Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. From Defect Analysis to Gate-Level Fault Modeling of Controllable-Polarity Silicon Nanowires
 
Loading...
Thumbnail Image
research article

From Defect Analysis to Gate-Level Fault Modeling of Controllable-Polarity Silicon Nanowires

Ghasemzadeh, Hassan
•
Gaillardon, Pierre-Emmanuel
•
De Micheli, Giovanni  
2015
IEEE Transactions on Nanotechnology

Controllable-Polarity Silicon Nanowire Transistors (CP-SiNWFETs) are among the promising candidates to complement or even replace the current CMOS technology in the near future. Polarity control is a desirable property that allows the on-line configuration of the device polarity. CP-SiNWFETs result in smaller and faster logic gates unachievable with conventional CMOS implementations. From a circuit testing point of view, it is unclear if the current CMOS and FinFET fault models are comprehensive enough to model all the defects of CP-SiNWFETs. In this paper, we explore the possible manufacturing defects of this technology through analyzing the fabrication steps and the layout structure of logic gates. Using the obtained defects, we then evaluate their impacts on the performance and the functionality of CP-SiNWFET logic gates. Out of the results, we extend the current fault model to a new a hybrid model, including stuck-at ptype and stuck-at n-type, which can be efficiently used to test the logic circuits in this technology. The newly introduced fault model can be utilized to adequately capture the malfunction behavior of CP logic gates in the presence of nanowire break, bridge and float defects. Moreover, the simulations revealed that the current CMOS test methods are insufficient to cover all faults, i.e., stuck- Open. We proposed an appropriate test method to capture such faults as well.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

07277030(2).pdf

Access type

openaccess

Size

1.08 MB

Format

Adobe PDF

Checksum (MD5)

271aba5c3e032e608cf704e55f62930e

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés