Standards for dielectric elastomer transducers

Federico Carpi, Iain Anderson, Siegfried Bauer, Gabriele Frediani, Giuseppe Gallone, Massimiliano Gei, Christian Graaf, Claire Jean-Mistral, William Kaal, Guggi Kofod, Matthias Kollosche, Roy Kornbluh, Benny Lassen, Marc Matysek, Silvain Michel, Stephan Nowak, Benjamin O’Brien, Qibing Pei, Ron Pelrine, Björn Rechenbach, Samuel Rosset and Herbert Shea

Abstract
Dielectric elastomer transducers consist of thin electrically insulating elastomeric membranes coated on both sides with compliant electrodes. They are a promising electromechanically active polymer technology that may be used for actuators, strain sensors, and electrical generators that harvest mechanical energy. The rapid development of this field calls for the first standards, collecting guidelines on how to assess and compare the performance of materials and devices. This paper addresses this need, presenting standardized methods for material characterisation, device testing and performance measurement. These proposed standards are intended to have a general scope and a broad applicability to different material types and device configurations. Nevertheless, they also intentionally exclude some aspects where knowledge and/or consensus in the literature were deemed to be insufficient. This is a sign of a young and vital field, whose research development is expected to benefit from this effort towards standardisation.

Keywords: standard, dielectric elastomer, actuator, electromechanically active polymer, EAP, electroactive polymer, transducer

(Some figures may appear in colour only in the online journal)
1. Introduction

In their simplest form, dielectric elastomer transducers (DETs) consist of thin electrically insulating elastomeric membranes coated on both sides with compliant electrodes (Pelrine et al. 2000). Within the broad field of electro-mechanically active polymers (EAPs) (Bar-Cohen 2004, Carpi and Smela 2009), they represent a highly promising technology for actuators, strain sensors, and electrical generators that harvest mechanical energy (Pelrine et al. 2000, Carpi et al. 2008, 2010, Brochu and Pei 2010, Biggs et al. 2013). The rapid development of this technology calls for the first standards that are able to provide the scientific and industrial community with guidelines on how to assess and compare performance of DET materials and devices.

This paper is aimed at addressing this critical need, presenting methods for material characterisation, device testing and performance quantification in a standardized way. This effort is the first of its kind in the DET field.

These proposed standards are intended to have a general scope and a broad applicability, avoiding unnecessary prescriptions, which in some cases might be too restrictive, inadequate or inapplicable. Indeed, the huge diversity of possible DET materials (with different properties) and DET devices (with variable configurations and uses) suggests that the definition of details for many scenarios is practically impossible.

Consistently with this need for generalisation, the guidelines presented here are driven by purely physical considerations. Indeed, most parts address problems with a synthetic approach, focused more on the physical significance of procedures than on all the details of their implementation. In order to comply with specific needs, we leave to users the possibility of adapting procedures without breaking the general principles set in these guidelines.

We remark that these standards are not meant to necessarily exclude different or additional procedures that research institutes or companies may be using. Ideally, these standards should serve to reduce fragmentation in the field.

Also, we advise that this document does not constitute and should not be regarded as any sort of safety standards, as it is not meant to describe safety or safe procedures for individuals, devices or systems.

In each section below, guidelines are preceded by reminders about basic concepts, aimed at setting the context and defining the parameters and variables involved.

2. Terminology and nomenclature

Prior to presenting the guidelines, a remark about appropriate terminology is deemed to be necessary. The term ‘dielectric elastomer’ (DE) is widely accepted as the reference definition of the EAP class concerned here, i.e. a family of electrically insulating elastomeric materials (Carpi et al. 2008). Note that the term ‘elastomer’ in this context includes any long-chain polymer with significant elastic strains. The related devices should be referred to as DE transducers, which include DE actuators (DEAs), DE sensors (DESs) and DE generators (DEGs).

We discourage the use of ‘dielectric EAP’ (‘DEAP’), which is often found in the literature. The reason is that it does not identify DEs specifically. Rather, it would generally and misleadingly refer to any insulating EAP material, thus covering not only DEs, but also piezoelectric and electrostrictive polymers, as well as polymer electrets and ferroelectrets.

Standard symbols proposed for key variables and parameters are listed in table 1.

3. Material characterisation

3.1. Selection of the sample’s thickness

For any electrical or mechanical characterisation described in the following sections, the sample’s thickness might have an impact on the outcome of the measurement, as it appears from both the scientific literature (see for instance Huang et al. 2012a and Gatti et al. 2014 for the dielectric strength) and the personal experience of the authors of this paper. While the physical reasons for such behaviour are not currently completely understood, at least a contribution is likely to come from the fact that obtaining samples with a significantly different thickness from any given material might require different processing methods, which might use different curing conditions and might introduce different types of defects (e.g. partial cross-linking, residual solvents, etc). These defects might be responsible, or co-responsible, for the deviations that are frequently observed.

Therefore, if characterisation is functional to a predefined application, we recommend that the sample’s thickness should be chosen to be as close as possible (according to the capabilities of the measurement setup) to the value to be used in the application.

Conversely, in the absence of application-driven specifications, for a ‘general-purpose’ characterisation we do not recommend here any specific thickness. Indeed, the lack of physical reasons to justify the selection of any specific value would make the choice purely arbitrary, with the risk that in some cases this choice might turn out to be inappropriate or disadvantageous, owing to the reasons described above.

3.2. Thickness of a dielectric elastomer film

3.2.1. Basic concepts. The precise measurement of the thickness of membranes used in DETs is of high importance, especially to accurately estimate an applied electric field (e.g. to work out the Maxvell pressure or the breakdown strength). Due to the soft nature of elastomers used in DETs, there are not many measurement methods that can be used. Contact methods should be avoided, as deformations can occur under the action of the probe. Methods that require knowledge of certain physical properties of the material, such as refractive index (optical methods), dielectric constant (capacitive methods), or sound speed (ultrasounds), can easily lead to
<table>
<thead>
<tr>
<th>Variable/parameter</th>
<th>Symbol</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blocking force</td>
<td>See ‘Force: electrical’</td>
<td>N</td>
</tr>
<tr>
<td>Dielectric permittivity/dielectric constant—relative</td>
<td>$\varepsilon_r$</td>
<td>—</td>
</tr>
<tr>
<td>Dielectric permittivity of vacuum</td>
<td>$\varepsilon_0$</td>
<td>F m$^{-1}$</td>
</tr>
<tr>
<td>Effective actuation pressure (resultant Maxwell stress)</td>
<td>$p$</td>
<td>Pa</td>
</tr>
<tr>
<td>Efficiency</td>
<td>$\eta$</td>
<td>—</td>
</tr>
<tr>
<td>Electric charge</td>
<td>$Q$</td>
<td>C</td>
</tr>
<tr>
<td>Electric displacement</td>
<td>$D$</td>
<td>C m$^{-2}$</td>
</tr>
<tr>
<td>Electric field</td>
<td>$E$</td>
<td>V m$^{-1}$</td>
</tr>
<tr>
<td>Electric polarization</td>
<td>$Pol$</td>
<td>C m$^{-2}$</td>
</tr>
<tr>
<td>Electric potential</td>
<td>$\varphi$</td>
<td>V</td>
</tr>
<tr>
<td>Electrical capacitance</td>
<td>$C$</td>
<td>F</td>
</tr>
<tr>
<td>Electrical conductivity</td>
<td>$\sigma$</td>
<td>S m$^{-1}=\Omega^{-1}$ m$^{-1}$</td>
</tr>
<tr>
<td>Electrical current</td>
<td>$I$</td>
<td>A</td>
</tr>
<tr>
<td>Electrical resistance</td>
<td>$R$</td>
<td>$\Omega$</td>
</tr>
<tr>
<td>Electrical resistivity</td>
<td>$\rho = 1/\sigma$</td>
<td>$\Omega$ m</td>
</tr>
<tr>
<td>Energy</td>
<td>$U$</td>
<td>J</td>
</tr>
<tr>
<td>Force: electrical (component of force exerted by the transducer when it is subject to electrical charging only)</td>
<td>$F_e$</td>
<td>N</td>
</tr>
<tr>
<td>Force: mechanical (component of force exerted by the transducer when it is subject to mechanical loading only)</td>
<td>$F_m$</td>
<td>N</td>
</tr>
<tr>
<td>Frequency</td>
<td>$F$</td>
<td>Hz</td>
</tr>
<tr>
<td>Frequency: angular</td>
<td>$\omega$</td>
<td>rad s$^{-1}$</td>
</tr>
<tr>
<td>Imaginary unit number</td>
<td>$j$</td>
<td>—</td>
</tr>
<tr>
<td>Impedance: electrical</td>
<td>$Z_e$</td>
<td>$\Omega$</td>
</tr>
<tr>
<td>Impedance: mechanical</td>
<td>$Z_m$</td>
<td>Ns m$^{-1}$</td>
</tr>
<tr>
<td>Loss angle: electrical</td>
<td>$\delta_e$</td>
<td>rad</td>
</tr>
<tr>
<td>Loss angle: mechanical</td>
<td>$\delta_m$</td>
<td>rad</td>
</tr>
<tr>
<td>Mass</td>
<td>$m$</td>
<td>kg</td>
</tr>
<tr>
<td>Poisson’s ratio</td>
<td>$\nu$</td>
<td>—</td>
</tr>
<tr>
<td>Power</td>
<td>$P$</td>
<td>W</td>
</tr>
<tr>
<td>Shear modulus</td>
<td>$G$</td>
<td>Pa</td>
</tr>
<tr>
<td>Strain: electrical (component of engineering strain exhibited by a transducer when it is subject to electrical charging only)</td>
<td>$S_e$</td>
<td>—</td>
</tr>
<tr>
<td>Strain: mechanical (component of engineering strain exhibited by a transducer when it is subject to an external mechanical loading)</td>
<td>$S_m$</td>
<td>—</td>
</tr>
<tr>
<td>Stress: nominal, electrical (component of nominal stress exerted by the transducer when it is subject to electrical charging only)</td>
<td>$T_{ne}$</td>
<td>Pa</td>
</tr>
<tr>
<td>Stress: nominal, mechanical (component of nominal stress exerted by the transducer when it is subject to mechanical loading only)</td>
<td>$T_{nm}$</td>
<td>Pa</td>
</tr>
<tr>
<td>Stress: true, electrical (component of true stress exerted by the transducer when it is subject to electrical charging only)</td>
<td>$T_{te}$</td>
<td>Pa</td>
</tr>
<tr>
<td>Stress: true, mechanical (component of true stress exerted by the transducer when it is subject to mechanical loading only)</td>
<td>$T_{tm}$</td>
<td>Pa</td>
</tr>
<tr>
<td>Stretch ratio: electrical</td>
<td>$\lambda_e$</td>
<td>—</td>
</tr>
<tr>
<td>Stretch ratio: mechanical</td>
<td>$\lambda_m$</td>
<td>—</td>
</tr>
<tr>
<td>Surface area</td>
<td>$A$</td>
<td>m$^2$</td>
</tr>
<tr>
<td>Surface area: active (area covered by electrodes)</td>
<td>$A_a$</td>
<td>m$^2$</td>
</tr>
<tr>
<td>Surface area: passive (area not covered by electrodes)</td>
<td>$A_p$</td>
<td>m$^2$</td>
</tr>
<tr>
<td>Temperature</td>
<td>$Temp$</td>
<td>°C</td>
</tr>
<tr>
<td>Thickness of dielectric layer</td>
<td>$d$</td>
<td>m</td>
</tr>
<tr>
<td>Thickness of electrode layer</td>
<td>$d_{el}$</td>
<td>m</td>
</tr>
<tr>
<td>Time</td>
<td>$t$</td>
<td>s</td>
</tr>
<tr>
<td>Time constant</td>
<td>$\tau$</td>
<td>s</td>
</tr>
<tr>
<td>Voltage</td>
<td>$V$</td>
<td>V</td>
</tr>
<tr>
<td>Volume</td>
<td>$Vol$</td>
<td>m$^3$</td>
</tr>
<tr>
<td>Work</td>
<td>$W$</td>
<td>J</td>
</tr>
<tr>
<td>Young’s modulus</td>
<td>$Y$</td>
<td>Pa</td>
</tr>
</tbody>
</table>
significant errors, owing to the need for accurate estimates of parameters. Optical techniques are generally preferable due to their non-contact nature. In the next sections, different optical methods are presented.

