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Abstract The best way of selecting samples in

algebraic attacks against block ciphers is not

well explored and understood. We introduce
a simple strategy for selecting the plaintexts

and demonstrate its strength by breaking reduced-

round KATAN32, LBlock and SIMON. For each
case, we present a practical attack on reduced

round version which outperforms previous at-

tempts of algebraic cryptanalysis whose com-
plexities were close to exhaustive search. The

attack is based on the selection of samples using

cube attack and ElimLin which was presented

at FSE’12, and a new technique called Univer-

sal Proning. In the case of LBlock, we break

10 out of 32 rounds. In KATAN32, we break

78 out of 254 rounds. Unlike previous attempts
which break smaller number of rounds, we do

not guess any bit of the key and we only use

structural properties of the cipher to be able
to break a higher number of rounds with much

lower complexity. We show that cube attacks

owe their success to the same properties and

therefore, can be used as a heuristic for select-
ing the samples in an algebraic attack. The per-

formance of ElimLin is further enhanced by the

new Universal Proning technique, which allows
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to discover linear equations that are not found
by ElimLin.

Keywords: algebraic attacks, LBlock, KATAN32,

SIMON, ElimLin, cube attack, universal pron-

ing, extended proning

1 Introduction

Algebraic attacks are a very powerful method
for breaking ciphers in low data complexity at-

tacks. This scenario is the most usual in prac-

tice. Algebraic cryptanalysis has brought about

several important results (see [14,15,16,17,25,
1]). An algebraic attack can be divided into

several steps: building a system of equations

and finding the solution to the system using an
appropriate algorithm. The methods for find-

ing the solution are, however, not sufficiently

adapted for algebraic cryptanalysis, which shed
a skeptical light on the entire discipline. The

attacks mostly report breaking several rounds

of a target cipher, but fail to explore scalable

strategies for improvements. In this paper, we
start filling this gap.

One approach in algebraic cryptanalysis is build-

ing a system of linear equations in the key vari-
ables using extensive preprocessing, such as cube

attacks [5,25,23,26]. Another approach is build-

ing a system of multivariate quadratic equa-
tions, and solving the system using Gröbner ba-

sis computation (F4/F5, XL/mXL), see [28,34,

2,40,39,44], using XSL algorithm, see [20,13,

37,12], or converting the multivariate system
into algebraic normal form and running SAT

solvers such as in [43]. All these methods usu-

ally implement a common step called ElimLin

[22].

ElimLin is a simple algorithm which uses lin-

ear equations from the linear span of a sys-
tem for elimination of variables by substitu-

tion. It works iteratively until no new linear

equation can be found. Using this method we

can, in some cases, linearize a large multivari-
ate polynomial system. Since this technique is

used as the first step by all advanced techniques

a proper understanding of ElimLin algorithm is
crucial for further advances in algebraic crypt-

analysis.

In this paper, we present evidence that the suc-
cess of SAT solvers in algebraic attacks depends

on the performance of ElimLin algorithm and

we expect similar phenomena to occur in the



case of F4 and mXL. We show that the se-
lection of samples based on a cube attack on

R round ciphers performs well when breaking

R + ǫ rounds cipher for a small ǫ. We demon-

strate this by breaking 10 rounds (out of 32)
of LBlock [45] in Section 3.4 and 78 rounds of

KATAN32 (out of 254) [10] without guessing

any key bits in Section 5, while all previous ap-
proaches were guessing 32 resp. 45 bits of the

key. Then in Section 7, we mount the attack

against the cipher called SIMON. Therefore, the
complexity of their attack is of order 232T(SAT)

resp. 245T(SAT) where T(SAT) denotes the av-

erage time necessary to break KATAN32. We

also note that unlike SAT solvers, whenever Elim-

Lin with our extensions was successful to re-

cover one key, it was successful to recover the

key in all cases we tested. The running time
of our attack was several hours for smaller sets

of samples, and up to 10 days for the largest

sets of samples. Finally, we introduce a tech-
nique called Universal Proning which allows to

find additional linear equations of the system

which are satisfied for a random key with high

probability.
The relation between algebraic methods have

been extensively studied. ElimLin is a basic al-

gorithm which is part of every algebraic tool.
XSL is an ad-hoc version of XL which was an-

alyzed in [13]. The XL algorithm computes the

Gröbner basis in a similar way as F4, but it per-
forms additional unnecessary computations [4].

The mXL variant of XL [40] is equivalent to F4

[3]. The comparison between Gröbner basis com-

putation and performance of SAT solver was
shown in [27]. The complexity of SAT was fur-

ther studied in [38]. The asymptotic estimates

of the complexity of XL and Gröbner basis were
given in [46]. The multivariate equations repre-

senting the cipher are difficult to solve in gen-

eral. The most general solving technique is to
find the Gröbner basis of the ideal generated by

the system using algorithms such as F4. Using

this technique, the degree of equations in the

system is iteratively increased until the first
fall appears [32, Section 4.6], and the system

is fully solved, when a so-called degree of reg-

ularity is reached [8, Definition 3]. This degree
is usually high [7] and therefore such computa-

tion is often infeasible due to memory require-

ments. The SAT solving techniques also do not
perform very well for complicated systems. The

XL algorithm is a variant of the F4 algorithm [3]

and therefore, suffers from the same problems.

ElimLin algorithm can be seen as iterations of
a Gauss elimination and a substitution. It does

not increase the degree of the system in any

intermediate step, and hence it finds no solu-

tion in many cases. We observe that the run-
ning time of all the techniques above depends

on the selection of plaintext-ciphertext pairs.

In this paper, we introduce a technique for the
selection of samples which significantly improves

the running time for selected ciphers. In Sec-

tion 2, we recall ElimLin algorithm then, in Sec-
tion 3, we introduce our method for selecting

samples in an algebraic attack and show its

performance using reduced round LBlock. In

Section 4, we discuss implementation improve-
ments of ElimLin, which allow to parallelize the

attack and reduce memory requirements. We

apply our optimized ElimLin and the cube selec-
tion of samples against KATAN32 in Section 5.

In Section 6, we introduce a new technique called

Universal Proning for recovering linear equations
which cannot be found by ElimLin, but which

are satisfied for a random key with high proba-

bility. We use this technique together with Elim-

Lin to attack reduced round KATAN32 which
was previously analysed in [33,35,42]. We com-

pare our results to state-of-the-art algebraic at-

tacks on KATAN32 and show that our tech-
nique of selecting samples and recovering hid-

den linear equations outperform previous re-

sults. The recent attack against KATAN32

in [42] achieves similar number of rounds as

we do but the authors guess 45 statebits be-

fore running the SAT. Hence, the complexity

of their attack is 245T(SAT) which is compa-
rable to a previous attack in [6]. In Section 7,

we demonstrate the selection of samples against

another cipher called SIMON. The results show
improvement against selection of samples based

on truncated differentials from [19]. In Section 8,

we explain the impact of our selection strategy
to other algebraic attacks and we conclude in

Section 9.

We show the effectiveness of our approach on

three well-known ciphers as an example and
provide an evidence to support the hypothesis

that this would be the case for other ciphers as

well. Our sample selection technique can also
be used in attacks based on F4/mXL and SAT

solvers. The trade-off between increasing num-

ber of samples for ElimLin and increasing degree
in F4/mXL still remains an open problem.
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Algorithm 1: ElimLin

1: Input : A system of polynomial equations Q = {Eq1, . . . ,Eqm0
} over F2.

2: Output : An updated system of equations QT and a system of linear equations QL.
3: Set QL ← ∅ and QT ← Q and k ← 1.
4: repeat

5: Perform Gauss elimination Gauss(.) on QT with an arbitrary ordering of equations and monomials to
eliminate non-linear monomials.

6: Set QL′ ← Linear equations from Gauss(QT ).
7: Set QT ← Gauss(QT ) \ QL′ .
8: Set flag.
9: for all ℓ ∈ QL′ in an arbitrary order do

10: if ℓ is a trivial equation (no variable expressed in ℓ) then

11: if ℓ is unsolvable then

12: Terminate and output “No Solution”.
13: end if

14: else

15: Unset flag.
16: Let xtk be a monomial from ℓ.
17: Substitute xtk in QT and QL′ using ℓ.
18: Insert ℓ in QL.
19: k ← k + 1
20: end if

21: end for

22: until flag is set.
23: Output QT and QL.

2 The ElimLin algorithm

The ElimLin algorithm is a very simple tool

for solving systems of multivariate equations.

It is based on iterations of a Gauss elimina-
tion and a substitution of variables by linear

equations. It is used as a preprocessing tool in

most computer algebra systems, e.g., F4/F5 al-
gorithm, XL, or even in cryptominisat. Since

this algorithm is a common base of all solvers,

it is important to carefully investigate its prop-

erties and capabilities. We recall ElimLin algo-
rithm in Algorithm 1 and we refer the reader to

[22] for additional details. Later in the paper,

we discuss a strategy to improve the running
time of ElimLin when we consider many sam-

ples. It was already shown in [22] that increas-

ing the number of samples helps to find the
secret key using ElimLin. We now show that se-

lecting the plaintexts carefully can significantly

improve the performance of ElimLin and even

outperforms state-of-the-art attacks based on
SAT solvers. Since ElimLin performs only sub-

stitution by linear terms, the degree of the sys-

tem cannot increase. Therefore, ElimLin solves
the system and recovers the secret key only in

very special cases. ElimLin is performed as the

first step of Gröbner basis computation and even
some SAT solvers, such as cryptominisat, run

ElimLin as a preprocessing. Therefore, we focus

on the selection of plaintexts which allows Elim-

Lin to solve the system or eliminate the highest
possible number of variables.

3 Selection of samples

In this section, we define our system of equa-

tions and give necessary definitions. In part 3.1,
we give a new characterization of the system

when ElimLin succeeds. In part 3.2, we find a strat-

egy for selection of samples, which allows to

satisfy this condition. This selection strategy
is based on cube attacks which we recall in

part 3.3. In part 3.4, we show the performance

of such a technique on LBlock, and compare
our results to previous algebraic attacks based

on ElimLin. In part 3.5, we give further insight

into our method and directions for future test-
ing and improvements.

Notation 1 We denote kln the key length. We
denote sln the message length and the length of

the state vector. We denote smpn the number of

plaintext/ciphertext pairs. We denote rndn the
number of rounds of the cipher.

We represent state bits and key bits by vari-

ables. Each state variable sjp,r corresponds to

a plaintext of index p, a round r, and an index
j in the state vector. The key is represented

by key variables k1, . . . , kkln. The plaintext p is

represented by s
j
p,0 and ciphertext by s

j
p,rndn.
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Definition 2 (Boolean polynomial) Let b ∈
F2[V ] be a polynomial such that

b =
∑

W⊂V

aW
∏

w∈W

weW

where aW ∈ F2. Then b is called a boolean poly-
nomial iff for all w ∈ W we have eW ∈ {0, 1}.

We denote B[V ] the set of all boolean polyno-

mials of ring F2[V ].

Notation 3 We denote the set of variables as

V =
⋃

t∈[1,kln]

{kt}∪
⋃

p∈[1,smpn]

⋃

r∈[0,rndn]

⋃

j∈[1,sln]

{sjp,r}.

The round function of the cipher is represented

by a set of polynomials rjr which take as input

all state variables at round r and return the j-

th state variable at round r + 1, i.e, sjp,r+1 is
given by polynomial

rjr(s
1
p,r, . . . , s

sln
p,r, k1, . . . , kkln)

We denote the corresponding equation Eqjp,r =

rjr
(

s1p,r, . . . , s
sln
p,r, k

r
1, . . . , k

r
kln

)

−s
j
p,r+1 where k

r
j =

rkrj (k1, . . . , kkln).

Notation 4 (system) We denote

S =





⋃

p∈[1,smpn]

⋃

r∈[0,rndn]

⋃

j∈[1,sln]

{

Eqjp,r
}





The equations are taken over boolean ring, i.e

S ⊆ B[V ], and they represent relations between

variables of round r and r + 1. We further de-

note
Sχ,⋆,⋆ = S ∪

⋃

p∈[1,smpn]

⋃

j∈[1,sln]

(

s
j
p,0 − χj

p

)

,

S⋆,γ,⋆ = S ∪
⋃

p∈[1,smpn]

⋃

j∈[1,sln]

(

s
j
p,rndn − γj

p

)

,

S⋆,⋆,κ = S ∪
⋃

i∈[1,kln]

{ki − κi}

We use notation Sχ,γ,κ to denote that we set
plaintext to χ, ciphertext to γ and key to κ.

The symbol ⋆ at any position means that the

value is unset. Hence, Sχ,⋆,⋆ is the system of
equations when we fix the plaintexts to χ and

S⋆,γ,⋆ is the system when we fix the ciphertexts

to γ. We later use Sχ,γ,⋆ which represents, thus,

the system in which we fix both the plaintext
and the ciphertext.

Notation 5 For a system1 S, we denote:

Sχ,⋆,κ = Sχ,⋆,⋆ ∪ S⋆,⋆,κ

S⋆,γ,κ = S⋆,γ,⋆ ∪ S⋆,⋆,κ

Sχ,γ,⋆ = Sχ,⋆,⋆ ∪ S⋆,γ,⋆

We say that Sχ,⋆,⋆ and S⋆,γ,⋆ are open-ended.
Furthermore, we define a ring homomorphism

()χ,γ,⋆ which assigns an element of F2 to each

variable.

Observation 6 The ideal 〈S⋆,γ,κ〉 and 〈Sχ,⋆,κ〉

is always maximal ideals for deterministic en-
cryption.

Equivalently, the plaintext is uniquely deter-

mined by the key κ and the ciphertext γ resp.

ciphertext is uniquely determined by the key κ

and the plaintext χ. Similarly, we assume that
χ and γ fully characterize the key κ:

Assumption 7 We assume that the ideal
〈Sχ,γ,⋆〉 is a maximal ideal.

We recall that smpn denotes the number of plain-

text/ciphertext pairs. For the assumption to be

satisfied we require that smpn is large enough

to uniquely characterize κ.

