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Abstract—The optimal power-flow problem (OPF) has always
played a key role in the planning and operation of power systems.
Due to the non-linear nature of the AC power-flow equations,
the OPF problem is known to be non-convex, therefore hard
to solve. Most proposed methods for solving the OPF rely on
approximations (e.g., of the network model) that render the
problem convex, but that consequently yield inexact solutions.
Recently, Farivar and Low proposed in [1,2] a method that is
claimed to be exact for the case of radial distribution systems
under specific assumptions, despite no apparent approximations.
In our work, we show that it is, in fact, not exact. On
one hand, there is a misinterpretation of the physical network
model related to the ampacity constraint of the lines’ current
flows and, on the other hand, the proof of the exactness of
the proposed relaxation requires unrealistic assumptions related
to the unboundedness of specific control variables. Therefore,
there is a need to develop algorithms for the solution of the
non-appproximated OPF problem that remains inherently non-
convex. Recently, several contributions have proposed OPF
algorithms that rely on the use of the alternating-direction
method of multipliers (ADMM). However, as we show in this
work, there are cases for which the ADMM-based solution of
the non-relaxed OPF problem fails to converge. To overcome the
aforementioned limitations, we propose a specific algorithm for
the solution of a non-approximated, non-convex OPF problem
in radial distribution systems. In view of the complexity of the
contribution, this work is divided in two parts. In this first part,
we specifically discuss the limitations of both BFM and ADMM
to solve the OPF problem.

Index Terms—OPF, ADMM, decomposition methods, method
of multipliers, convex relaxation, active distribution networks.

I. INTRODUCTION

THE category of optimal power-flow problems (OPFs)
represents the main set of problems for the optimal

operation of power systems. The first formulation of an OPF
problem appeared in the early 1960s and has been well-defined
ever since [3]. It consists in determining the operating point
of controllable resources in an electric network in order to
satisfy a specific network objective subject to a wide range
of constraints. Typical controllable resources considered in
the literature are generators, storage systems, on-load tap
changers (OLTC), flexible AC transmission systems (FACTS)
and loads (e.g., [4]–[8]). The network objective is usually
the minimization of losses or generation costs, and typical
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constraints include power-flow equations, capability curves of
the controllable resources, as well as operational limits on the
line power-flows and node voltages (e.g., [9]).

The OPF problem is known to be non-convex, thus difficult
to solve efficiently (e.g., [10]–[12]). Since the problem was
first formulated, several techniques have been used for its so-
lution. Among others, non-linear and quadratic programming
techniques, Newton-based methods, interior point methods in
the earlier years, as well as heuristic approaches based on
genetic algorithms, evolutionary programming, and particle-
swarm optimization in recent years (e.g., [13]–[15]).

Currently, the OPF problem is becoming more compelling
due to the increasing penetration of embedded generation
in distribution networks, essentially composed by renewable
resources. The distributed nature of such resources, as well as
their large number and potential stochasticity increase signif-
icantly the complexity of the OPF problem and bring about
the need for distributed solutions. In this direction, several
distributed algorithms have been proposed in the literature.
In [16,17] the authors design a dual-ascent algorithm for op-
timal reactive power-flow with power and voltage constraints.
In [18,19] dual decomposition is used as the basis for the
distributed solution of the OPF problem. Finally, a significant
number of contributions propose distributed formulations of
the OPF problem that are based on the alternating direction
method of multipliers (ADMM) (e.g., [18,20]–[24]).

However, due to the non-convex nature of the problem, most
of the proposed schemes either do not guarantee to yield an
optimal solution or they are based on approximations that con-
vexify the problem in order to guarantee convergence. These
approximations, often, either lead to (i) misinterpretation of
the system model [25] or (ii) solutions that, even though
mathematically sound, might be far away from the real optimal
solution, thus having little meaning for the grid operation [26].

Recently, Farivar and Low proposed in [1,2] a convexifi-
cation of the problem that is claimed to be exact for radial
networks. In Part I of this paper, we show that this claim
is not exact, as the convexification of the problem leads to
an inexact system model. We also show that the method of
ADMM-based decomposition, which comes together with the
convexification, does not work for a correct system model.
As an alternative, we propose in Part II an algorithm for the
solution of the correct AC OPF problem in radial networks.
Like ADMM, it uses an augmented Lagrangian, but unlike
ADMM, it uses primal decomposition [27] and does not
require that the problem be convex. We consider a direct-
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sequence representation of the electric distribution grid and we
present both a centralized and a decentralized asynchronous
version of the algorithm.

The structure of this first part is as follows. In Section II we
present the generic formulation of the OPF problem in radial
distribution systems and we classify several OPF algorithms
based on the approximations and assumptions on which they
rely. In Section III we discuss the limitations and applicability
of the Farivar-Low formulation of the OPF problem proposed
in [1,2]. We provide, in Section IV, the ADMM-based solution
of the original non-approximated OPF problem. In the same
section, we highlight specific cases where the ADMM-based
algorithm fails to converge. Finally, we provide the main
observations and concluding remarks for this part in Section V.