3.2.2. White light interferometry. White light interferometry (WLI) is a technique based on the short coherence length of a light beam to precisely measure the distance separating a sample from the objective, with nanometre resolution. Typically, it is used to characterize the 3D topography of a surface. To apply it to the measurement of thin membranes, it is necessary to place the sample on a flat substrate, such as a glass plate, cut a small hole (e.g. using a laser) to create a step, and measure the step height with a white light interferometer.

An advantage of this technique is that it has a high resolution and it gives height information over a complete surface in one fast (a few seconds) measurement, which allows for characterization of the thickness profile along different directions, to evaluate its uniformity. On the other hand, it is a destructive method due to the need for a step in the sample.

3.2.3. Laser profilometry. WLI is not the only measurement technique to determine the height of a step without any contact. A laser displacement sensor is a valid alternative, which can be used to investigate the thickness profile along directions of interest, from one edge to another, of a sample arranged on a flat substrate.

3.2.4. Transmission or reflection spectrometry. The thickness of optically transparent thin films can be measured with transmission spectrometry, which is based on the wavelength-dependence of the transmitted intensity of a wide-spectrum beam, due to interferences created by the partial reflections at the interfaces of the film (Figure 1).

In the case of normal beam incidence, the transmitted intensity $I_{\text{out}}$ (which is measured with a spectrometer) shows the following dependence on the inverse of the wavelength $1/\lambda$ (Suratkar 2009):

$$I_{\text{out}} \propto 1 + a \cos\left(4\pi d n \frac{1}{\lambda}\right) = 1 + a \cos\left(2\pi f \frac{1}{\lambda}\right)$$

where $a$ is a constant, $d$ is the thickness of the membrane, and $n$ is its refractive index. So, $I_{\text{out}}$ versus $1/\lambda$ is a periodic signal of frequency

$$f = 2\pi d n.$$  

The main advantages of this method are that it is fast and non-destructive. The main drawbacks are that it requires the film to be transparent and its refractive index to be precisely known. However, determining the refractive index using another measurement method can solve this issue. For example, WLI can be used on a set of test membranes in order to determine their thickness. Then the same membranes are characterised by transmission spectrometry, extracting the refractive index from the frequency, as their thickness is known from the WLI measurement.

As an alternative to transmission spectrometry, the thickness of a transparent membrane can also be measured with reflection spectrometry. In this case, the same approach described above can be followed, although here the membrane has to rest on a reflective substrate and the spectrometer is used to measure the reflected intensity.

3.3. Dielectric permittivity of an elastomer

3.3.1. Basic concepts. The electrical energy density stored in a DET at a given applied voltage is proportional to the elastomer’s relative dielectric permittivity $\varepsilon_r^{*}$, which is a complex function of the angular frequency $\omega$:

$$\varepsilon_r^{*} (\omega) = \varepsilon_r' (\omega) - j\varepsilon_r'' (\omega).$$

The real part, also referred to as the relative dielectric constant $\varepsilon_r$, directly governs the amount of electrical energy available for conversion into mechanical action. As a consequence, it also determines the actual effective stress $p$ (Maxwell’s stress), i.e. the electromechanical response of the
The imaginary part accounts for the amount of electrical energy lost as electrical dissipation in the elastomer. Hence, the full frequency spectrum of the real and imaginary parts of the permittivity completely describes the electrical storage and loss properties of the elastomer, and can help to determine whether a material may be suitable for a particular application.

### 3.3.2. Measurement method

Since DETs typically operate at frequencies from dc to 10 kHz, the permittivity is usually characterized within that range.

The dielectric properties should be measured with an instrument capable of performing a circuit impedance analysis, such as broadband dielectric analyzers, LCR bridges, potentiostats/galvanostats and vector network analysers.

The elastomer sample is sandwiched between two circular metal electrodes, forming the measurement cell schematised in Figure 3.

The cell is a parallel plate capacitor, whose complex capacitance \( C^* \) is proportional to \( \varepsilon_r^* \) of the elastomer:

\[
C^* (\omega) = \frac{\varepsilon_0 \varepsilon_r^* (\omega) A}{d}
\]

where \( A \) is the area of the electrodes and \( d \) is the thickness of the elastomer film. The circular geometry is recommended, so as to avoid inhomogeneity in the electric field distribution.

A sinusoidal current is applied to the cell, and the voltage response is analysed in terms of amplitude and phase shift with respect to the current. Real and imaginary parts of the relative permittivity at any given frequency can be obtained by means of a circuit analysis. The frequency is then changed and the measurement procedure repeated, until the desired frequency range is covered.

To identify possible contributions from both electrodes’ polarisation and electrophoretic conductivity from impurities (which is fundamental to assess the material bulk properties), it is recommended that both the real and imaginary parts of the permittivity spectra are presented. The imaginary part can even be displayed as the so-called loss tangent:

\[
\tan \delta = \frac{\varepsilon_r'' (\omega)}{\varepsilon_r' (\omega)}
\]

It is recommended to keep the wires connecting the cell to the measurement instrument as short as possible, so as to minimize the circuit’s electrical spurious components (wiring impedances, contact resistances, parasitic impedances). In particular, this is of great importance for two-points measurements (as opposed to four-points measurements), in which case a determination of the parameters of the circuit’s portion external to the sample cell must be first accomplished by a proper calibration. Such a calibration can be carried out by measuring the response spectrum of the cell hosting a reference, loss-free, dielectric material, such as poly-tetrafluoroethylene (PTFE or Teflon™). Choosing reference specimens with sizes close to those of the samples that are going to be tested will result in a more accurate calibration.

If the frequency is increased over 100 MHz, wavelengths become so short that the system starts to behave more like a distributed parameters network, rather than a concentrated
constant circuit, so that more complex setups and procedures are required.

Besides their dependence on temperature and humidity (as for any polymers), the dielectric properties of elastomers can be affected by an applied pre-stretch (Kofod et al. 2003, Choi et al. 2005, Wissler and Mazza 2007, Troels et al. 2013), revealing that the electromechanical response might have an electrostrictive component. Hence, data should always be accompanied by information about the measurement conditions.

3.3.3. Sample preparation. The sample should be prepared from a thin film of elastomer. The ratio between the electrode area and the film thickness should be as high as possible, preferably such that $\sqrt{A} / d \geq 100$, so as to minimize field fringe effects.

The selection of the thickness should be done according to the considerations reported in section 3.1. Moreover, the actual value of the thickness needs to be measured carefully, using the methods recommended in section 3.2.

Accurate control of both the area $A$ and the thickness $d$ is necessary. While the measurement of $A$ is typically easy, the measurement of $d$ is challenged by the material’s softness, such that the use of optical techniques is recommended (see section 3.2).

Proper contact between the cell’s electrodes and the elastomer should be ensured, so as to limit interfacial polarisation of the elastomer at the electrodes. To this end, the elastomer surface should be metallised (by means of metal evaporation or sputtering) or coated with conductive media, such as powdered metals (e.g. gold).

The use of conductive pastes or greases (such as carbon grease) as media to interface the cell’s electrodes and the elastomer is discouraged, due to possible penetration of the liquid fraction of the electrode medium into the elastomer. Further, such media have low conductivity (as compared to metals) and therefore they introduce significant additional electrical impedance in series, which gives rise to problems with repeatability between measurements.

The use of compliant conductive materials as cell electrodes should be avoided if the measurement is performed at electric fields sufficient to induce significant deformations.

3.3.4. Dielectric permittivity at high electric fields. It is worth stressing that the DET scientific literature presents (nearly exclusively) permittivity data obtained with measurements at electric fields at least one-order-of-magnitude lower than those typically used for actuation. This is due to the type of instrumentation most commonly available in laboratories. More accurate investigations would require that the dielectric properties are measured at the electric fields actually used in the application of interest. This need calls for equipment that can be used for high-voltage dielectric spectroscopy.

With the lack of such equipment, the effective dielectric constant at high electric fields can be estimated by fitting data obtained from a pure-shear isometric test, as described later in section 3.7.4.

3.4. Dielectric strength of an elastomer

3.4.1. Basic concepts. The electromechanical performance of a DET is ultimately limited by the electrical breakdown strength of its constitutive elastomer, also called its dielectric strength. Electrical failure is characterized by a sharp increase of current, occurring when a critical voltage threshold is reached. With reference to a planar DET, the dielectric strength $E_{\text{crit}}$ is defined as the ratio between the critical breakdown voltage $V_{\text{crit}}$ and the film thickness $d$:

$$E_{\text{crit}} = \frac{V_{\text{crit}}}{d},$$  \hspace{1cm} (7)

Dielectric strength values of typical DET materials are of the order of 10 or 100 V μm$^{-1}$. The consequence of electrical failure is usually permanent, as a conductive path is created through the elastomer, preventing the device to be charged again.

In addition to a dependence on extrinsic factors, such as humidity, temperature, the type (constant or variable), rate and duration of the electrical stimulation, as well as the stiffness, geometry, size and surface properties of the electrodes (and the force that they apply), the dielectric strength typically varies also with the material elastic modulus (Kollosche and Kofod 2010), the sample thickness (Huang et al. 2012a, Gatti et al. 2014) and the applied pre-stretch (Kofod et al. 2003, Choi et al. 2005, Huang et al. 2012a, Troels et al. 2013, Gatti et al. 2014). Moreover, the dielectric strength relates to the threshold value of the current that has been set to define a breakdown event.

Hence, data should always be accompanied by detailed information about the above-mentioned properties of the elastomer sample, the properties of the electrodes, the conditions of measurement and the adopted threshold for the current.

3.4.2. Measurement method. So far, a widely shared consensus on how to measure the dielectric strength of soft elastomers is not available, especially with reference to uses for DETs.

An apparatus that can be adopted to that effect is presented in figure 4 (Kollosche and Kofod 2010).

The film should have an area of at least 1 cm$^2$ and a uniform initial thickness of $d_0$.

The selection of the thickness should be done according to the considerations reported in section 3.1. Moreover, the actual value of the thickness needs to be measured carefully, using the methods recommended in section 3.2.

The film is placed on a flat polished metal slab which functions as the ground electrode. The active electrode is a rounded piece of metal, which should be polished and free from irregularities resulting from previous testing (according to ASTM D149-09 (2013) standards).
The active electrode rests on top of the sample, with a constant force of $F_L$, so as to ensure contact. The applied force causes the thickness of the film to change by a certain amount. It is recommended to limit this initial compression as much as possible, and in any case to take it into account when data are processed. From this initial condition, the voltage is increased as a ramp until electrical breakdown occurs, as detected by a sudden raise of current, which usually causes the voltage to drop down (according to the maximum power that can be delivered by the voltage source). The ramp slope should be reported.

We remark that the so-measured dielectric strength of an elastomer can never be regarded as representative of the electrical breakdown properties of any transducer made of that material, owing to the effects introduced by the electrodes and boundary constraints.

3.4.3. Statistical analyses. Electrical failure is a statistic event and must be evaluated using a statistical approach. The use of the Weibull distribution (Weibull 1951) is recommended. As an example, we refer to Kollosche and Kofod (2010).

3.4.4. Supplementary mechanical testing. The dielectric strength is typically correlated to the mechanical stiffness of the elastomer (Kollosche and Kofod 2010). So, if testing is aimed at characterising a ‘general-purpose’ material, for comparison purposes it can be useful to accompany the dielectric characterisation with a mechanical one.

3.5. Quasi-static mechanical characterisation of an elastomer

3.5.1. Basic concepts. An elastomer typically deforms at large strains with a nonlinear behaviour that depends on elastic and inelastic phenomena. The former is best captured by a hyperelastic description, for which a strain energy function exists (Ogden 1997), while the latter comprises viscosity and stress softening mechanisms, such as the Mullins effect (Mullins 1969).

Typical tests used to characterise mechanical properties of elastomers are the uniaxial tensile or compressive test, the pure shear test and the biaxial test.

For the uniaxial, compressive and pure shear tests, different definitions of stress and strain (nominal or true) can be employed to process and present data. Stress–strain data are better reported in terms of nominal (engineering) strain

$$ S_m = \frac{(L - L_0)}{L_0} = \lambda_m - 1 \quad (8) $$

where $L$ is the current length of the stretchable part that initially corresponds to $L_0$ and $\lambda_m = L/L_0$ is the longitudinal stretch, and the nominal stress

$$ T_{nm} = \frac{F_m}{A_0} \quad (9) $$

where $A_0$ is the initial cross-section of the specimen, and $F_m$ is the applied force.

When the evaluation of the actual stress and strain is necessary, the true strain $S_{tm}$ and the true stress $T_{tm}$ are calculated taking into account the specimen’s current cross section $A$ ($A = A_0/\lambda_m$ due to incompressibility), respectively as follows:

$$ S_{tm} = \ln \lambda_m \quad (10) $$

$$ T_{tm} = \frac{F_m}{A} \quad (11) $$

Following the mechanical tests, the stress–strain curve should be presented and the following information should be specified:

(i) At least the Young’s modulus (or elastic modulus) $Y$, that is the constant of proportionality between the stress and longitudinal strain in the small-strain regime (i.e. the tangent modulus at 0% strain), for a uniaxial test performed from the natural configuration (sample at mechanical rest without deformations). Note that, as
incompressibility is a common assumption for elastomers (the volume is maintained constant upon deformation), we have \( Y = 3G \), where \( G \) is the shear modulus in the natural configuration (initial shear modulus). Also, note that for a pure shear test the tangent modulus at 0% strain corresponds to \((4/3)Y\). Furthermore, a plot of the tangent modulus over the whole range of strain explored might be of interest.

(ii) The position of the inflection (flex) point in the nominal stress-strain curve (if not evident from the plot);
(iii) The stress and strain at break (if not evident from the plot);

Figure 5 represents these quantities with reference to a uniaxial tensile test.

For a biaxial test, the methodology to infer the true stress from the value of the in-plane stretch is described in section 3.5.2.

As previously recalled, the simple framework to build a model able to describe the nonlinear behaviour of elastomers is hyperelasticity (Ogden 1997). Many different hyperelastic strain energies exist, such as Mooney–Rivlin, Ogden, Arruda–Boyce and Gent, the latter being often used to model DEs because of its ability to predict a finite maximal stretch of the material with a few parameters (for a concise overview of the main hyperelastic models, see Carpi and Gei (2013)). However, before choosing any particular strain energy, it is necessary to apply it to experimental stress-stretch data to evaluate its actual ability to accurately describe the mechanical behaviour of the elastomer being tested.

When large deformations are considered and a hyperelastic model is fitted to experimental data, plots should preferably be presented using the true stress as a function of the stretch ratio, so as to facilitate the use of hyperelastic models.

Elastomers are subject to the Mullins effect, a stretch-induced softening of the material, as shown in figure 6 (Mullins 1969).

Owing to the Mullins effect, the mechanical properties of an elastomer (Young’s modulus, or parameters of a hyperelastic model) depend on the maximal stretch that the sample has been submitted to during its life.

It is worth noting that it is necessary to subject the sample to more than one loading–unloading cycle, as the stretch-induced softening occurs mainly between the first and second cycle (Mullins 1969), as shown in figure 7.

The Mullins effect can be modelled within a pseudoelasticity approach, as shown by Ogden and Roxburgh (1999).

3.5.2. Measurement method. The recommended measurement apparatus for uniaxial tests is represented by standard uniaxial testing machines.

For pure shear tests, the same machines can be used, although with a different grip system (Rivlin and Saunders 1951).

Equi-biaxial testing can be performed using a bubble inflation technique: a circular membrane is clamped on a circular frame and inflated with a known pressure. The stretch at the apex of the bubble is measured with optical means, and the equi-biaxial stress-stretch curve can be calculated from the geometry of the membrane, the applied pressure, and the
stretch value smaller than that of cycle 2. Only if hysteresis occurs mainly in cycle 1, as represented in the graph. A Mullins-induced hysteresis occurs mainly in cycle 1, as represented in the graph.

It is worth stressing here the following important consideration. While DE membranes are often prestretched and activated equi-biaxially, their mechanical characterisation is frequently performed using a uniaxial pull test, because it is easier to perform. However, it is worth noting that inferring the equi-biaxial behaviour of a material based on a uniaxial pull test cannot be accurate (see Boyce and Arruda 2000 and Rosset et al 2014). Therefore we recommend that any material of interest is characterised, when possible, by uniaxial, pure shear and equi-biaxial mechanical tests and that the combined tests are used to fit a material model.

Any kind of test should be performed at a constant deformation rate. Readings are taken during uninterrupted stretching of the test piece.

The selection of the deformation rate is critical. Indeed, stress-strain curves vary as a function of the deformation rate. Owing to a significant variability among DE materials in terms of elongation at break and viscosity, no specific value of deformation rate is recommended here, so as to avoid excessive prescriptions. Indeed, guidelines reported by some standards on materials’ characterisation (such as a deformation rate of 1% of the initial length per minute, as recommended by EN ISO 527-1, 1996-04) might be too restrictive for some elastomers that are highly stretchable and are meant to be characterised up to several hundred percent strain.

While we do not prescribe any specific deformation rate, we recommend the following procedure. The characterisation should be repeated using two different deformation rates $\dot{\lambda}_1$ and $\dot{\lambda}_2$, with $\dot{\lambda}_2 = 10\dot{\lambda}_1$. If results show a deviation higher than 10%, then the test should be repeated with a third deformation rate $\dot{\lambda}_3 = 0.1\dot{\lambda}_1$. If $\dot{\lambda}_3$ results differ from those of $\dot{\lambda}_1$ by more than 10%, then the iterative process should continue by scaling down the deformation rate until no significant changes are observed.

Once the deformation rate has been selected, each mechanical test should be repeated two or three times, up to the same stretch, in order to take into account the possible stretch-induced softening (Mullins effect), as shown in figure 7. The stretch range should be selected in accordance with the envisaged application (taking into account both the pre-stretch and the expected actuation stretch), as the mechanical behaviour of any elastomer depends on the stretch range it has been submitted to during its life (Rosset et al 2014).

The mechanical properties of elastomers are sensitive to environmental conditions, especially temperature and humidity (see, for instance, Oertel 1993). Thus, for comparison purposes it is recommended to adopt, if possible, the following standard conditions: 23 ± 2 °C and 50 ± 5% rh.

3.5.3. Sample preparation and conditioning. The recommended sample’s shape depends on the test used. For uniaxial tensile tests, the dumb-bell (or dog bone) shape is preferable, according to standard practice for tensile testing in general (see for instance Type 2 specimen in ISO 37, 5th edn 2011-12-15).

For pure shear tests, the specimen should be much shorter in the stretching than in the width direction: a ratio of height to width of at least 1:5 (preferably 1:10) is recommended (Treloar 1944, Kollosche et al 2012).

For biaxial tests, a circular membrane with a thickness much smaller than its diameter should be used, so that the bending energy can be neglected. The zone of interest at the centre of the membrane on which the radius of curvature and stretch are measured should be at least 5 times smaller than the membrane diameter. Furthermore, the technique used to visually delimit this zone must not alter the mechanical properties of the material being tested. Carbon black or other types of powders are suggested as a suitable choice, as they are not expected to introduce any significant stiffening of the membrane. The use of pastes or greases is discouraged as they might release a liquid fraction, which could change the mechanical properties of the elastomer membrane more or less significantly, according to several factors (such as the amount of material, the diffusion coefficient and the duration of the test).

For material cutting, fixed blades are preferable to moving knife techniques, so as to improve accuracy (see for instance the cutters described in ISO 23529:2012-10).
The selection of the thickness should be done according to the considerations reported in section 3.1. Moreover, the actual value of the thickness needs to be measured carefully, using the methods recommended in section 3.2.

Specimens need to be conditioned before testing. Prescriptions described in ISO 23529:2012-10 are recommended, implying a conditioning time of at least 16 h before the measurement, where the time to temperature equilibration is significantly shorter (a few minutes for films with a thickness of 100 μm or less) than the time to humidity equilibration, which depends on the material’s hydrophilicity (Danfoss 2014, Moreno et al 2012).

3.6. Surface (or sheet) resistance of compliant electrodes

3.6.1. Basic concepts. Besides compliance, a key property of DET electrodes is their electrical resistance, which depends on the volume (or bulk) resistivity of the constitutive material and the amount of material deposited. As the electrode thickness depends on the fabrication process and is not easy to measure, it is not effortless (sometimes not even possible) to compare the resistivity of different electrode materials by simply measuring the electrode resistance. This problem can be faced by measuring the surface (or sheet) resistance, which best quantifies the electrical properties of a thin electrode layer, along the surface plane (not perpendicularly to it, i.e. not along the thickness direction).

For an electrode of thickness \(d_{el}\), length \(L\) and width \(w\), made of a homogeneous material of volume resistivity \(\rho\), the volume (or bulk) electrical resistance \(R\) along the length is given by

\[
R = \frac{\rho}{w d_{el}}. \tag{13}
\]

The surface (or sheet) electrical resistance \(R_s\) of the electrode is defined as

\[
R_s = R_{w} = \frac{\rho}{w}. \tag{14}
\]

Thus, the physical units of a surface resistance are \(\Omega\). However, its conventional units are ‘Ohm per square’ and are denoted as \(\Omega/\text{sq}\) or \(\Omega/\square\), which are dimensionally equivalent to \(\Omega\) but allow for univocally distinguishing a surface resistance from a volume resistance. These units are justified by the fact that the surface resistance of a square surface \((L=w)\) coincides with its volume resistance and is independent of the square’s size. Therefore, the surface resistance can be defined as the volume resistance of a square electrode of any size, and its units ‘Ohm per square’ can be regarded as a sort of ‘Ohm per aspect ratio’.

3.6.2. Measurement method. The following method is recommended to measure the surface resistance of thin layers of conductive material, so as to evaluate various electrode materials (e.g. dry powders, greases, inks, etc) and fabrication techniques (e.g. smearing, printing, plotting, spraying, etc).

A long and thin rectangular strip of homogeneous conductive material is prepared on an insulating substrate. The suggested length \(L_{el}\) ranges from 5 to 50 mm. The thickness of the conductive layer can be unknown.

To avoid the measurement of contact resistances, the following four-point probes method is adopted. The strip is contacted at each end by a bar electrode covering the whole width of the strip. A constant current \(I\) is injected into the sample via the two bars. Two probes are then used to measure with a high-impedance voltmeter the voltage drop \(V\) between any two points separated by a distance \(L\) in-between the current-injecting bars. The setup is indicated in figure 8. We advise that the two probes are applied without exerting any significant pressure to the strip, so as to avoid significant deformations, which might alter the reading.

A high aspect ratio \(L/w\) in the order of 10:1 (at least 5:1) ensures a homogeneous current flow, at least in the central portion of the sample.

The surface resistance of the portion of the sample delimited by the length \(L\) can thus be calculated as follows:

\[
R_s = \frac{V}{I} = \frac{w}{L} R_s. \tag{15}
\]

In order to assess the quality of the electrode in terms of uniformity, the following finer investigation can also be performed. A probe is used to measure the electrical potential \(\varphi\) at various positions (between the current-injecting bars) with respect to any arbitrary reference point. For an electrode shaped as a long rectangular strip with uniform distribution of its constitutive material in any direction, \(\varphi\) will be a function of only the axial coordinate \(x\) along the length direction (at least in the central portion of the sample) and this function will be linear.

3.6.3. Measurements under stretching. One of the key properties of electrodes for DETs is their ability to remain conductive under stretching. It is therefore important to characterize their resistance not only in their non-deformed state, but also when the electrode is stretched (possibly over multiple cycles).

To this end, the method described above should be used in combination with a stretching apparatus. However, we discourage the use of a uniaxial extension. Indeed, in such a...
condition the electrode’s conductive elements get closer to each other in the planar direction perpendicular to stretching, thus leading to a measurement which is not representative of an actual expansion of the whole electrode. Therefore, we recommend the use of a bi-axial extension test.

3.6.4. Complementary mechanical testing. Compliant electrodes for DETs should not only remain conductive when stretched, but also have little impact on the stiffness of the overall transducer. So, if testing is aimed at characterising a ‘general-purpose’ electrode material, for comparison purposes it can be useful to accompany the electrical characterisation with a mechanical one.

3.7. Electromechanical transduction performance of an elastomer with compliant electrodes and applied pre-strain

3.7.1. Basic concepts. The following sections present guidelines to characterise the transduction properties of materials for DEAs, according to the most frequently used tests: the pure shear (with uniaxial pre-strain) and the expanding circle (with bi-axial pre-strain).

Nevertheless, it is worth stressing that these two configurations do not necessarily lead to the maximisation of the achievable strain. Indeed, the adopted configuration and the application of unequal pre-stretches in different directions can lead to a complex interplay of nonlinear processes (Kollosche et al 2012). In particular, it has been shown that, by applying a uniaxial pre-strain and measuring the electrical strain in the transverse direction, the output can be higher as compared to both a pure-shear and a biaxial-pre-strain test (Akbari et al 2013).

3.7.2. Compliant electrode material. The electromechanical transduction performance of any elastomer with compliant electrodes is typically dependent on the electrode material (Rosset and Shea 2013, Carpi et al 2003). Therefore, if the destination of use of the elastomer is already defined, the test should be performed with the same electrode material envisaged for the final application, which is likely to be dictated by specific requirements and constraints.

If the electrode material is not imposed by any specifications, samples should be prepared such that the limitation of the electrical strain due to the electrodes’ stiffness is minimized. To this end, conductive greases or particles are recommended. If a choice is possible, carbon grease is preferable, because of its typically high conductivity, its ability to form surfaces with a uniform distribution of charge, as well as its ease of use. Thin layers of conductive elastomer composites might be adopted as well, although their actual impact in terms of stiffening should be assessed with comparative stress-strain measurements.

3.7.3. Electrical contacts. An electrical contact is defined as the interface between a compliant electrode material and an electrical lead. If the type of contact is not prescribed by any specifications, metals (e.g. aluminium or copper) are recommended as suitable materials. This is because they can be used in a diversity of possible forms (as more practical for the test), such as free-standing strips or various shapes etched on the surface of printed circuit boards (also used as mechanical supports). As the electrical contact edges typically concentrate electrical charges, which raise the electric field locally, care should be taken to ensure that the contact region is not superimposed to the counter-electrode on the other side of the elastomer layer, in order to prevent premature electrical breakdown.

3.7.4. Uniaxial actuation mode: pure-shear configuration. The pure-shear configuration is aimed at making any spatial variation of strain and electric field negligible over the sample (Kofod and Sommer-Larsen 2005). This uniformity makes the test largely independent of the boundary conditions introduced by the frames that support the elastomer. To this end, the specimen has to be flat and much shorter in the stretching (length) than in the other (width) direction, as represented in figure 9. A length-to-width ratio of at least 1:5 (preferably 1:10) is recommended (Kollosche et al 2012). This configuration also allows for a large active-to-passive
area ratio, limiting the mechanical resistance offered by the passive (uncoated) area of the elastomer film.

The static electromechanical performance should be assessed with two measurements (figure 9): (i) an isometric (or isostatic) test, where the strain is maintained constant and the force is measured upon electrical driving; (ii) an isotonic test, where the force is maintained constant and the strain is measured upon electrical driving.

The isometric and isotonic experiments not only return a characterization in terms of electrical strain and stress, but also allow for estimates of relevant material parameters. In particular, the effective dielectric constant $\varepsilon_{r}$ can be obtained by fitting the isometric data with the following function

$$ F_{e} = \frac{\varepsilon_{0}\varepsilon_{r}y_{0}V^{2}}{d_{m}} $$

(16)

which correlates $\varepsilon_{r}$ to the measurable force $F_{e}$ and the applied voltage $V$.

The measurement of the electrical strain $S_{e}$

$$ S_{e} = \frac{x_{e} - x_{m}}{x_{m}} $$

(17)

and the condition of volume conservation

$$ d_{0}x_{0}y_{0} = d_{e}x_{e}y_{0} = d_{m}x_{m}y_{0} \Rightarrow d_{0}x_{0} = d_{e}x_{e} = d_{m}x_{m} $$

(18)

allow for a calculation of the true electric field $E_{t}$:

$$ E_{t} = \frac{V}{d_{e}} = \frac{Vx_{e}}{d_{m}x_{m}}. $$

(19)

Fitting the isotonic data with the function

$$ S_{e} = \gamma E_{t}^{2} $$

(20)

returns the electro-mechanical sensitivity $\gamma$, which depends on the elastomer’s dielectric constant and stiffness at the working strain.

These equations enable simple analyses, under the assumption that the stress, strain and applied electric fields are uniform throughout the specimen.

Samples for pure shear testing are prepared by fixing rigid clamps to the elastomer film. This defines the desired length-to-width ratio to the freestanding membrane. The freestanding area is then coated with the compliant electrode material.

The recommended measurement apparatus is a double (or single) column dynamometer for uniaxial mechanical testing, capable of position and force control.

3.7.5. Biaxial actuation mode: expanding-circle configuration.

The electrically induced biaxial deformation of the active area of a circular DEA consisting of a membrane pre-stretched on a circular frame is a useful test to evaluate new elastomers, electrodes and their combinations (Pelrine et al. 2000).

It is worth noting that an expanding circle test could also be performed by pre-stretching the elastomer with a dead load, which would allow for much higher strains (Huang et al. 2012b). Nevertheless, as compared to a pre-stretch by dead load, we recommend a pre-stretch by rigid frame, as it is easier to implement.

Let us refer to a cylindrical coordinate system $r, \theta, z$, with $z$ aligned along the thickness direction. When the circular electrodes are electrically charged, the elastomer’s thickness decreases from a value $d_{0}$ at rest to a value $d_{e}$, while the active radius and area respectively increase from $R_{0}$ and $A_{0}$ to $R_{e}$ and $A_{e}$, as detailed in figure 10.

By considering the stretch ratio $\lambda_{e}$ along the axial direction

$$ \lambda_{e} = \frac{d_{e}}{d_{0}} $$

(21)

and by taking into account that the elastomer’s incompressibility leads to

$$ A_{e} d_{e} = A_{0} d_{0} $$

(22)

we have

$$ \lambda_{z} = \frac{d_{e}}{d_{0}} = \frac{A_{0}}{A_{e}} = \frac{R_{0}^{2}}{R_{e}^{2}} = \frac{1}{\lambda_{r}^{2}} $$

(23)

where $\lambda_{r}$ is the stretch ratio along the radial direction. So, the variation of the thickness can be obtained by measuring the change of the electrodes’ radius or area.

It is worth noting that equation (23) can also be obtained by combing the incompressibility condition

$$ \lambda_{e} \lambda_{0} \lambda_{z} = 1 $$

(24)

with the following relation, due to the homogeneity of the deformation in the active area:

$$ \lambda_{0} = \lambda_{r}. $$

(25)

Equation (23) can also be re-written in terms of the thickness strain $S_{e,z}$ and the radial strain $S_{e,r}$ as follows:

$$ S_{e,z} = \frac{1}{(S_{e,r} + 1)^{2}} - 1 $$

(26)

To perform this test, an elastomer membrane (usually a single layer) has to be pre-stretched equi-biaxially in a controlled manner (possibly using a radial stretching apparatus). Then, while the membrane is pre-stretched, it is mounted on a rigid frame which has a circular hole. The hole...
should have a diameter at least three, possibly ten (Koh et al. 2011) times larger than that of the desired electrode. Such a ratio is aimed at making the reduction of the tensile elastic force exerted by the passive (electrode-free) annular region on the central active region negligible, while the latter electrically expands. This makes pre-stretching close to that provided by a dead load (i.e., a constant force), which is known to enable the maximum electrical strain (Huang et al. 2012b).

Finally, circular electrodes are created in the centre of the membrane and compliant conductive paths are realized to connect each electrode to the boundary of the frame, where the electrical connections are made (figure 10).

To measure the electrically induced strain, we recommend the use of a contact-less optical technique, such as the processing of images acquired with a digital camera. However, attention should be paid to the fact that the actual extension of the active area may not be captured correctly by optical techniques, if large out-of-plane deformations (such as wrinkles due to loss of tension) occur. To overcome this problem, the recommendation is to use a pre-stretch sufficiently high so as to avoid loss of tension, provided that the amount of pre-stretch is not pre-defined.

Alternatively, indirect measurements of the electrically induced strain can be obtained with electrical tests, recording the capacitance with an LCR meter (Keplinger et al. 2008). However, capacitive measurements might not necessarily offer the highest possible accuracy, as they are affected by a different problem: depending on the elastomer material, the dielectric permittivity might vary more or less significantly according to the strain (Kofod et al. 2003, Choi et al. 2005, Huang et al. 2012a, Troels et al. 2013, Gatti et al. 2014) and the electric field, although the latter effect is poorly studied at present (Rosset et al. 2013). An unknown variation of the permittivity might result in a wrong estimate of strain from a reading of capacitance. To overcome this problem, the recommendation is to characterise in advance the dependence of the material permittivity on the strain and the electric field, according to the procedures described in section 3.3.

3.7.6. Pre-strains. Any elastomer exhibits a different actuation performance depending on the applied pre-strain, because of a shifting or a suppression of electromechanical instability (Suo 2010, Koh et al. 2011). So, the choice of the pre-strain is important when performance is characterised. We describe below two methods of pre-strain selection: one method (preferable) is based on optimal values, the other is not.

The optimal pre-strain selection method is aimed at maximising the electrical strain, either the one achievable at ‘low’ electric fields or the one at ‘high’ fields. The former strain is obtained with a pre-strain that minimises the slope of the (uniaxial or biaxial) engineering stress-strain curve, i.e. the point of maximum compliance (see for instance Carpi and De Rossi 2005). The latter strain (which is also the highest achievable strain, in absolute terms) is obtained with a pre-strain (usually higher than in the previous case) that suppresses electromechanical instability (Suo 2010, Koh et al. 2011), allowing the elastomer to be driven at higher fields. Once the optimal pre-strain of interest has been selected (in the first case experimentally, in the second case theoretically), tests can be carried out with different pre-strains around this value, so as to verify the maximisation of the electrical strain.

The non-optimal pre-strain selection method uses a predefined set of pre-strain values. We suggest the following progression set: 10, 30, 50, 100, 150, 200%, etc (according to the material’s capabilities).

3.7.7. Sample preparation and conditioning. The selection of the elastomer’s thickness should be done according to the considerations reported in section 3.1. Moreover, the actual value of the thickness needs to be measured carefully, using the methods recommended in section 3.2.

Any electrode material should be applied shortly before the beginning of the test, so as to minimise the effect of a possible penetration (diffusion) within the elastomer, especially when the material is able to release a fluid phase.

Ideally, the measurement of electrically induced strains/stresses should start when the sample has reached a steady state after creep/stress relaxation. In practice, measurements are recommended only when the length/force variation over time is lower than at least 5%.

3.7.8. Electrical driving. The characterisation should be done by applying voltage ramps or step-wise voltages of different amplitudes, until electrical failure occurs.

In order to characterise quasi-static behaviour, voltage ramps are preferable to step-wise voltages, as they allow for investigations of the electrical response with continuity, up to electrical breakdown. To this end, the ramp’s slope should ideally be as low as possible. Nevertheless, excessively small slopes might make the test unpractically long, which suggests the need for trade-off values. As current literature does not offer evidences that justify the prescription of a maximum slope, i.e. a minimum time to breakdown, here we arbitrarily recommend (as an operative guideline) that the latter should be at least three minutes.

Step-wise voltages also allow for characterizations of the transient response, in addition to the steady-state static response. In this case, attention should be paid to the fact that the charging speed might be limited by the slew rate and/or the maximum output current of the electrical source. It is therefore necessary to ensure that the charging time is shorter than the mechanical response time of the elastomer.

3.7.9. Presentation of data. When reporting results, a stretch ratio should be preferable to strain, for at least two reasons: it avoids any risk of confusion between engineering and true strain, and it matches common practice used in hyperelastic energy density models, which always use stretch ratios. Nevertheless, the use of stretch rather than strain is not meant here to represent any prescription, as we recognise that many users are more used to the latter and might still prefer it. The
only recommendation is that, in case of the use of strains, clear indications are reported as to whether values refer to the engineering or the true strain definition.

Moreover, intensive measures like stretch ratio (or strain), stress and electric field (or voltage per unit thickness) are in general preferable to extensive measures like deformation (variation of a given dimension), force and voltage, respectively. This is justified by the fact that normalised variables make the description of performance independent of the size of the sample or the amount of material. Nevertheless, it is recognised that explicit information about deformations, forces, and voltages can be practically useful in some cases. So, if this information is given, we advise that it represents an addition and not an alternative to the normalised values.

Also, it should be clearly specified whether the electric field is expressed as nominal or true values, i.e. whether the voltage is normalized by the initial or current thickness.

The adopted pre-strain value/s should always be specified, and the environmental temperature and humidity should preferably be mentioned, so as to report the conditions of measurement.

3.8. Electromechanical transduction performance of an elastomer with compliant electrodes and without pre-strain

3.8.1. Basic concepts. There are situations where it is desirable to characterize the actuation strain at zero or minimal pre-strain, such as transducers in which the DE membranes are under minimal tension when not actuated (e.g. because they cannot undergo pre-stretch or because pre-stretching is not applicable). Preventing the film from wrinkling is critically important to allow for an accurate measurement of the actuation strain. To this end, it can be useful to adopt a diaphragm configuration with a nominally low and constant pneumatic pressure, as outlined in figure 11, and measure the electrically induced area strain (Ha et al 2006, Niu et al 2013).

3.8.2. Measurement method. A DE membrane with an active area matching the circular opening of the diaphragm chamber seals the chamber on the top. A small pneumatic pressure (e.g. 300 Pa) is applied underneath causing a minimal pre-strain with a raised height \(h_o\) that is negligibly small. When actuated, the DE membrane forms a dome shape with a radius \(r\) and a raised height \(h\). The area strain, \(S_{Area}\), can be calculated by

\[
S_{Area} = \frac{r^2 + h^2 - (r_0^2 + h_0^2)}{r_0^2 + h_0^2}
\]

To measure the radius \(r\) and the height \(h\), we recommend the use of contact-less optical techniques, such as processing of images acquired with a digital camera and use of a laser displacement transducer.

The guidelines presented in section 3.7 detailing the preparation and conditioning of samples, as well as the electrical driving and presentation of data apply here as well.

3.9. Electromechanical transduction performance of an elastomer without compliant electrodes

3.9.1. Basic concepts. The electrostatic force needed for DE actuation is commonly generated by coating the elastomer with electrodes and connecting them to a voltage source, so as to charge the soft capacitor. However, in an early experiment in the late 19th century, Wilhelm Conrad Röntgen reported on the electrical deformation of a natural rubber capacitor without compliant electrodes (Röntgen 1880). Röntgen’s experiment set the basis for electrode-free DEA operation, enabling later investigations under charge-controlled conditions, inaccessible with compliant-electrode-coated actuators. Indeed, electrode-free actuation has been shown to be a suitable strategy to avoid electromechanical instabilities and to allow for extreme electrically induced deformations limited only by the material’s electrical breakdown strength (Keplinger et al 2010).

Electrode-free actuation is enabled by ions that are generated and induced to rest on the surface of an elastomer film (without electrodes). The ionic charges deposited on the elastomer are immobile, due to the material’s low surface conductivity. They thus prescribe ‘electrically clamped, charge controlled’ thermodynamic states. This prevents global electromechanical instabilities, which instead are observed with electrodes and voltage control. Indeed, under voltage control, when the elastomer thins down and expands in area, the electric field increases and so does the attractive force between the electrodes. This creates a positive feedback, causing the elastomer to progressively thin down, finally resulting in electrical breakdown. This global pull-in instability is prevented when the elastomer is operated under charge control, because there is no feedback mechanism that increases the attractive force between the charged surfaces (Keplinger et al 2010).

Electrode-free operation prevents not only a global instability but also local instabilities. Indeed, with compliant electrodes, charges can easily re-distribute and this may cause local pull-in instabilities. These are prevented with electrode-free operation as charges are immobile and so local breakdowns have no severe consequences for the whole device, because only a small amount of charge is involved (Keplinger et al 2010).
Therefore, electrode-free operation is useful in material characterization to assess the maximum capabilities of electro-mechanical transduction.

3.9.2. Measurement method. We recommend the use of a circular planar sample, obtained by stretching a DE membrane on a circular frame. Figure 12 illustrates the setup: charging is performed by spraying charges on the elastomer’s surfaces.

Any technique known from research on electrets may be employed for charging. In figure 12, corona charging is used. Needle electrodes connected to a high voltage source create negatively and positively charged ions. These ions accumulate on the surface of the elastomer, creating spatially dependent charge densities \( q_s(x, y) \) and \( q_d(x, y) \) on the top and bottom surfaces. The electrostatic forces between these charges cause an electrical deformation of the elastomer. The potential difference (voltage) \( V = q_s - q_d \) between the surfaces of the elastomer film must be measured in a non-contact way, as shown in figure 12, where two Kelvin probes are used in proximity to the surface.

Actuation performance can be measured with contactless optical techniques, as described in section 3.7.5.

The same guidelines presented in section 3.7 for the preparation and conditioning of samples (except for the electrode material) as well as the presentation of data apply here as well.

4. Device testing

4.1. Static performance of an actuator

The methodology to test the static performance of a DEA is conceptually analogous to the one used to characterise the transduction performance of an elastomer with compliant electrodes. So the reader might refer to the previous section, bearing in mind that the implementation should be adapted to the specific configuration of the device.

4.2. Static performance of a sensor

DE piezo-capacitive sensors make use of the changing capacitance of a loaded DE membrane with compliant electrodes to infer information about its mechanical deformation. By way of example, we describe below a method for characterising a uniaxial sensor, for which the relationship between its extension and capacitance is approximately linear:

1. Plot the measured capacitance against the extension for a range of different speeds and over a number of cycles in a manner pertinent for the intended application.

The sensor performance can then be defined in terms of the following classical figures of merit:

4.2.1. Drift. Because the output of a DE sensor is directly related to its extension, mechanical creep should not cause drift in the signal (this is different when using the sensor to measure force). Drift is thus most likely linked to a change in the dielectric constant with temperature (or humidity). Drift can be measured as a change in the baseline or mean capacitance per °C.

