turning direction. Error-related
brain activity is elicited if the arrows do not coincide with subject’s preference. During
the real car experiments, the visual feedback indicates whether the system has detected
an error potential. D. Vehicle Infiniti FX30 used for the real car experiments. The
inset shows the monitor displaying the experimental cues. E. The closed track used
for the real car experiments. The red flag indicates the start point of the lap.

was detected from the EEG (Figure 1.C), pointing to the opposite direction as the green

arrow. No visual feedback was shown when the EEG signal was recognized as a correct

trial. The term “visual feedback” is used to indicate the red arrow after classification.

2.4. Data acquisition and pre-processing

Unless specified, the processing of physiological signals was the same for both simulated

and real driving experiments. EEG signals were recorded from 64 locations according
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to the extended 10/20 system using a Biosemi Active Two system with a sampling rate

of 2048 Hz. Ground was replaced by the Driven Right Leg (DRL) passive electrode.

Signals were referenced to the CMS electrode placed 1 cm to the left of POz. EOG

signals were simultaneously recorded using electrodes positioned above the nasion and

below the outer canthi of both eyes. Experimental events (timing and type of the visual

cues) were marked in both EEG data and the driving log file via hardware triggers sent

from a parallel port.

For the data obtained in the car simulator, we analyzed the temporal waveform of

the ERP after filtering the raw signal spatially, using common average reference (CAR),

and in the frequency domain, with a 4th order non-causal Butterworth filter with cutoff

[1 10] Hz. The choice of this frequency band is based on the fact that the main oscillatory

signature of error-related brain activity appears in the theta band (Holroyd and Coles,

2002; Taylor et al., 2007; Chavarriaga et al., 2014). We kept the same processing for the

online experiment in the car simulator, except for the use of a causal spectral filter. In

addition to the analysis of the temporal waveform, we also computed the power spectrum

density (PSD) of the signal in a broader band, namely [1 50] Hz for car simulator and [1

30] Hz for the real car. This difference was motivated by the presence of vehicle specific

electrical noise at 30 Hz. The PSD was computed by short-time Fourier transform in a

sliding window. The window length was 500 ms (128 samples, sampling rate = 256 Hz),

and the moving step was 31.2 ms (4 samples). The computation was performed using

Matlab function spectrogram with 256 points Fast Fourier Transform. The resulted PSD

at time T was computed using the time window (T − 250 T + 250] ms.

For the real car experiment, the offline analysis was the same as in the car simulator.

Prior to applying CAR, the EEG data was visually inspected to discard noisy channels.

The signal in those channels was replaced by the average of neighbors. Contaminated

electrodes were mainly located in parietal regions, which are [FC5 PO4 P2] for subject

1, [FC5] for subject 4, [P1 Pz P2 P3 CP2 CP4 CP6 FC6 O2] for subject 5, and [P1

PO4] for subject 7.

For the online processing of the real car data, the CAR was not performed for the

reason that the signals were more prone to contamination in some of the electrodes, and

the contaminated signal could have affected other channels. Among all subjects, one of

them (Subject 4) had a substantial noise level in the real car experiments on the first

day. For this reason, we discarded the subject’s data on that day and only used the

data from the second day.

After preprocessing, we extracted correct and error trials according to the onset

of the directional cue (t = 0 s). Epochs were defined to include data from one second

before (t = -1 s) to one second after (t = 1 s).

2.5. Classification

EEG activity was decoded in order to infer whether the user perceived the directional

cue as ’correct’, i.e., in agreement with the intended direction showed by the traffic sign,
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or ’erroneous’, otherwise. Classification between correct and error was performed based

on the ERP time signal in the period, between 0.2 s and 0.7 s after the onset from 41

EEG electrodes: AF3, F1, F3, F5, FC5, FC3, FC1, C1, C3, C5, CP5, CP3, CP1, P1, P3,

P5, PO3, POz, Pz, CPz, AF4, AFz, Fz, F2, F4, F6, FC6, FC4, FC2, FCz, Cz, C2, C4,

C6, CP6, CP4, CP2, P2, P4, P6 and PO41. The 50 most discriminant features (channel

and time point) were selected for classification. The discriminant power of each feature

was estimated using the Fisher score: |m1−m2|
(s1+s2)

, where mi and si are the mean value and

variance of the samples from the ith class.

We used Linear Discriminant Analysis (LDA) to classify correct and error trials.

The offline performance was evaluated using 10-fold cross validation, where the folds

were generated keeping the temporal structure of the data. Feature selection was

performed separately per each fold using the training data. Since the trial numbers

for the two classes were not balanced, i.e., about 30% of them were error trials, we

report the results in terms of both accuracy, and sensitivity-specificity in the receiver

operating characteristics (ROC) space.

Furthermore, the results were compared with chance level, which was computed

empirically by shuffling the training labels, and using the classifier modeled by such

training data. The chance level is estimated from the performance distribution obtained

by repeating the shuffling process 1000 times. We also controlled that the discriminative

information was actually related to error processing in the brain and not caused by signal

contamination due to eye movements. For this, we trained a classifier using the 3 EOG

channels in the offline dataset for both car simulator and real car. The EOG channels

were preprocessed in the same way as the EEG signal.

The online classification followed the same processing as the offline data. In the

case of the car simulator, the classifier was trained using the data obtained so far on

that day, i.e., the classifiers were trained on the data of the preceding runs: Data from

the first run was used to train the initial classifier; Online classification in the ith run

(i > 1) was performed with using a classifier trained on all recorded data so far, i.e.,

runs 1 to i-1. In the real car experiments, with the exception of Subject 4, we trained

the classifier using the data recorded on the first day. The fact of training and testing

the classifier on different days allowed us to assess the consistence of the error-related

patterns across time.

3. Results

3.1. Event-related potentials

Frontal central areas are considered as the main brain source for error-related brain

activity (Holroyd and Coles, 2002; Taylor et al., 2007). We observed clear error-related

modulations over these areas in the offline experiments, as illustrated in the grand

average ERP across all subjects (offline recordings: N = 22 for the car simulator and N

1Peripheral electrodes were excluded to reduce signal contamination.
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= 8 for the real car experiments) at FCz in Figure 2. The ERP from the car simulator

(Figure 2.A) exhibits similar amplitude as the real car data (Figure 2.B). The signal is

smoother in the car simulator, which can be due to the higher number of participants

and trials and the lower noise level in the experimental environment.

The ERP elicited in both experiments showed a positive peak after the visual cue,

peaking at about 760 ms before the directional cue in the car simulator data (670 ms in

the real car condition). No statistically significant difference was found (p > 0.05, two-

sample t-tests, corrected by a 1000 random permutation test) between error and correct

trials in the period before the directional cue. After the appearance of the directional

cue (0 ms), another positive peak is found for both the car simulator and real car data,

appearing around 260 ms and 200 ms for each experiment. Again, this peak does not

show statistical difference between correct and error conditions, suggesting that none of

these peaks is related to brain error processing. Specifically for the first peak (at -760 ms

and -670 ms in the simulated and real car experiments, respectively), the directional

cue (containing the information required to assess correct or erroneous conditions) has

not yet been developed. In the experiments, the trials were randomly generated and

balanced, i.e., left, right and straight arrows (left and right in the real car case) occur

equally often in both error and correct conditions, so we could infer that these two peaks

are not correlated with the perception of spatial patterns of the stimuli.

A positive peak at 290 ms in the real car data was also found, which is significantly

different (p < 0.05) between the error and correct trials. We observed a negative peak at

about 480 ms, having significantly lower amplitude in the error than the correct condition

(p < 0.05) for both the car simulator and the real car experiments. Significant differences

between error and correct could also be found at around 700 ms after the directional cue

with higher amplitude in the error condition. In summary, both experiments showed

consistent ERP patterns and significant differences between the two conditions.

The topography of the 41 electrodes averaged for all subjects is presented in Figure

3. They show the scalp wide activity at the onset of the directional cue (0 s) and at the

time of the ERP peaks. Frontal regions show a positive modulation after the visual cue

(at -760 ms in the car simulator and -670 ms in the real car case) and the directional

cue (260 ms for car simulator and 290 ms for the real car). High activity is observed

after the visual cue, probably due to the fact that the subjects perceived suddenly the

first visual cue (three gray arrows), which was also the purpose of presenting this visual

cue, informing the subjects about the forthcoming directional cue in order to reduce the

effect of visual surprise from the brain error processing. Error and correct trials showed

similar patterns at -760 ms, confirming that no error-related information is contained.

Topographies at the onset of the directional cue (0 ms) showed no specific modulation

patterns, amplitudes being close to zero for all electrodes. We observed frontal negative

deflections at about t = 480 ms (t = 475 ms for the real car case) for error and correct

conditions, with error trials having lower amplitude. Further, at about t = 750 ms (t =

700 ms for the real car case) we could see a positive pattern in frontal regions, especially

in the error condition, corresponding to the positive peak in FCz in Figure 2.
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Figure 2. Grand average of ERP and PSD at FCz. EEG trials are epoched according
to the directional cue (0 s), from -1 s (presence of the three gray arrows) to 1 s. A.
ERP of the car simulator data. B. ERP of the real car data. Significant differences (p
< 0.05) across time samples between error and correct trials are found by two-sample
t-test for all trials, which are shown as green thick lines. The red triangles indicate the
time points selected for the illustration of topography in Figure 3. C. PSD of the car
simulator data. D. PSD of the real car data. PSD is computed in time window [200
400] ms. Statistical tests are performed by a two-sample t-test for all trials, and the
significances (p < 0.05) are shown as the green area.

The increase of the theta band in medial frontal cortex (MFC) is considered as

the main oscillatory modulation pattern of error monitoring (Holroyd and Coles, 2002;

Taylor et al., 2007; Cavanagh and Frank, 2014). Figure 2.C and D illustrate the power

spectrum density (PSD) in the period [200 400] ms after the directional cue for electrode

FCz. For both error and correct trials, the PSD curves decrease gradually, and drop after

12 Hz. Both experiments showed higher theta power in the error condition. Specifically,

significant differences (p < 0.05, two-sample t-test for all trials, corrected by a 1000

random permutation test) are found between 4-11 Hz (Figure 2.C) in the car simulator

and between 7-11 Hz in the real car (Figure 2.D) case. No difference could be found in

higher frequency ranges.
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Figure 3. Topographic illustration of brain activity at time points of ERP peaks and
t = 0 ms (onset of the directional cue). A. Car simulator dataset. B. Real car dataset.
41 central electrodes are shown in the figure, excluding the peripheral regions.

3.2. Offline classification results

The results of offline classification are shown in Figure 4. Each curve in Figure 4.A

and B represents the performance of one subject in the ROC space, averaged across

10 folds. In both experiments most of the subjects had a classification performance

above 0.5 (diagonal dash line). The average accuracy across subjects was 0.698 ± 0.065

and 0.6823 ± 0.059 for the car simulator (N = 22) and real car (N = 8) experiments,

respectively. The sensitivity-specificity of the decoder using the area under the ROC

curve (AUC) was of 0.729 ± 0.086 and 0.6824 ± 0.086 for the car simulator and real car

experiments. Although the accuracy and AUC were lower in the real car, no significant

difference (two sample t-test, p > 0.05) was found between the two experimental settings.

Furthermore, we computed the chance level for both experimental settings, see

white boxplot in Figure 4.C. It yielded a chance accuracy of 0.523 ± 0.042 (car simulator)

and 0.554 ± 0.030 (real car), and AUC of 0.494 ± 0.050 (car simulator) and 0.526 ±
0.051 (real car). Significant differences (p < 10−4, paired t-test) were found between

the chance level (blank boxes) and the EEG classification for both accuracies and AUC.

The performance with EOG features is illustrated as gray boxplots in Figure 4.C and

D, which were significantly lower (one sample t-test, p < 0.05) than using EEG features

for both accuracy (0.614 ± 0.082 for the car simulator and 0.589 ± 0.106 for the real

car) and AUC (0.616 ± 0.116 for the car simulator and 0.574 ± 0.142 for the real car).