Definition 8 Given a set of variables W , we

denote

Triv[W ] =
〈

v2 − v : v ∈ W
〉

F2[W ]

The ideal Triv[V ] is an ideal of trivial relations

which exist due to computation in function field.

Definition 9 (degree of polynomial)

Let q ∈ F2[V ] such that q =
∑

W∈P(V )

aW
∏

v∈W

veW .

We define the degree of multivariate polynomial

deg q = max {|W | : aW 6= 0}

Hence based on Definition 9, we consider degree
of a polynomial to be the degree of the equiva-

lent boolean polynomial, i.e, for q ∈ F2[V ] and

b ∈ B[V ] such that q = b mod Triv[V ] we have
deg q = deg b.

Notation 10 For a set S ⊂ F2[V ] and D ∈ N

we denote a set SD = {f : f ∈ S, deg(f) ≤

D}.

In our experiments, the equations for KATAN32

are build as in [6] and the equations for LBlock

as in [22]. This allows for more accurate com-
parison of our the method of selection of sam-

ples.

1 We assume that our equations are sound in the
sense being fully ”Describing” equations [18] for each
component of the encryption process.
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3.1 Characterization of systems when ElimLin

succeeds

We now explore the properties of systems for

which ElimLin succeeds to recover the secret

key. We use this characterization in Part 3.2
to derive a selection strategy for plaintexts.

We now reformulate ElimLin (Algo. 1) based on

matrix operations. We consider matrices over

F2[V ]. The original polynomial system Q =

{Eq1, . . . ,Eqm0
} is represented as







Eq1
...

Eqm0






.

ElimLin performs Gauss elimination and sub-
stitution. Gauss elimination (step 6 of Algo-

rithm 1), corresponds to matrix multiplication.











1 0 0 0

1 1 0 0
...

0 0 0 1





















Eq1
Eq2
...

Eqm0











=











Eq1
Eq1 + Eq2

...

Eqm0











.

The substitution can be expressed as multipli-

cation by a monomial. Let assume substitution

of x1 using linear polynomial Eq1 = x1 + ℓ(
→
x).

Assume that Eq2 = x1p + q where x1does not

appear in p and q. Let x1p be the substituted

term. After substitution, we obtain ℓ(
→
x)p + q.

Hence, the substitution of x1 in Eq2 can be ex-
pressed as matrix multiplication











1 0 0 0
p 1 0 0

...

0 0 0 1





















Eq1
Eq2
...

Eqm0











=











(x1 + ℓ(
→
x))

pEq1 + Eq2
...

Eqm0











.

We use asociativity and express ElimLin (Q) by

a single matrix multiplication, say E · Q.

Lemma 11 Consider a system S such that Elim-

Lin applied to Sχ,γ,⋆ recovers the key bit kj as
value cj ∈ F2. Let E be the ElimLin transfor-

mation, i.e, one line of matrix E · Sχ,γ,⋆ corre-

sponds to equation kj + cj. Then, the same line
of matrix E · S can be written as kj + cj + q′

and (q′)χ,γ,⋆ = 0.

Proof We have E · (Sχ,γ,⋆) = (E · S)χ,γ,⋆ since
()χ,γ,⋆ is a homomorphism. In the first case, we

obtained kj + cj. Hence in the second case, we

have to obtain a polynomial q such that qχ,γ,⋆ =
kj+cj. Let us consider a polynomial q = qχ,γ,⋆+

q′. Then, q′ belongs to kernel of the homomor-

phism ()χ,γ,⋆, i.e, (q
′)χ,γ,⋆ = 0. ⊓⊔

The polynomial q′ will be important in the se-
lection strategy of plaintexts. The existence of

such polynomial is essential for ElimLin to be

able to recover the secret key. At the same time,

the existence of such polynomial can be guar-
anteed if we select the samples based on a suc-

cessful cube attack.

3.2 A Selection Strategy for Plaintexts in

ElimLin

Lemma 11 characterizes the span of ElimLin

when it recovers the value of the key kj . We now
discuss the strategy to ensure that this condi-

tion is satisfied. We now consider the polyno-

mial q′ from Lemma 11. Since we cannot choose
simultaneously the plaintext and the ciphertext

for a single sample, we consider several different

scenarios: selecting only plaintexts, only cipher-

texts, selecting partly plaintexts and partly ci-
phertexts. The selection of related plaintexts

such that corresponding ciphertexts are also

somehow related is left as open problem. Such
pairs might be constructed using high-order and

truncated differential cryptanalysis [36]. In our

scenario, we concentrate on the selection of only
plaintexts. We found no advantage in the selec-

tion of only ciphertexts. The selection of part

of plaintexts and part of ciphertexts is yet to

be explored. The selection of related plaintexts
and corresponding ciphertexts is specific to a cho-

sen cipher. However, our goal is to determine an

optimal generic selection of samples. We use
Lemma 11 for the selection of plaintexts. It

specifies the properties of q′ which has to eval-

uate to 0 when we set plaintext and ciphertext
variables, i.e, when we set χ and γ. However,

we would like to guarantee that q′ evaluates to

0 only when setting the plaintexts since we can-

not control both the plaintexts and the cipher-
texts. Hence, we are looking for a set of sam-

ples that lead to existence of such q′ when we

set only plaintext variables.Let degr(p) denote
the total degree of the polynomial p in variables

corresponding to round r, i.e, sr1,1, . . . , s
r
smpn,sln.

Provided the deg0(q
′) < D, we can build a set

of 2D samples, i.e, find χ, such that q′ evaluates

to 0. This leads us to setting values χ according

to a cube recovered from cube attack.
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3.3 Cube Attack

The cube attack [23] can be seen as a tool to

analyze a black-box polynomial which we rep-

resent by f(x, k). The aim is to derive a set of

equations which is easy to solve and which is
satisfied for all keys, i.e, for all values of k. The

attacker does this in the offline phase. After-

wards, in the online phase, the attacker finds
the evaluation for each equation and solves the

system. We query this polynomial in an offline

phase for both parameters x and k. In the on-
line phase, we are allowed to use queries only

in the first parameter x, since k is set to an un-

known value κ. The objective is to recover this

κ. To achieve this, we find a hidden structure of
f(x, k) in the offline phase and use it to derive κ

in the online phase. In the offline phase, we find

sets of plaintexts Ci such that
∑

x∈Ci
f(x, k)

behaves like a linear function ℓi(k) and ℓi’s are

linearly independent. In the online phase, we

ask the oracle for encryptions of plaintexts from
Ci and solve the system of linear equations. In

the following, we derive the algebraic expres-

sion of
∑

x∈Ci
f(x, k) and show that this func-

tion can indeed behave like a function ℓ(k). Let
f(x, k) be a black-box polynomial which can

be for some coefficients aIJ ∈ F2 expressed as

f(x, k) =
∑

I⊆{0,1}sln

J⊆{0,1}kln

aIJ
∏

i∈I

xi

∏

j∈J

kj .

Definition 12 Let m, t ∈ {0, 1}sln such that

t ∧m = 0. We define Cm,t = {x : x ∧ m̄ = t}.

We call Cm,t a “cube”, m a “mask”, and t

a “template”, and we denote Im = {i : 2i∧m 6=
0}, where 2i represent the bitstring with 1 at po-

sition i.

Example:
Let m = 00010110 and t = 11100001. Then, we have
|Cm,t| = 23 and
Cm,t =

{

11110111,11100111,11110101,11110011,
11100011,11100001,11100101,11110001

}

.

Theorem 13 Let Cm,t be a cube and f(x, k) =
∑

I⊆{0,1}sln

J⊆{0,1}kln

aIJ
∏

i∈I
j∈J

xikj. Then,

∑

x∈Cm,t

f(x, k) =
∑

J⊆{0,1}kln,
I:Im⊆I

aIJ
∏

i∈I
j∈J

tikj

=
∑

J

a′J
∏

j∈J

kj

for a′J =
∑

I:Im⊆I

aIJ
∏

i∈I

ti.

Proof The proof can be found in the Appendix.

The success of cube attacks is based on find-

ing enough cubes Cmi,ti , i.e, enough mis, tis,

such that
∑

χ∈Cmi,ti

f(x, k) =
∑

J⊆{0,1}kln

aiJ
∏

j∈J

kj

are linearly independent low degree equations.

Even though cube attack may be a powerful
tool in algebraic cryptanalysis, it has been suc-

cessful against only very few ciphers. The re-

duced round TRIVIUM [9] can be attacked for
784 and 799 rounds [30], and can be distin-

guished with 230 samples up to 885 rounds [5].

The full round TRIVIUM has 1152 rounds, which
means that 70% of the cipher can be broken by

this simple algebraic technique. GRAIN128 [31]

was broken using so called dynamic cube attack

in [25]. KATAN32 was attacked in [6] using so
called side-channel cube attack first introduced

in [24]. While cube attacks celebrate success in

only few cases, we show that they can be used
for selection of samples in other algebraic at-

tacks.

3.4 Selection of plaintexts

In this section, we show that the selection of

plaintexts based on the success of cube attack

is a good strategy for satisfying the condition
from Section 3.1. We give an attack against

10 rounds of LBlock. This attack outperforms

the previous attempts of algebraic cryptanaly-
sis [22]. We compare our strategy of using sam-

ples for cube attack to the strategy of selecting

a random cube or a random set of samples. The

strategy of selecting a random cube was previ-
ously explored in [29]. The authors were choos-

ing correlated messages based on a algebraic-

high order differential.

Breaking 8 rounds of LBlock. The previous re-
sult on breaking 8 rounds of LBlock using Elim-

Lin required 8 random plaintexts, and guessing

32 bits of the key (out of 80bits). We found that
if we select 8 plaintexts based on cube Cm,t for
m=0x0000000000000007
t=0x0e84fa78338cd9fb0 , we break 8 rounds of LBlock

without guessing any key bits. We verified this
result for 100 random keys and we were able

to recover each of the 100 secret keys we tried

using ElimLin.
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Breaking 10 rounds of LBlock. We found that
if we select 16 plaintexts based on cube Cm,t

for m=0x0000000000003600
t=0x0e84fa78338cd89b6, we break 10-rounds of

LBlock without guessing any key bits. We ver-

ified this result for 100 random keys. We were
able to recover each of the 100 secret keys we

tried using ElimLin. We tried to extend the at-

tack to 11 rounds of LBlock, however we have
not found any cube of dimension 5 or 6 which

would allow ElimLin to solve the system.

Random vs Non-Random Selection of Plaintexts.

We tested the performance of ElimLin applied

to the 10-round LBlock for the same number
of plaintext-ciphertext pairs. Our results show

that when ElimLin algorithm is applied to a set

of n plaintexts from a cube, the linear span it
recovers is larger than for a set of n random

samples. We also show that ElimLin behaves

better on some cubes, and that this behavior is

invariant to affine transformation. The results
are summarized in Table 1.

3.5 ElimLin and Cube Attacks

In this section, we explain the intuition behind

using a cube attack for selecting samples for

ElimLin. We first elaborate on our observations
about ElimLin’s ability to recover the equation

found by cube attack. Later, we compare our

approach to classical cube attacks and give ad-
ditional observations about behavior of ElimLin

with our selection of samples.

Structure of the cube. Let Eκ denote the en-

cryption under the key κ, and let consider two

samples for the plaintexts χ and χ+∆, where
∆ has a low Hamming weight. Many statebits

in the first rounds of computation Eκ(χ) and

Eκ(χ+∆) take the same value since they can be
expressed by the same low degree polynomial

in the key and state variables. This can be de-

tected by ElimLin and used to reduce the total

number of variables of the system. Therefore,
good candidates for the selection of samples

are plaintexts which are pairwise close to each

other — in other words, plaintexts from a cube.
Let now consider χ = (χp : χp ∈ Cm,t). We con-

sider a blackbox polynomial f(x, k) comput-

ing the value of state variable sjx,r for a key
k, a plaintext x, a statebit j and r rounds. The

cube attack gives an equation
∑

χp∈Cm,t
f(χp, k) =

ℓ(k) for a linear function ℓ. We observe that

the equation
∑

χp∈Cm,t
f(χp, k) = ℓ(k) is found

also by ElimLin in a majority of cases. We fur-

ther found that ElimLin can find many pairs of

indices (a, b), such that sja,r equals to s
j
b,r. We

assume that this is the fundamental reason for
the success of cube attack. Thanks to such sim-

ple substitutions, ElimLin can break a higher

number of rounds while decreasing the running
time.

ElimLin vs. Cube Attacks. The attack based on
cube attack consists of an expensive offline phase,

where we build the system of equations which

is easy to solve, i.e, linear (or low degree) equa-

tions in the key bits, and the online phase where
we find evaluations for these linear equations

and solve the system. The attack based on Elim-

Lin consists of a cheap offline phase, since the
system of equations represents the encryption

algorithm, and the online phase is therefore more

expensive. Our attack can be seen as a mix
of these two approaches. We increase the cost

of the offline phase to find a good set of sam-

ples and run ElimLin on the system without the

knowledge of ciphertext. Hence, we simplify the
system for the online phase.

Comparison of number of attacked rounds by
Cube Attacks and ElimLin with same samples.

In our attacks we observed an interesting phe-

nomena which occurs for every cipher we tested.
Our first phase consists of finding a cube at-

tack against a R round ciphers. In the next

phase, we consider R + r round cipher, build

a system of equations, set plaintext bits corre-
spondingly, and run ElimLin to obtain a system

P . In the next step, we query the encryption

oracle for ciphertexts, build a system of equa-
tions corresponding to rounds [R,R + r], and

run ElimLin to obtain a system C. We found

that the success of ElimLin to recover the se-
cret key of R+r round cipher strongly depends

on the selection of plaintexts: random samples

perform worse than random cubes and random

cubes preform worse than the ones which per-
form well in cube attack. The plaintexts se-

lected based on a cube allow ElimLin to find

more linear relations, which are in many cases
of form sja,r = s

j
b,r. Hence, we obtain a sys-

tem with significantly less variables. This al-

lows us to recover the secret key. In the cases
of LBlock and KATAN32 we obtained r ≈ R

3 .

These observation suggest a further research in

performance of ElimLin against ciphers such as
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10 rounds of LBlock: Cm,t system of 24 samples solved remaining variables
m=0x0000000000003600 t=0xe84fa78338cd89b6 yes 0
m=0x0000000000d00001 t=0x856247de122f7eaa yes 0
m=0x0000000000003600 random yes 0
m=0x0000000000d00001 random yes 0

m=random deg4 random no ≈ 700
random set no ≈ 2000

Table 1: Results on 10-round LBlock

TRIVIUM and GRAIN128, since there already

exist cube attacks against a significant number

of rounds [30,25,5].

4 Optimizing ElimLin

An efficient implementation of ElimLin faces sev-

eral challenges. For ElimLin to be successful it

is necessary to consider a lot of samples. How-
ever, a high number of samples leads to an in-

crease in memory requirements. We remind the

Theorem 13 from [22] and use the result to split

the system into small subsystems correspond-
ing to different plaintext samples and recover

most linear equations with small memory re-

quirements.

Definition 14 Let Q be the initial set for Elim-

Lin. Let QT ,QL be the resulting sets of ElimLin.

We call the linear span of QT∪QL ElimLin span

and denote elspan (Q) = linspan (QT ∪ QL).

Theorem 15 (ElimLin invariant [22])

The span elspan (Q) is invariant with respect
to the order of substitutions and Gauss elimi-

nation.

4.1 Algorithm

Since the result of ElimLin does not depend

on the order of substitutions, we propose a di-

vide and conquer strategy for handling a large

amount of samples. We divide the system S
which consists of multiple samples into small

mutually disjoint subsystems Si of smaller num-

ber of samples and we let for a, b ∈ [1, smpn]
denote S[a,b] =

⋃

i∈[a,b] Si. Therefore, we have

elspan (S) = elspan
(

S[1,smpn]

)

. We compute

recursively A = elspan
(

S[x, x+y
2 ]

)

and B =

elspan
(

S[ x+y
2 +1,y]

)

elspan
(

S[x,y]

)

= elspan (A ∪B)

The analysis of intermediate outputs of Elim-

Lin reveals that most linear equations are dis-

covered already in the union of these small sys-
tems, i.e, in elspan (Si ∪ Sj). Since the running

time and the memory requirements of ElimLin

are proportional to the size of the system, we

propose an additional tweak of the algorithm.
In this tweak, we compute ElimLin for all pairs

of subsystems, i.e, for elspan (Si ∪ Sj), and,

before performing a merge in the inner node
of the tree containing leaves [a, b], we also in-

clude all linear equations recovered by ElimLin

on pairs of leaf nodes, i.e,
⋃

i,j∈[a,b]

(Si ∪ Sj)L.

Therefore, for n the number of systems Si, we

perform ElimLin
(

n
2

)

-times more, but we sub-
stantially decrease the memory requirements of

ElimLin in each node [a, b]. The graphical rep-

resentation is given in Figure 1.

In the next section, we show the performance

of our new version of ElimLin algorithm and

give examples of reduced round KATAN32 and
sets of plaintexts that allow us to derive the

key using ElimLin. All our attacks outperform

the best known attacks and they can be per-
formed using a standard computer with suf-

ficient RAM. In our case, the limitation was

40GB of RAM memory. We expect that our
results can be improved both in terms of time,

memory and data. This requires better imple-

mentation of ElimLin and finding a better cube

for selection of samples. Therefore we mainly
concentrate on successes and failures of Elim-

Lin to recover the secret key. Additionally, we

use a method called Universal Proning which we
describe in Section 6. This method allows to

recover equations among state variables corre-

sponding to different plaintexts which are valid
for every key. These additional equations fur-

ther speed up ElimLin and allow to break more

rounds in some cases.

8



b

b b

b

b b

b

b

b b

b

b b

b

b

b

b b

b

b b

b

b

b b

b

b b

b

b

b

S[a,b]

Sa Sb

S

Fig. 1: Divide-Conquer with leaves processing

5 Selection of samples in KATAN32

We give results of the attack against KATAN32

in Table 3. The previous best algebraic attack

is given by Bard et al. [6]. The authors attack:

– 79 rounds of KATAN32 using SAT solver, 20

chosen plaintexts and guessing 45 key bits.

– 71 and 75 rounds of KATAN32, and guessing
35-bits of the key.

In our attacks, we do not guess any key bit and

achieve a comparable number of rounds. How-

ever, we need to use more plaintext ciphertext
pairs (128− 1024 instead of 20). The main ad-

vantage of our attack is not only the fact that

we do not need to guess the key bits but also
its determinism. Since the success of other alge-

braic attacks such as SAT solvers and Gröbner

basis depends on the performance of ElimLin,
our results may be applied in these scenarios

for improving the attacks. In Table 2, we show

that the selection of samples is important for

KATAN32. The reader can observe that in the
case of 69 rounds, the template of the cube is

important for ElimLin to succeed. In the case

when the template was selected based on cube
attack for 55 rounds, the attack using Elim-

Lin is successful to recover the key. However,

when we use the same mask but a fixed tem-
plate, ElimLin cannot recover any key bit. We

can also see that when the number is maximal

for this set of plaintexts: when we increase the

number of rounds, ElimLin fails to recover the
key. The reader should also note that the num-

ber of linear equations we recover for 70 round

KATAN32 in the Universal Proning phase varies
for different cubes. In the first case we recover

less linear equations by Universal Proning com-

pared to 69 round case, because some linear
equations were already recovered by ElimLin. In

the second case, ElimLin was unable to recover

the new equations appearing in the additional

round, but they exist in the ideal, and therefore

they can be found by the Universal Proning tech-
nique. The reader can also see that an increase

in the number of samples allows to break more

rounds in some cases. In the case of 71 rounds
we extend the mask of the cube by one bit and

in one case we can recover the key using Elim-

Lin. In the other case we cannot. In the case of

76 rounds we were unable to break the system
for any cube attack for 55 rounds. However,

we found a cube attack of 59 rounds, which al-

lowed ElimLin to solve the system for 76 round
KATAN32 and 256 samples. In Table 3, we give

successful results of attack by ElimLin applied

on reduced round KATAN32 for various num-
ber of rounds. Hence, our selection of samples

improves state-of-the-art attacks ok KATAN32.

We attack 78 rounds of KATAN32 with 1024

samples without guessing any key bit (this cor-
responds to 79 rounds and guessing two key

bits) with running time of 9 days while in [6],

the authors need to guess 45 key bits to achieve
complexity which is close to brute force.

6 Universal Proning

In this section, we explain how we can recover

linear polynomials which are not found by Elim-

Lin and how we can recover those that are re-

covered faster. We observe that most linear equa-

tions (polynomials of degree 1 over F2[V ]) which

ElimLin recovers are satisfied independently of
the secret key, these are the linear equations

in elspan (Sχ,⋆,⋆) and elspan (S⋆,γ,⋆). There-

fore we introduce a new method called Uni-

versal Proning for finding all linear equations

which are satisfied independently of the value

of the key. In this section, we introduce uni-
versal polynomials. A universal polynomial is

a polynomial f ∈ F2[V ], such that f ∈ 〈Sχ,⋆,κ〉

or f ∈ 〈S⋆,γ,κ〉 for every key κ, hence, the name
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Table 2: Attack on KATAN32 using ElimLin: rounds vs. masks

rnd cube rnd mask template samples proned lin success time

69 55 m=0x00007104 t=0x39d88a02 32 29 10/10 <1 hour
69 55 m=0x00007104 t=0x65f30240 32 29 10/10 <1 hour
69 n.a m=0x00007104 t=0x00000000 32 35 no 2 hours
69 n.a m=0x00007104 t=0xf0000000 32 29 no 2 hours
69 n.a m=0x00007104 t=0x0f000000 32 29 no 2 hours
69 n.a m=0x00007104 t=0x00f00000 32 29 no 2 hours
70 55 m=0x00007104 t=0x39d88a02 32 27 no 3 hours
70 55 m=0x00007104 t=0x65f30240 32 30 no 3 hours
71 55 m=0x00007105 t=0x23148a40 64 61 10/10 3 hours
71 55 m=0x00007904 t=0x20128242 64 56 no 7 hours

76 59 m=0x0004730c t=0x21638040 256 572 3/3 3 days

Table 3: Attack on KATAN32 using ElimLin

rnd cube rnd mask template samples proned lin success time

71 55 m=0x0002700c t=0xf2b50080 64 116 5/5 <1 hour
70 55 m=0x0c007104 t=0xa2d88a61 128 235 5/5 <1 hour
70 55 m=0x00a07104 t=0x50570043 128 213 5/5 <1 hour
71 55 m=0x00007105 t=0x23148a40 64 61 10/10 3 hours
72 55 m=0x00a07104 t=0x50570043 128 245 20/20 7 hours
72 55 m=0x0c007104 t=0xa2d88a61 128 238 60/60 7 hours
73 55 m=0x0c007104 t=0xa2d88a61 128 217 5/5 7 hours
73 55 m=0x0002d150 t=0x20452820 128 226 20/20 8 hours
73 55 m=0x0002d150 t=0xffd40821 128 231 20/20 8 hours
74 56 m=0x10826048 t=0xca458604 128 212 5/5 9 hours
75 56 m=0x80214630 t=0x76942040 256 538 5/5 23 hours
75 56 m=0x1802d050 t=0x267129a8 256 563 5/5 23 hours
75 56 m=0x908a1840 t=0x6b05c0bd 256 544 5/5 23 hours
75 56 m=0x08030866 t=0x8620f000 256 592 5/5 23 hours
75 56 m=0x52824041 t=0x0d288d08 256 516 5/5 23 hours
75 56 m=0x10027848 t=0xcf758200 256 588 5/5 23 hours
76 59 m=0x0004730c t=0x21638040 256 572 3/3 3 days
77 59 m=0x03057118 t=0x2cb20001 1024 2376 3/3 8 days
78 59 m=0x03057118 t=0x2cb20001 1024 2381 2/2 9 days

universal. Intuitively, we can see that a univer-

sal polynomial cannot help to recover the secret

key.

6.1 Universal Proning: Motivation

We demonstrate the method in Table 4 on re-

covering an algebraic expression of an S-Box
which is defined by a non-linear cycle (07532461).

The S-Box satisfies the following equations. For

an input (x0, x1, x2) and output (y2, y1, y0) =
S(x2, x1, x0).

These can be derived as follows. We con-

sider input and output bits xi and yj which are
represented by the first 6 rows and addition-

ally, we consider monomials among input bits

xi. We build the matrix M as shown in Table 4

and we find kernel of the matrix M .

ker (M) =





1 1 0 0 0 0 1 0 1 0 0

1 0 1 0 0 1 1 0 0 1 0

1 0 0 1 1 1 1 1 0 0 0





We interpret the product

ker (M) ·M =





0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0





as equations which hold for any input x2x1x0

and therefore they describe the S-box in Alge-

braic Normal Form (ANF).






0 = 1 + y2 + x0 + x1 ∗ x2

0 = 1 + y1 + x1 + x0 + x0 ∗ x2

0 = 1 + y0 + x2 + x1 + x0 + x0 ∗ x1

Hence, the ANF of an S-Box can be recov-

ered by computing the nullspace of matrix like

in Table 4. The Universal Proning Technique in

10



0→ 7 1→ 0 2→ 4 4→ 6 3→ 2 6→ 1 5→ 3 7→ 5
0002 → 1112 0012 → 0002 0102 → 1002 1002 → 1102 0112 → 0102 1102 → 0012 1012 → 0112 1112 → 1012

1 1 1 1 1 1 1 1 1
y2 1 0 1 1 0 0 0 1
y1 1 0 0 1 1 0 1 0
y0 1 0 0 0 0 1 1 1
x2 0 0 0 1 0 1 1 1
x1 0 0 1 0 1 1 0 1
x0 0 1 0 0 1 0 1 1

x0x1 0 0 0 0 1 0 0 1
x1x2 0 0 0 0 0 1 0 1
x0x2 0 0 0 0 0 0 1 1

x0x1x2 0 0 0 0 0 0 0 1

M

Table 4: Recovering Algebraic Description of an S-Box (07532461).

Section 6.2 aims to recover the ANF of the en-

cryption and the decryption functions using the

same approach.

6.2 Universal Proning: Definitions

We now give definitions which allow to extend
the previous method to recover ANF of an S-

Box. In what follows we consider an extension

to a deterministic cipher. In the case of recover-
ing ANF for S-Box, we were not sufficiently for-

mal. We now fill this gap for Universal Proning.

Informally, universal polynomials are polyno-

mials of the ring F2[W ] which are “satisfied”
for all values of the secret key. We consider a

fixed set of plaintexts χ and a fixed set of ci-

phertexts γ = Eκ (χ) where κ is the unknown
secret key. Now we aim to find universal poly-

nomials in variables W . We consider a poly-

nomial ring F2[W ]. Then for each polynomial,
we consider the corresponding boolean func-

tion from the vector space Func
(

Fkln
2 ,F2

)

. Such

function is obtained through the mapping eχ,

dγ or fχ,γ as defined in Definition 17. Then us-
ing Theorem 20, we obtain that universal poly-

nomials correspond to the zero function from

the set Func
(

Fkln
2 ,F2

)

. Hence, we will recover
universal polynomials from the kernel of map-

ping fχ,γ . When we set both plaintext and ci-

phertext, we have to distinguish variables which
are computed by the encryption process and

by the decryption process. Hence, we introduce

a duplicate set of variables Dup (V ) in Defini-

tion 16.

Definition 16 Let V ′ be a set of variables such

that V ∩V ′ = {k1, . . . , kkln} and |V | = |V ′|. Let

us consider a bijective function Dup : V → V ′

where Dup (k) = k for each k ∈ {k1, . . . , kkln}

which is homomorphically extended from F2[V ]
to F2[V,Dup (V )].