4.2.2. Sensitivity. The sensitivity of a DE sensor is the change in capacitance for a given change in extension, i.e. the slope of the capacitance versus extension plot (e.g. F/mm). Sensitivity can be improved by increasing the rest capacitance of the sensor (with layers or by increasing the dielectric constant) or by changing the geometry to make the sensor shorter in the direction of stretch.

4.2.3. Bandwidth. The bandwidth of a DE sensor can be limited by a number of factors, such as latency in the measurement electronics, the size of the sensor, the resistance of the electrodes and connectors, and filters. Limitations to bandwidth can be isolated by introducing delays at different stages in the sensing system and observing the resultant effect.

4.2.4. Noise. Noise in a DE sensor is typically caused by the capacitance measurement circuit. Because sensor capacitances can be small, errors due to parasitic capacitances in the connectors or circuit, thermal noise on components, and minor timing differences in signal acquisition can have a significant effect. The position noise can be reduced by increasing the sensitivity of the sensor such that a change in capacitance corresponds to a small change in position.

4.2.5. Hysteresis. When used for deformation sensing, the hysteresis of a DE sensor is typically low because of the dominating effect of geometry on capacitance. When used for force sensing, the mechanical hysteresis can play a role in the accuracy of the sensor and so the choice of the material and
the construction of the device should be evaluated according to the specific requirements of the application.

4.2.6. Linearity. A uniaxial extension DE sensor is typically expected to be substantially linear in response. If a pure-shear, equi-biaxial, or a hybrid mode of deformation is used, then the sensor will have a non-linear response.

4.3. Dynamic performance of an actuator

4.3.1. Basic concepts. Any DEA can typically be characterized by two mechanical input/output interfaces, where a force $F_m$ or a displacement $x$ can be imposed externally or generated electrically (note that even a membrane stretched on a frame can be regarded as having two interfaces: the frame and the centre if it is considered as the end effector). So, any lumped-parameter mechanical model of any DEA can be assumed to have two ends. The general model shown in Figure 13 is considered here to describe the viscoelastic behaviour of a DEA.

The model consists of a mass-spring-damper system defined by the parameters $m$, $k$, and $b$, respectively, representing a damped oscillator with one degree of freedom and resonant behaviour. The viscoelastic effects typical of many elastomer materials can be taken into account by supplementing the spring and damper with an additional path composed of a spring $k_v$ and a dash-pot in a serial configuration, or, more generally, a spring and a fractional element (with parameters $p_f$ and $a$) describing the viscoelasticity in a wider frequency range (Gaul et al 1991). The actuation force $F_e$ depends on the input voltage $V$ and is related to the displacement $x$ according to the actuator design. For many DEAs the relationship can be approximated by a quadratic law, owing to the quadratic Maxwell stress (equation (4)).

This model can be used to interpret the results of free stroke and blocking force tests, as described below.

4.3.2. Free stroke versus frequency. The dynamic behaviour of DEAs can be characterized in terms of free stroke (displacement) as a function of the excitation frequency. To measure this response, the actuator must be mechanically unloaded and able to move freely, upon driving with a sinusoidal voltage having a constant amplitude (suggested values: 50, 70 and 100% of maximum voltage) and a certain bias (suggested value: equal to the sinusoidal voltage amplitude). The bias voltage is recommended whenever a harmonically oscillating displacement is desired. Indeed, due to the quadratic Maxwell stress law (equation (4)), the response of any DEA is always unipolar and therefore a purely sinusoidal voltage lacking of any bias would lead to a unipolar periodic response with doubled frequency.

The actuator has to be clamped at one interface while the displacement is measured at the other one. The measurement should be done with a non-contact system, such as a laser or a capacitive sensor, in order not to influence the measurement mechanically.

A sufficient number of cycles should be allowed to take place in order to reach a steady state. The Fourier coefficients of the input and output signals (the fundamental harmonic) should be calculated and, hence, the amplitude and phase of the transfer function should be determined.

A typical measurement result is shown in Figure 14, which presents input and output signals at a certain frequency as well as the amplitude and phase of the transfer function (or frequency response). The amplitude of the transfer function can show a peak (see the black line in Figure 14). The frequency at which the highest deformation occurs is defined as the mechanical resonance frequency (or natural frequency).

Above the resonance frequency, the deformation drops down, because of the inertia of the mass and the viscous damping.

If strong viscous damping prevents a distinctive amplitude peak (see the grey line in Figure 14) the resonance frequency can be determined as the value that causes a phase shift of 90° (Figure 14).

The resonance frequency can significantly vary according to the mass and mechanical impedances of different boundary conditions.

4.3.3. Blocking force versus frequency. The dynamic behaviour of DEAs can also be characterized in terms of the blocking force as a function of the excitation frequency. To this purpose, the actuator is mechanically clamped and a force sensor is included in the test rig. It is necessary to guarantee that, as compared to the actuator, the instrumentation is much stiffer and has no mechanical resonance within the frequency range investigated. Depending on the actuator type and its intended use, a given pre-stress can be applied too. A sinusoidal voltage signal is applied with a constant bias and amplitude (the same suggestions apply as outlined above). The generated force is measured with a load cell. The Fourier coefficients should be
calculated, so as to work out the amplitude and phase of the transfer function.

4.3.4. Mechanical impedance. To determine the passive mechanical behaviour, i.e. to identify the parameters of the viscoelastic model of the device, a mechanical excitation has to be applied. One end is clamped, while a sinusoidal force of amplitude $F_m$ is applied to the other end, and the corresponding displacement $x$ is measured. Alternatively, a sinusoidal displacement is applied and the corresponding force is measured. Only the first Fourier coefficients of both signals are taken into account. Careful measurement of the relative phasing of both quantities allows for an estimate of the complex mechanical impedance $Z_m$:

$$Z_m(\omega) = \frac{F_m(\omega)}{v(\omega)}$$

where $v$ is the magnitude of the velocity.

4.3.5. Electrical impedance. DEAs are deformable electrical capacitors (with variable capacitance $C$), with electrical losses internal to the elastomer (represented by a variable parallel resistance $R_p$), and ohmic losses introduced by the compliant electrodes and contacts to the power supply (modelled by a variable serial resistance $R_s$). The resulting electrical equivalent circuit is shown in figure 15.

Hence, the electrical impedance $Z_e$ of the DEA is:

$$Z_e = R_s + \frac{1}{R_p + j\omega C}.$$  (29)

and its electrical time constant $\tau_e$ is:

$$\tau_e = \frac{R_s R_p C}{R_s + R_p}.$$  (30)

It is worth noting that if $R_p \gg R_s$, the time constant reduces to $\tau_e \approx R_s C$.

The general frequency dependent behaviour of $Z_e$ is plotted in figure 15. We have $Z_e \approx R_p + R_s$ at low frequencies and $Z_e \approx R_s$ at high frequencies. Consistently, the maximum deflection (static mode) can be measured for frequencies $\omega \ll \omega_1 = 1/(CR_p)$ because the capacitance will always be fully charged. For frequencies $\omega_1 < \omega < \omega_m = 1/(CR_s)$ the voltage across the capacitance decreases in inverse proportion to the increasing frequency. For frequencies $\omega \gg \omega_m$ nearly no actuation is possible because the driving voltage drops across $R_s$ as the impedance of the capacitance approaches the lower limit 0.

The electrical impedance can be obtained by using a network analyser. Alternatively, it can be worked out by
V is the electrical charge supplied to the DEA. The \( Q \) is the supply voltage applied to the electrical circuit. I is the current through the circuit. Figure 16 shows a typical \( V-Q \) diagram (for steady-state operation) where Q is the electrical charge supplied to the DEA. The supplied electrical work equals the area encircled by the curve.

4.4. Dynamic performance of a sensor

The methodology to test the dynamic performance of a DES is conceptually analogous to the one used to characterise a DEA. So the reader might refer to the previous section, with an obvious change of the variable of interest.

Nevertheless, an important aspect to be assessed for sensors that are regularly subjected to large tensile strains is the effect that concentration of stress has on the reliability of the sensor/connector interface. Proper cyclic testing, depending on the application requirements, is therefore necessary.

4.5. Efficiency of an actuator

4.5.1. Basic concepts. The electromechanical efficiency is an important and critical figure of merit for any DEA. Depending on the definition used to estimate it, the result can vary according to a diversity of factors, including the operation cycle, the driving frequency, amplitude, and bias of the driving voltage, as well as the mechanical impedance of the external load.

Due to the nature of electromechanical coupling in DEAs, all parts of the system (electrical, mechanical and external) are interconnected, such that the definition of efficiency being considered should always be stated and the operating conditions under which it is measured should always be reported.

So far, a widely shared consensus on how to define the general conditions under which the electromechanical efficiency of a DEA should be assessed is not available. The approach recommended here is to drive the actuator with a sinusoidal voltage (having a bias that makes the signal unipolar) and to let it perform work on a load that should be selected according to the actuator configuration and, possibly, its intended use.

4.5.2. Electromechanical efficiency under cyclic operation. In order to estimate the actuator’s efficiency, the energy losses of the power source should be treated separately from the actuator’s inherent electrical energy losses. The former are not considered here, i.e. we assume that the supply circuit fully recovers its electrical energy while discharging the actuator.

This approach ensures that the electromechanical efficiency is independent of the supply circuit, as long as the supply voltage is controlled, e.g. there is no backlash from the DEA to the power source. In practice, however, the actuator is mostly discharged over a resistance and, hence, the supply circuit does not recover its electrical energy completely, thus decreasing the efficiency of the whole setup (supply circuit plus DEA) but not the actuator’s electromechanical efficiency itself.

Let us consider the general electrical circuit diagram of an elementary DEA, consisting of a stretch-dependent capacitance with a parallel and serial resistance to account for the actuator’s inherent electrical energy losses, as represented in figure 15. The supplied electrical work \( W_{el} \) in one cycle (i.e. covering both the charging and discharging phase) under steady-state cyclic operation is:

\[
W_{el} = \int_{cycle} V \, I \, dt \tag{31}
\]

where V is the supply voltage applied to the electrical circuit model and I is the current through the circuit. Figure 16 shows a typical \( V-Q \) diagram (for steady-state operation) where Q is the electrical charge supplied to the DEA. The supplied electrical work equals the area encircled by the curve.
The consideration of a steady-state full cycle (an approach commonly used for thermodynamic systems) ensures that no contributions stem from reversible electrical or mechanical energy portions in the actuator.

A fraction of $W_{el}$ is dissipated in the parallel and serial resistances as a work $W_{res}$, while the remaining part $W_{el-mech}$ is converted into mechanical work by the DE material (owing to the stretch dependence of the capacitance):

$$W_{el-mech} = W_{el} - W_{res}. \quad (32)$$

The mechanical work $W_{el-mech}$ coincides with the effective work performed by the Maxwell stress in a steady-state cycle.