To further rule out any influence of EOG on performance, we compared
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classification using EEG features against using EEG + EOG features. Results were

statistically similar for both, car simulator (AUC 0.723 ± 0.092; Accuracy 0.683 ±
0.082) and real car experiments (AUC 0.680 ± 0.093; Accuracy 0.665 ± 0.081). We

also explored the use of ICA for removing EOG before classifying the denoised EEG.

To do so, we removed the ICA components correlated with veritcal and horizontal eye

movements (correlation coefficient > 0.2). The horizontal and vertical movements were

estimated as [s2− s3] and [s1− (s2 + s3)/2], where s1, s2 and s3 are the signals from the

three EOG channels located above nasion (s1) and below the out canthi of both eyes

(s2 and s3). Classification using ICA-denoised brain signals yielded an AUC of 0.698

± 0.129 and 0.689 ± 0.072 (Accuracy: 0.670 ± 0.102 and 0.663 ± 0.060) for the car

simulator and the real car experiments, showing no significant performance differences

with the decoding of the original EEG signals.

3.3. Online classification

For the experiments in the car simulator, since the classifier was updated after every

run, we report online performance for each run, from runs 2 to run 5, c.f., black boxes

in Figure 5.A. The later run has higher accuracy than the previous ones; thus, the 5th

run (0.733 ± 0.150) has higher accuracy than the 2nd run (0.567 ± 0.101), which is

statistically significant (p < 0.05, paired t-test). The white boxes in Figure 5 represent

the chance levels in these runs (by randomly shuffling the training labels and evaluating

the classification performance in each run, averaged for 1000 times), where the third

and fifth runs have significantly higher performance compared with the chance level.

The false positive rate and true positive rate of each run for the seven subjects are

illustrated in Figure 5.B, showing that the performance exceeds chance level in most

runs. We could also observe substantial differences between subjects, e.g., the subject

corresponding to blue diamond shows better performance than that of green hexagrams,

which might be due to the diversity of the signal quality, the experience of performing

similar experiments and the attention level during the recording.

Similarly, the results of online real car experiments are shown in Figure 6. Since

the online experiments have different number of runs across subjects, we present the

results of each run for each participant separately. Five subjects did the first online run

without the visual feedback, i.e., the red arrow one second after detecting the error-

related brain activity. Excepting subject 4, the classifiers were trained based on the

data collected in the previous recording day, and no further update of the classifier was

done during online experiments. As shown in Figure 6.A, the classification performance

increased across runs, particularly the first run never led to the best accuracy for any

subject. Again, variations in performance existed across participants, e.g., subject 2 had

better performance (0.786 ± 0.060) than the others, and subject 3 (0.545 ± 0.068) has

performance close to random level except for the last run. As mentioned in the section

2.3, subject 4 has only one online run using the training data of the same day. This

might be one of the reasons why this subject has relatively higher performance (0.773)
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Figure 4. Offline classification performance of both car simulator (N=22) and real
car data (N=8). A. Results in ROC space for the car simulator, i.e., quantified by false
positive rate and true positive rate. Each curve shows results of one subject (10-fold
cross validation) B. Results in ROC space for the real car. C and D. Median and
25th/75th percentiles of accuracy and area under the curve in car simulator and real
car datasets. Black boxes show the results of using EEG signal, gray boxes show the
results of using EOG signal, and the empty boxes indicate the chance levels. Asterisk
indicates significant difference using t-test.

than other subjects.

4. Discussion

In this study, we have analyzed and decoded error-related brain activity while driving

a simulated and a real car. Classification of the EEG signals in a single trial basis

yielded performances significantly above chance level for most subjects and therefore

can be used to obtain information about the driver’s appraisal of the presented stimuli,

e.g., to validate inferences made by a driving assistant system. This study extends our

previous work from car simulator to real car experiments. The consistency of ERP

grand averages and classification performance between the car simulator and real car
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experiments supports the idea of using BCI systems to assist in driving tasks. More

importantly, the current study also evaluated decoding of these signals in an online

manner, showing similar performance between the two experimental setups, further

proving the feasibility of such systems in realistic applications.