Definition 17 Let us define the mapping eχ :

F2[V ] → Func
(

Fkln
2 ,F2

)

, such that eχ(m) maps

κ in F kln
2 to the reduction of the polynomial m

modulo3 〈Sχ,⋆,κ〉. We further denote for K ⊆

Fkln
2 the mapping eχ|K : F2[V ] → Func (K,F2)

so that eχ|K (q) = eχ (q) |K. Similarly, let us
define the mapping

dγ : F2[Dup (V )] → Func
(

Fkln
2 ,F2

)

, such that

dγ(m) maps κ in F kln
2 to the reduction of the

polynomial m modulo Dup (〈S⋆,γ,κ〉) and we de-

note dγ |K : F2[Dup (V )] → Func (K,F2) so that

dγ |K (q) = dγ (q) |K. Moreover, let us define

fχ,γ : F2[V,Dup (V )] → Func
(

Fkln
2 ,F2

)

, such
that fχ,γ(m) maps κ in F kln

2 to the reduction of

the polynomial m modulo the ideal

〈Sχ,⋆,κ,Dup (S⋆,γ,κ)〉F2[V,Dup(V )].

We denote fχ,γ |K : F2[V ] → Func (K,F2) so

that fχ,γ |K (q) = fχ,γ (q) |K.

We select a random subset K ⊆ Fkln
2 and re-

cover universal polynomials as ker
(

eχ
∣

∣

K

)

and

ker
(

dγ
∣

∣

K

)

. The concept of universal polynomi-

als is closely related to concepts earlier studied
in [21, slide 118-120]. We define an ideal which

is spanned by two open-ended systems where

the relation between plaintext and ciphertext
is discarded.

Definition 18 For every κ ∈ Fkln
2 , we con-

sider Sχ,⋆,κ ⊂ F2[V ]and Dup (S⋆,γ,κ) ⊂ F2[V
′]

3 since Sχ,⋆,κ is a maximal ideal the reduction
modulo it is in F2. Equivalently, the ideal reduction
is equivalent to the evaluation of the polynomial.

11



(with renamed variables). We consider the ring
F2[V, V

′] and define Bχ,γ ⊂ F2[V, V
′] as

Bχ,γ =
⋂

κ∈F
kln
2

(〈Sχ,⋆,κ〉+ 〈Dup (S⋆,γ,κ)〉)

We say q is universal iff q ∈ Bχ,γ . Otherwise,

we say q is nonuniversal. For K ⊆ Fkln
2 , we

define

BK
χ,γ =

⋂

κ∈K

(〈Sχ,⋆,κ〉+ 〈Dup (S⋆,γ,κ)〉)

and we say BK
χ,γ is consistent iff for κ ∈ Fkln

2

such that Eκ(χ) = γ, we have κ ∈ K.

The idea for duplication of variables and build-

ing a system such as Bχ,γ was independently
developed in [41].

Notation 19 Let q ∈ F2[V,Dup (V )]. Let us
consider the unique polynomial q′ ∈ F2[V ] such

that q = q′ (mod 〈v + Dup (v) : v ∈ V 〉). We

denote the polynomial q′ as JqKV .

Theorem 20 Let us have plaintext-ciphertext
pair χ, γ and K ⊂ Fkln

2 such that for the correct

key κ (such that Eκ (χ) = γ) we have κ ∈ K.

Then, 〈Sχ,γ,⋆〉 =
q
BK
χ,γ

y
V
. Specifically, we have

Bχ,γ = ker (fχ,γ).

Proof We have 〈Sχ,γ,⋆〉 =
r
B
{κ}
χ,γ

z
V
. For the

correct key, we have 〈Sχ,γ,⋆〉 = 〈Sχ,γ,κ〉 and

for the incorrect key, we obtain contradiction,
i.e, 1 ∈ 〈Sχ,γ,κ〉 and hence, 〈Sχ,γ,⋆〉 = F2[V ].

Therefore, the intersection over K which con-

tains the correct key is 〈Sχ,γ,⋆〉. ⊓⊔

Due to Theorem 20, we can compute Bχ,γ resp.
BK
χ,γ as ker (fχ,γ) resp. ker (fχ,γ |K). I.e, simi-

larly to the approach in Table 4, we build a ma-

trix M(V,K) where the rows represent a vari-
able v ∈ V (each corresponds to some plain-

text) and the columns represent a key k ∈ K

(the input). The element (i, j) of the matrix is

the value of variable (state bit) i for the key j.
Afterwards, we find the nullspace of the matrix

M . The vectors in the nullspace represent lin-

ear equations which hold among the state bits
for selected keys.

6.3 ElimLin and Universal Proning

In this section, we reconsider the algorithm from

Section 4.1. We consider a split of the system

Sχ,γ,⋆ into Sχ,⋆,⋆ and S⋆,γ,⋆ and we compute
elspan (Sχ,⋆,⋆) and elspan (S⋆,γ,⋆) using Universal Proning.

We can find hidden linear equations of system

Sχ,⋆,⋆ resp. S⋆,γ,⋆ using ElimLin. However,we

can also compute these equations using Universal Proning.
Actually, we have

elspan (Sχ,⋆,⋆) ⊆ ker
(

eχ
)

and

Dup (elspan (S⋆,γ,⋆)) ⊆ ker (dγ) .

We perform these two computations together
by computing ker (fχ,γ). Then, we perform the

back-substitution and we obtain

elspan (Sχ,⋆,⋆) ⊆ Jker (fχ,γ)KV .

Due to Theorem 20, we have JBχ,γK
V
= 〈Sχ,γ,⋆〉

and hence, we can use equations from the set

JBχ,γK
V

to speed-up ElimLin. Furthermore, we

reduce the computational complexity of find-
ing ker (fχ,γ) as follows. We consider K ⊆ Fkln

2

such that |K| ≪ |V |. Then, we want to compute

ker (fχ,γ |K) = BK
χ,γ and obtain new linear equa-

tions in the set
q
BK
χ,γ

y
V
. However, this straight-

forward approach is not possible; actually, it is

easy to show that 1 ∈
q
BK
χ,γ

y
V
, i.e, every secret

key would be a solution.

Hence, we restrict the ideal BK
χ,γ to vector space

of polynomials of degree at most 1 and de-

note this
(

BK
χ,γ

)

1
. Then, we select a set of ran-

dom keys K such that |K| ≫ |V |. This en-

sures that with a high probability, we have 1 /∈r
(

BK
χ,γ

)

1

z
V
. At the same time, the computa-

tion of
(

BK
χ,γ

)

1
by computation of a kernel of

an appropriate matrix is actually less expensive

than ElimLin. In case of 71-round KATAN32 and

a cube of 64 samples, the Universal Proning re-
quired approximatelly 350s while the ElimLin

required 600s. We tried such attack with cube

selection of samples when ElimLin itself was un-
able to recover the secret key. We run

ElimLin
(

Sχ,γ,⋆ +
r
(

BK
χ,γ

)

1

z
V

)

and in 60% of cases, we could recover the secret

key.

7 Selection of samples in SIMON

We deploy an offline phase of cube attack against
10 and 11 round SIMON to select plaintext/ci-

phertext pairs used to build a polynomial sys-

tem of 13 round SIMON which is afterwards

12



solved by ElimLin. We rank the results from of-
fline phase of cube attack as follows. In Sec-

tion 3.3, we reviewed the cube attacks as an

attack against a black-box polynomial f(x, k).

In the case of n-bit block ciphers, we can con-
sider up to n different black-box polynomial for

each round. We study SIMON with n = 32 and

m = 4. Hence, we consider up to 64 different
black box polynomials and we rank the cube C

by the number of black-box polynomials f for

which the cubesum is linear for the cube C.

In our experiment, we fixed a secret key and

considered 10 round cubes of rank 3 and 4.

Then, we build the polynomial system and run
ElimLin. Table 5 and Table 6 shows how many

polynomials in the key variables was recovered

for each cube.

7.1 Limitations of Cube Selection

In the next step, we found 20 cubes of 221 plain-

texts of rank 1. We give these cubes in Ta-

ble 7. Since our implementation of ElimLin is
not suitable for systems of 221 plaintext/cipher-

text pairs, we selected subcubes of 25 and test

the preformance of ElimLin against 13 rounds as
in Section 5. Even though these subcubes had

rank 64, we did not recover any polynomial in

key variables. This phenomena is still an open
problem.

8 Final remarks on ElimLin

On increasing the degree in F4 and increasing

the number of samples in ElimLin

The F4/mXL keeps increasing the degree until

the solution is found in the linear span. Elim-

Lin on the other hand requires more plaintext-
ciphertext pairs to recover the key. We show

that a better selection strategy improves the

success of ElimLin, but the question whether

the cipher can be broken for a large enough set
of well selected samples remains opened. Simi-

larly, we can consider the increase of the num-

ber of samples as an alternative to linearization
step of F4/mXL. The open problem is whether

these strategies are equivalent or if one or the

other performs better. However, we believe there
is an advantage of considering multiple samples

and using a method introduced in Section 6

over increasing the degree and linearization.

Implications for F4/mXL/SAT solvers
Table 2 show that selection of samples influ-

ences the degree of regularity of the system.

This claim is based on the fact that for some

choices of samples (choices of cubes m, t) Elim-

Lin can solve the system. Therefore, the de-

gree of regularity is at most 2. While for other

choices it cannot recover the secret key and
hence, the degree of regularity is in these cases

greater than 2. We compare several strategies

for selection of 16 samples for attacking 10-
round LBlock. In the first case we select the

samples based on a cube attack of 6 rounds.

Then, we run ElimLin which successfully recov-

ers a secret key only for subset of these cubes.
Subsequently, whenever ElimLin succeeds to re-

cover the secret key for a cube, we perform ad-

ditional tests with 100 random secret keys and
were able to recover the secret key in all cases.

In the second case we select samples based on

a random cube and obtain a system of 700 vari-
ables after ElimLin. In the third case we select

samples randomly and obtain a system of 2000

variables after ElimLin. This example shows the

importance of selection of samples. The run-
ning time of F4/mXL is proportional to the de-

gree of regularity and the number of variables

in the system and, therefore, the proper selec-
tion of samples is a crucial step. In the case of

SAT solvers, the running time depends on the

number of restarts performed by the solver and
the number of restarts depends on the number

of high degree relations.

9 Conclusion

We showed that the offline phase of the cube at-
tack can be used for the selection of samples in

other algebraic techniques and that such selec-

tion significantly outperforms the random se-
lection of samples. We used this method against

reduced round KATAN32, and showed that 78

rounds can be broken only using ElimLin and

cube of 210 samples. The approach can be seen
as a method of turning a single cube from cube

attack into a key recovery technique. Our re-

sults highlight several open problems. The strat-
egy of selecting more samples can be seen as an

alternative to increasing the degree as it is done

by F4/mXL. Using more samples leads to more
variables in the system, yet the same goal is

achieved by increasing the degree and lineariza-

tion. Hence, the comparison of our selection of

13



Cm,t system of 25 samples key polynomials recovered
M=0000001400000051 T=91E961A895DDFFAA 8
M=00000028000000A2 T=8F7049C053D5CE00 0
M=0000005000000144 T=4AEC0722CA7CD632 8
M=0000028000000A20 T=5DF80042CD90648F 9
M=0000028000000A20 T=C022AC2273E1818B 9
M=0000050000001440 T=1BB44000FFA88283 4
M=0000050000001440 T=E09C20551A6F0BB6 7
M=00000A0000002880 T=29F2E0A84802D018 8
M=00000A0000002880 T=6CBA814A4D784111 8
M=0000140000005100 T=AEE108C463EDA072 7
M=0000140000005100 T=F8C140111876A869 8
M=000028000000A200 T=92A0520276DD08EE 7
M=000028000000A200 T=ACC006A4FB4E15E0 9
M=000028000000A200 T=F4491689436808E3 6
M=0000A00000028800 T=25A64EA2686516B0 8
M=0000A00000028800 T=A20456140D1077B4 8
M=0001400000051000 T=E91830236128AA78 8
M=00028000000A2000 T=AA192A4B24B483AF 7
M=0005000000144000 T=8D0A65161C88280F 7
M=000A000000288000 T=0A150A7266176D7B 7
M=000A000000288000 T=10558985C513531E 8
M=000A000000288000 T=12152B9F06875130 7
M=000A000000288000 T=4A41CA6F9B5173E7 8
M=000A000000288000 T=8021827B80554735 8
M=0014000000510000 T=8461C1640A087257 9
M=0014000000510000 T=A400D49ABE8A0E33 7
M=0014000000510000 T=B4629121E684C6F6 8
M=0028000000A20000 T=621124BAB25CF6A5 9
M=0050000001440000 T=058F5B37E2915BCF 8
M=0050000001440000 T=12AE464784A89D89 7
M=0050000001440000 T=C5A74459282A67DA 9
M=0500000014400000 T=683089C8CA1E1FD8 9
M=1400000051000000 T=6245E094A44B67EE 7
M=28000000A2000000 T=5286BB0911464FF6 8
M=4000000110000005 T=A04D0812444FC0DA 7
M=5000000044000001 T=285CEDC7A0CD7C14 8
M=5000000044000001 T=2C4C76C6B01A63D2 7
M=800000022000000A T=70E79C3D8B02C534 7

Table 5: results for rank 3 cubes for 10 round SIMON, attacked 13 rounds

samples for ElimLin and state of the art im-

plementations of XL such as [11,40] is crucial

for future directions for algebraic cryptanaly-

sis. During our work we have discovered the
existence of exploitable internal low degree re-

lations inside open-ended systems of equations

which depend on the plaintext and depend nei-
ther on the ciphertext nor the key [21, slide

118]. These additional equations are not always

found by ElimLin and we show that our attacks
can be enhanced by finding such equations first,

which process we call Universal Proning. The

fact that the solution is usually found in elspan (Sχ,⋆,⋆) + elspan (S⋆,γ,⋆)

and the full analysis of Extended Proning is a part
of an ongoing research.
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A Additional proofs

Proof of Theorem 13.

∑
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The equality ⋆ is satisfied, since

∑

x∈Cm,t

∏

i∈I∩Im

xi =

{

0 if I 6⊆ Im
1 if I ⊇ Im

since
∏

appears twice for every i ∈ I \ Im. ⊓⊔
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