Equation (32) is the most straightforward way to assess $W_{el-mech}$, if the parallel and serial resistances of the DEA are known. Alternatively, the direct computation of $W_{el-mech}$ via the Maxwell stress is hardly possible for an arbitrary actuator configuration, as quantifying the Maxwell stress is impractical owing to the variation of the thickness with strain.

A fraction of $W_{el-mech}$ is dissipated in the dashpots of the viscoelastic model of the DEA as a work $W_{visc}$, while the remaining part $W_{mech-eff}$ is finally available to perform work on the load:

$$W_{mech-eff} = W_{el-mech} - W_{visc}. \quad (33)$$

Here, $W_{mech-eff}$ is the effective work performed in one cycle by the DEA, while it is charged and discharged:

$$W_{mech-eff} = \int_{cycle} F \, ds \, dt \quad (34)$$

where $F$ is the force exerted by the actuator (sum of the active and passive forces) on the external load and $s$ is the displacement. Figure 17 shows a typical $F$–$s$ diagram (for steady-state operation). The effective work performed in a cycle equals the area encircled by the curve.

Figure 18 shows the flow of work from the power source to the electrical circuit model of the DEA, and then to its viscoelastic model, and finally to the load. The mechanical coupling between the DEA and the load and the stretch-dependence of the capacitance are visualized by two backward-oriented arrows.

The actuator’s electromechanical efficiency is defined as:

$$\eta = \frac{W_{mech-eff}}{W_{el}}. \quad (35)$$

It can also be expressed as:

$$\eta = \eta_{el-mech} \eta_{mech} \quad (36)$$

where $\eta_{el-mech}$ is the electro-mechanical coupling efficiency, defined as the efficiency of the conversion of electrical work into mechanical work:

$$\eta_{el-mech} = \frac{W_{el-mech}}{W_{el}} \quad (37)$$

while $\eta_{mech}$ is the mechanical coupling efficiency, defined as the efficiency of mechanical work transfer from the DEA to

Figure 16. Example of a steady-state $V$–$Q$ diagram of a DEA. Here, $V_{bias}$ is the applied bias voltage corresponding to the bias charge $Q_{bias}$ on the capacitor. For an electrically elongating or contractile actuator, the bias voltage results respectively in a positive or negative bias stroke, as long as the load (respectively compressive or tensile) is limited within a certain value. In the final phase of the charging (discharging) process, the voltage decreases (increases) due to the phase shift between voltage and charge caused by the two resistances of the general electrical circuit diagram of the DEA and the conversion of electrical into mechanical work.

Figure 17. Example of a steady-state $F$–$s$ diagram (a) of an actively elongating DEA with a small weight on top of it, such that the bias voltage results in a positive bias stroke (b). In the particular example chosen here, the actuator exerts a positive force on the external load during the whole cycle. The positive bias force might be due to the DEA, e.g. compressing a spring, besides bearing a small weight. In the final phase of the elongation process, the force decreases due to the phase shift between force and stroke caused by the resistive elements of the external load consuming mechanical work from the DEA. If the external load does not contain any resistive elements, the area encircled by the curve vanishes. If the DEA lifts and sinks a weight infinitesimally slowly, in particular, the $F$–$s$ curve becomes a line parallel to the $s$–axis and its force value equals the gravitational force of the weight.

Figure 18. Work flow for a DEA. The two backward-oriented arrows represent the backlash of the load, first on the viscoelastic model of the DEA and then on its electrical circuit model. This is due to the mechanical coupling between the DEA and its load, and the dependence of the capacitance on the stretch, respectively.
the load:
\[ \eta_{\text{mech}} = \frac{W_{\text{mech \_ eff}}}{W_{\text{el \_ mech}}} . \]  

(38)

In some special cases, no work is done on the load in a steady-state cycle \((W_{\text{mech \_ eff}} = 0)\) and, hence, the electromechanical efficiency formally is zero. Notable examples:

(i) When there is no load, e.g. the DEA operates in the free stroke mode: in this case, all the electrical work converted into mechanical work during a steady-state cycle is dissipated viscoelastically;
(ii) When the load has infinite mechanical impedance, e.g. the DEA operates in the blocking force mode;
(iii) When the mechanical impedance of the load is purely imaginary (lossless system), e.g. the DEA stretches and compresses a spring or lifts and sinks a weight. In this case, the work that the DEA performs on the load while it elongates is stored reversibly and equals the work that the load performs on the DEA while it contracts, or vice versa. For example, for an actively contracting actuator that sinks a weight during the discharging phase, mechanical work is performed on the DEA and energy is stored reversibly in the device, to be then released to the weight during the discharging phase.

Note that the electromechanical coupling efficiency \(\eta_{\text{el \_ mech}}\) defined in this section is different from the square of the electromechanical coupling factor usually defined for piezoelectrics. The electromechanical coupling factor of a DEA is discussed below.

4.5.3. Electromechanical coupling factor. Besides the electromechanical coupling efficiency, the electromechanical coupling factor \(k\) is another figure of merit characterizing electromechanical transduction in a DEA. The square of this factor is defined as the ratio between the mechanical energy \(U_{\text{mech}}\) stored in the DEA and the input electrical energy \(U_{\text{el \_ input}}\) at a certain voltage under a static free-stroke operation:
\[ k^2 = \frac{U_{\text{mech}}}{U_{\text{el \_ input}}} . \]  

(39)

The input electrical energy is the sum of the mechanical energy stored in the DEA and the electrical energy stored in the DEA:
\[ U_{\text{el \_ input}} = U_{\text{mech}} + U_{\text{el}} . \]  

(40)

The mechanical energy can be assessed from the stretch state by an appropriate mechanical model for the DEA. Ideally, the voltage should be applied sufficiently slowly or one should wait sufficiently long before measuring the strain, in order to ensure that dissipative processes do not take place or that they have already taken place. This approach ensures that the electromechanical coupling factor is a figure of merit solely characterizing the DEA, regardless of the operating conditions.

The electromechanical coupling factor measures how much input electrical energy is converted into mechanical energy. Reactive energy portions contribute to the electromechanical coupling factor but not to the electromechanical efficiency.

While the electromechanical coupling factor does not depend on any external load, it does depend on the actuator’s geometry and the compliant electrodes. In order to illustrate the dependence on the electrodes, two different DEAs consisting of a single DE sheet sandwiched between two different types of electrodes are considered below. The description that follows applies to an incompressible (Poisson’s ratio \(\nu = 0.5\)) isotropic material and is limited to small strains, for the sake of simplicity.

The mechanical energy of the DE sheet can easily be inferred from the strain energy density of linear elasticity. If the DE sheet deforms without shear, its mechanical energy is:
\[ U_{\text{mech}} = \frac{Vol}{3} Y \left( S_z^2 + S_y^2 + S_x^2 \right) \]  

(42)

where \(Vol\) is the volume of the sheet, \(Y\) is the material’s Young’s modulus, and \(S_i\) (\(i = x, y, z\)) are the strains in the three Cartesian coordinate directions. Let \(z\) denote the thickness direction. In the limit of small strains, the electrical energy stored in the sheet is:
\[ U_{\text{el}} = \frac{Vol}{2} \varepsilon_0 \varepsilon_i \frac{V^2}{d_0} (1 + 2 S_z) \]  

(43)

where \(d_0\) is the thickness of the undeformed DE sheet.

Case 1—Ideally compliant electrodes:

For ideally compliant electrodes we have \(S_x = S_y\) and the incompressibility implies:
\[ S_x = S_y = -\frac{S_z}{2} \]  

(44)

Inserting equation (44) into equation (42), the mechanical energy stored in the DEA becomes:
\[ U_{\text{mech}} = \frac{Vol}{2} Y S_z^2 \]  

(45)

Under free-stroke operation \(S_z\) is given by
\[ S_z = -\frac{1}{Y \varepsilon_0 \varepsilon_i} \frac{V^2}{d_0^2} . \]  

(46)
For small strains, $S_z \ll 1$, a good approximation for the electrical energy stored in the DEA is:

$$U_{el} = \frac{Vol}{2} \varepsilon_0 \varepsilon_r \frac{V^2}{d_0^2}. \quad (47)$$

The mechanical energy stored in the DEA is:

$$U_{mech} = -S_z U_{el}. \quad (48)$$

$U_{mech}$ is much smaller than the electrical energy, and, hence, it can be neglected in equation (40) while computing $U_{el,input}$. So, the coupling factor for ideally compliant electrodes is:

$$k^2 = \frac{\varepsilon_0 \varepsilon_r V^2}{Y d_0^2}. \quad (49)$$

**Case 2—Electrodes compliant in only one direction:**

Let $x$ be the compliant direction and let $y$ be the stiff direction. We have $S_x = 0$ and, due to the incompressibility:

$$S_z = -S_z. \quad (50)$$

Therefore, equation (42) becomes:

$$U_{mech} = \frac{2}{3} Vol Y S_z^2. \quad (51)$$

The free stroke in the thickness direction can be derived in the same way as was done in case 1:

$$S_z = -\frac{3}{4} \varepsilon_0 \varepsilon_r \frac{V^2}{d_0^2}. \quad (52)$$

For small strains, $S_z \ll 1$, the electrical energy stored in the DEA can again be approximated by equation (47) and, doing so, equation (48) still holds. Thus, the mechanical energy is much smaller than the electrical energy and can be neglected in equation (40). Therefore, the coupling factor for electrodes compliant in only one direction is:

$$k^2 = \frac{3 \varepsilon_0 \varepsilon_r V^2}{4 Y d_0^2}. \quad (53)$$

As shown by these examples, the electromechanical coupling factor can be calculated according to the electrical and mechanical properties of the DEA. In case of a linear material, these are the Young’s modulus and the dielectric permittivity. In case of a nonlinear material, a similar analysis can be made given a choice of the mechanical constitutive equation (Neo–Hookean, Mooney–Rivlin, Yeoh, etc) and the result will be expressed in terms of the material parameters of the constitutive relation.

**4.5.4. Presentation of data.** When reporting electromechanical efficiency, the following parameters should always be specified: (i) frequency, amplitude and bias of the driving voltage; (ii) mechanical impedance of the load; (iii) pre-strain.

**4.6. Dynamic performance and efficiency of a generator**

**4.6.1. Basic concepts.** DEGs work as soft electrostatic generators capable of harvesting mechanical energy. An initial electrical energy stored in an elastomer film (either pre-stretched or not) is increased by mechanically induced deformations (Pelrine et al 2001, Kornbluh et al 2012). DEGs can operate under various energy conversion cycles according to defined electrical and mechanical specifications, best represented in work conjugate plots. To assess performance, the density of the converted energy per cycle and the average output power and efficiency need to be given as functions of numerous parameters. According to the operating area in work conjugate plots, the limits of the structure, such as its breakdown voltage, define the maximum allowed energy cycle. This is plotted in figure 19 using nominal quantities (Koh et al 2009, 2011).