Unsurprisingly, the EEG signals were more prone to artifact contamination in the

real car situation than in the simulated condition. The environmental noise, e.g., moving

and shaking of the automobile as well as the movements of the subject’s eyes and head

are some of the factors that decrease the quality of the EEG data in this condition.

Concerning these aspects, the robustness and reliability should be taken into account

in the design of in-car BCI systems. The error-related EEG activity has been reported

to be largely independent from the stimuli type (e.g., visual, auditory or tactile) and

spatial position of stimuli, modulated mainly by the subjects’ perception of conflicting

information (Chavarriaga and Millán, 2010). This activity is mainly associated with

modulations in theta band, thus the interest frequency range did not overlap with the

vehicle specific electrical noise we observed (30 Hz in the real car experiments). The

fact that EOG-based classification yielded low performance also supports the notion

that the discriminative patterns are not originated from eye movements. Nevertheless,

further studies and future applications may attempt to apply algorithms to remove eye

movements and blinks automatically (Joyce et al., 2004).

The classification results showed performance variations across subjects and runs.

In general, most subjects were naive to the protocol, both for the car simulator and

the real car experiments. Only one subject performed the experiment in the car
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simulator before the real car recording. The performance variability across individuals

and runs may be caused by differences in the attention level and the adaptation to the

protocol. As we saw in the car simulator data (Figure 5.A), the performance gradually

and significantly increased from run 2 to run 5, which is also supported by the real

car dataset where later runs outperformed the first one. These results suggest that a

certain adaptation is necessary for the subject to obtain good and stable classification

performance. Nevertheless, we cannot exclude that the increase in accuracy observed in

the online car simulator experiments are not due to the larger amount of data available

for training the decoder. Further studies may try to find the relative contribution of

data amount and subject adaptation.

Comparing our results with a previous study on error monitoring in the laboratory

environment (Chavarriaga and Millán, 2010), whose mean classification accuracies were

0.758 and 0.632 for correct and error trials, we observed no obvious drop of the

classification performance. This proves, therefore, that detecting the error-related brain

activity in complex tasks is feasible and the accuracy is equivalent to that of simpler

setups.

To increase the classification performance in the future, we can improve the

feature selection method in order to reduce redundancy across features (Brown et al.,

2012). Additionally, the current study only uses the discriminative information from

ERP patterns, or temporal waveforms, as classification features. Alternative features,

e.g., spectral information and causal influences between electrodes, are likely to boost

classification performance according to some reported studies on BCI (Wang et al., 2006;

Billinger et al., 2013; Omedes et al., 2014; Zhang et al., 2015). Moreover, the online

results in the car simulator data indicate that the prompt updating of the classifier seems

to contribute to performance improvement, which might be further evaluated through

the adaption of the classifier parameters, e.g., weights in an LDA classifier (Hsu, 2011).
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These sets of techniques could also help coping with changes in the EEG induced by

long-term driving, which may affect the decoding performance. Still, although ERP

amplitudes may decrease, their waveform appear to be rather stable despite mental

fatigue (Lorist et al., 2005). This issue will be considered in future studies.

Finally, it should be noticed that the BCI system developed in this study is not

intended for direct control of the vehicle (e.g., steer, accelerate and brake). Instead,

the decoding of error-related brain activity shows whether the driver agrees with the

assistance provided by the vehicle. Furthermore, such error-related activity could not

only infer the driver’s immediate response to the assistance, but can also be used to

gradually adapt the driving assistance for future occasions (Iturrate et al., 2015).

In summary, we have presented the first online BCI system tested in a real car

to detect error-related brain activity, as a first step in transferring error-related BCI

technology from laboratory studies to the real-world driving tasks. Consistent brain

signatures and classification performance prove the feasibility of the approach in complex

environments, as an extension of the previous study in a car simulator. Our future work

will focus on investigating other machine learning methods to improve the performance

of error detection, evaluating the possibility of using alternative stimuli, e.g., auditory or

tactile, to evoke error-related brain activity without extra visual burden during driving,

as well as testing the protocol in open roads as compared to driving in a closed track.
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