**4.6.2. Measurement method.** To characterize the dynamic performance of an energy harvester, a deformation of the structure should be imposed at a frequency of interest. An initial pre-stretch $\lambda_0$ of the structure before the first cycle is recommended. After pre-stretching, the structure should be maintained at electrical rest until relaxation occurs. The generator should generally work under pure shear or biaxial stretch conditions. The complexity of the power circuit might also vary, depending on the application (Jean-Mistral et al 2008, Eitzen et al 2012). It should at least not only provide an initial high voltage supply, but should also ensure...
proper charging and discharging over suitable time lengths, as summarised in figure 20 (Foo et al 2012).

At least five cycles are required for the mechanical response to reach a steady state, due to various losses within the DEG structure. Recording of all four external variables (stress, strain, voltage and charge) is preferred (Kaltseis et al 2011), but at least two of them must be recorded, while the other two may be deduced from modelling. Strains should be measured with a contact-less technique, as structures are highly soft. The voltage should be measured either with an electrostatic voltmeter or with a high-impedance voltage probe (the probe’s input resistance should be much larger than the bulk resistance of the dielectric film to prevent discharge during relaxation).

4.6.3. Quantification of performance. To quantify performance, the mechano-electrical conversion efficiency $\eta_{me}$ is of primary importance:

$$\eta_{me} = \frac{U_e}{U_{mech}}$$

(54)

where $U_e$ is the produced electrical energy, namely the final useful energy estimated by taking into account all sorts of losses (electrical and mechanical within the material, and electrical within the power circuit), and $U_{mech}$ is the mechanical energy absorbed by the device over a cycle:

$$U_{mech} = \int F_m ds$$

(55)

where $F_m$ is the mechanical force acting on the DEG and $s$ is the displacement.

Figure 21 describes the overall energy conversion chain. The different types of energy involved are described below. $U_{m,amb}$ is the ambient mechanical energy, $U_{e,in}$ is the input electrical energy related to the bias voltage and $U_{e,out}$ is the total output of electrical energy. $U_{sca}$ is the scavenged electrical energy, defined as follows:

$$U_{sca} = U_{e,out} - U_{e,in} = \int V dQ.$$  

(56)

$U_{loss}$ stands for the energy dissipated by the mechanical viscous losses in a cycle and by the electrical leakage (bulk and surface current). $U_{pow}$ is the energy dissipated by the electrical losses within the power circuit. All the energies represented in figure 21 are linked together, as the input mechanical energy $U_{mech}$ must be equal to the output electrical energy $U_e$ plus the losses:

$$U_e = U_{sca} - U_{pow}$$

(57)

$$U_{e,out} = U_{mech} + U_{e,in} - U_{loss}$$

(58)

$$U_e = U_{mech} - U_{loss} - U_{pow}. $$

(59)

Regarding the efficiency related to this energy conversion chain, we define the quantities below.

Mechanical absorption efficiency:

$$\eta_{abs} = \frac{U_{mech}}{U_{m,amb}}.$$  

(60)

Device efficiency (taking into account all sorts of material losses, i.e. viscoelastic losses, dielectric losses and ohmic losses at bulk and surface level):

$$\eta_{conv} = \frac{U_{sca}}{U_{mech}}.$$  

(61)

Efficiency of the power management (taking into account the electrical losses in the electrical circuit):

$$\eta_{pow} = \frac{U_e}{U_{sca}}.$$  

(62)

Mechano-electrical conversion efficiency:

$$\eta_{me} = \eta_{conv} \eta_{pow} = \frac{U_{sca}}{U_{mech}} \frac{U_e}{U_{sca}} = \frac{U_e}{U_{mech}}.$$  

(63)

Global efficiency:

$$\eta = \eta_{abs} \eta_{me} = \eta_{abs} \eta_{conv} \eta_{pow} = \frac{U_{mech}}{U_{m,amb}} \frac{U_{sca}}{U_{mech}} \frac{U_e}{U_{sca}} = \frac{U_e}{U_{m,amb}}.$$  

(64)
Several energy densities can be defined and used to compare the performance of different DEGs. We prescribe to name ‘density of produced electrical energy per cycle’ \( u_e \) the volumetric density of electrical energy (expressed in J cm\(^{-3}\)) related to the active volume, i.e. the one composed by the DE membrane and its electrodes:

\[
u_e = \frac{U_e}{L_{10}^{30} L_{20} L_{30}} \tag{65}\]

where \( L_{10}, L_{20} \) and \( L_{30} \) are the initial dimensions of the active volume. On the other hand, the ‘total density of produced electrical energy per cycle’ \( u_{eTOT} \) refers to the total volume, i.e. the one which includes not only the active material but also any portion of the dielectric material which is passive, as well as the volume of frames and supports:

\[
u_{eTOT} = \frac{U_e}{L_1 L_2 L_3} \tag{66}\]

where \( L_1, L_2 \) and \( L_3 \) are the initial dimensions of the entire structure. Following the same principle, the scavenged energy density \( (u_{e,scav}, \text{ see figure 19}) \) and the absorbed energy density can be defined by adopting the same difference for normalisation by either the active volume or the total volume.

To illustrate the performance of a DEG, we recommend that the type of energy cycle (e.g. at constant charge \( Q \), the magnitude of pre-stretch \( \lambda_0 \) and the initial bias voltage \( V_0 \) are first chosen, and then, while maintaining them fixed, one computes how both the efficiency \( \eta_{me} \) and the produced electrical energy density \( u_e \) vary versus frequency, i.e. versus the cycle time \( t_{cycle} \), and versus the maximum strain \( \lambda_{max} \) (figure 19). The resulting contour plots can be used to describe the frequency-dependent behaviour of the transducer, and to characterise the damping effect and loss factors.

Finally, the generator workspace, generally dedicated to one application, is a trade-off between efficiency and produced electrical energy. We recommend that this workspace is clearly defined and a figure of merit is also defined. Indeed, as the performance of a DEG depends on the bias voltage, the imposed strain, the operating frequency and the energetic cycle, one could use the following figure of merit (FoM) to facilitate performance comparisons between different systems:

\[
\text{FoM} = \frac{u_e}{u_{eMAX}} \tag{67}
\]

where \( u_{eMAX} \) is the maximum theoretical density of produced electrical energy per cycle, estimated from the electrical diagram representation (figure 19). This density refers to the theoretical condition closest to mechanical and electrical breakdown, for the same frequency and energy cycle that produce the energy density \( u_e \).

### 4.7. Lifetime of a DET

Assessing the lifetime of a DET is very important for applications. Actually, a diversity of performance metrics, such as maximum strain (either achievable from actuation or applicable during stretching in sensor or generator modes), dielectric strength, etc, are scarcely significant without considering lifetime. Indeed, the values for such measurements could vary significantly from a small to a large number of cycles (e.g. millions) (Matysek et al 2011). However, the current lack of extensive knowledge on the effects of sample preparation and measurement procedures makes it impossible today to define any detailed general protocol (supported by solid physical arguments) to characterise lifetime.

Nevertheless, readers seeking guidelines on how to obtain indicative information might use the suggestions listed below (which are not meant to be prescriptive and might have justified deviations in specific cases). The DET should safely be tested at 80% of its maximum capability (i.e. 80% of maximum electrical strain or stress for a DEA, or 80% of maximum passive deformation for a DES or DEG). It should be solicited with a unipolar alternate stimulus having a fundamental frequency to be selected either according to the application of interest (if known) or equal to 1 Hz (for general-purpose testing). The lifetime could be defined as the time needed to reach a decrease of performance to 50% of the initial value.

### 5. Future updates

These first set of standards for the DET field are presented with awareness that they are not exhaustive and that they will require future updates.

As knowledge in the field will advance and the use of these guidelines will spread, deeper insights and further topics will have to be addressed.

Several aspects were deliberately excluded from this first edition, as knowledge and/or consensus in the literature were deemed to be insufficient. The current impossibility of defining guidelines for several topics is a sign of a young and vital field, whose development is expected to benefit also from this effort towards standardisation.

These standards will be reviewed periodically and we encourage researchers and practitioners to work towards future improvements and extensions of the protocols described here.

### Acknowledgments

Financial support from COST—European Cooperation in Science and Technology, within the framework of ‘ESNAM—European Scientific Network for Artificial Muscles’ (COST Action MP1003), is gratefully acknowledged.

### References

Akbari et al 2013 Improved electromechanical behavior in castable dielectric elastomer actuators Appl. Phys. Lett. 102 071906


Boyce M C and Arruda E M 2000 Constitutive models of rubber elasticity: a review Rubber Chem. Technol. 73 504–23

Brochu P and Pei Q 2010 Advances in dielectric elastomers for actuators and artificial muscles Macromol. Rapid Commun. 31 10–36

Carpi F, Bauer S and De Rossi D 2010 Stretching dielectric elastomer actuators and artificial muscles Sensors Actuators 107 85–95


Carpi F and Gell M 2013 Predictive stress-stretch models of elastomers up to the characteristic flex Smart Mater. Struct. 22 104011

Carpi F and Smela E 2009 Biomedical Applications of Electroactive Polymer Actuators (Chichester: Wiley)

Choi H R et al 2005 Effects of prestrain on behavior of dielectric elastomer actuators Proc. SPIE 5759 283


Brochu P and Pei Q 2010 Advances in dielectric elastomers for actuators and artificial muscles Macromol. Rapid Commun. 31 10–36

Carpi F, Bauer S and De Rossi D 2010 Stretching dielectric elastomer actuators and artificial muscles Sensors Actuators 107 85–95


Carpi F and Gell M 2013 Predictive stress-stretch models of elastomers up to the characteristic flex Smart Mater. Struct. 22 104011

Carpi F and Smela E 2009 Biomedical Applications of Electroactive Polymer Actuators (Chichester: Wiley)

Choi H R et al 2005 Effects of prestrain on behavior of dielectric elastomer actuators Proc. SPIE 5759 283


Keplinger C, Kaltenbrunner M, Arnold N and Bauer S 2010 Röntgen’s electrode-free elastomer actuators without electromechanical pull-in instability PNAS 107 4505–10


Koh S J A, Zhao X and Suo Z 2009 Maximal energy that can be converted by a dielectric elastomer generator Appl. Phys. Lett. 94 262902


Kollosche M and Kofod G 2010 Electrical failure in blends of chemically identical, soft thermoplastic elastomers with different elastic stiffness Appl. Phys. Lett. 96 071904


Oertel G 1993 Polyurethane Handbook 2nd edn (Munich: Hanser)

Ogden R W 1997 Non-Linear Elastic Deformations (New York: Dover)


Pelrine R, Kornbluh R, Pei Q and Joseph J 2000 High-speed electrically actuated elastomers with strain greater than 100% Science 287 836


Rivlin R S and Saunders D W 1951 Experiments on the deformation of rubber large elastic deformations of isotropic materials VII Phil. Trans. R. Soc. Lond. A243 251–88

Suratkar A 2009 Absolute distance (thickness) metrology using wavelength scanning interferometry PhD Dissertation University of North Carolina p 9
Treloar L R G 1944 Stress–strain data for vulcanized rubber under various types of deformation Trans. Faraday Soc. 40 59–70