II. GENERIC FORMULATION OF THE OPF PROBLEM

In the rest of the paper, we consider a balanced radial
network composed of buses (B), lines (L), generators (G) and
loads (C). The network admittance matrix is denoted by Y .
Several generators/loads can be connected to a bus b∈B. We
denote that a generator g∈G or a load c∈C is connected to a
bus by “g∈b” and “c∈b”. A line `∈L is represented using a
π-equivalent model and it has a receiving and a sending end
denoted by `+ and `−. Each line is connected to two adjacent
buses: β(`+) and β(`−), respectively.

A. Generic OPF Formulation

The traditional formulation of the OPF problem consists in
minimizing a specific network objective:

min
S̄g,S̄c,S̄

+
` ,S̄

−
` ,Ī

+
` ,Ī
−
` ,V̄b

∑

g∈G
Cg(S̄g) +

∑

c∈C
Cc(S̄c) (1)

The first term of the network objective (Cg) in (1) is typically a
non-decreasing convex function accounting for the minimiza-
tion of the generation costs or the network real power losses.
The second term (Cc) is included in the objective when the
cost of non-supplied load is taken into account.

The following set of constraints is considered1:
∑

g∈b
S̄g −

∑

c∈b
S̄c +

∑

β(`+)=b

S̄`+ +
∑

β(`−)=b

S̄`− = 0, ∀b ∈ B (2)

S̄`+ = V̄β(`+)I¯`
+ , S̄`− = V̄β(`−)I¯`

− , ∀` ∈ L (3)

Ī`+ = Ȳ`(V̄β(`+) − V̄β(`−)) + Ȳ
`+0
V̄β(`+), ∀` ∈ L (4)

Ī`− = Ȳ`(V̄β(`−) − V̄β(`+)) + Ȳ
`−0
V̄β(`−), ∀` ∈ L (5)

Vmin ≤ |V̄b| ≤ Vmax, ∀b ∈ B (6)
|S̄`+ | ≤ S`max , or |Ī`+ | ≤ I`max , ∀` ∈ L (7)
|S̄`− | ≤ S`max , or |Ī`− | ≤ I`max , ∀` ∈ L (8)
S̄g ∈ Hg, ∀g ∈ G and S̄c ∈ Hc, ∀c ∈ C (9)

where, S̄ denotes the complex power2, V̄b is the direct
sequence phase-to-ground voltage of node b, Ī`+ (Ī`−) is the
current flow in the receiving (sending) end of line `, Ȳ` is
the longitudinal admittance of a line, Ȳ`+0 (Ȳ`−0 ) is the shunt

1In the rest of the paper, complex numbers are denoted with a bar above
(e.g., V̄ ) and complex conjugates with a bar below (e.g.,V

¯
).

2We use the convention that positive values represent power injection and
negative power consumption.

capacitance at the receiving (sending) end of the line, and
Hg,Hc are the capability curve of the generator g and the
limits of the load c respectively3. If a generator (load) is non-
controllable then the set Hg (Hc) is limited to a single point.

The first constraint (2) corresponds to the power balance
constraint at each network bus, whereas (3) is an alternative
way to define the AC power flow equations. Constraints
(6) and (7) are so-called node voltage and lines ampacity
contraints, i.e., limits on node voltages and line power/current
flows. The last constraints (9) represent the capability limits
that each of the controllable devices should respect.

The equality constraints (3) render the OPF problem non-
convex and, therefore, difficult to solve efficiently. The
majority of the proposed algorithms in the literature rely on
several approximations and/or convex relaxations and seek a
solution to a modified OPF problem. In what follows, we
describe and discuss the most common approximations.

B. Approximations of the OPF problem

In general, the approximations used in the formulation of
an OPF problem can be categorized in two large groups:
approximations of the physical network models and methods
that relax the space of the solutions and/or control variables.

In the first case, we can find OPF formulations that rely
mainly on linearizations of the AC power flow equations. Such
attempts typically (i) consider the DC power flow, (ii) use the
decoupled AC power flow or (iii) neglect the network losses
and/or the transverse parameters of the lines. Specifically,
the concepts of the DC and the decoupled OPF have been
extensively used in the literature (e.g., [28]–[31]), as they
approximate the OPF problem with linear programming prob-
lems and, therefore, enable its fast resolution. Furthermore,
the authors in [22] use the so-called Dist-Flow equations
([32]) to linearize the power flows and propose an ADMM-
based OPF algorithm that neglects the real and reactive losses.
Finally, several contributions rely on simplified network line-
models that neglect the transverse parameters, resulting in
inaccuracies of the physical system model (e.g., [33]–[35]).

In the second case, we can find OPF formulations where,
typically, the constraints are relaxed in order to convexify
the problem. In particular, a large number of contributions
recently proposed a SDP formulation of the OPF problem,
where the rank-one constraint of a matrix is relaxed and
the algorithm is claimed to yield zero-duality gap for radial
distribution networks (e.g., [18,19,36]). Another relaxation is
proposed in [35] where the OPF problem is cast as a second
order cone programming. A similar technique is used in [37],
where the equality constraints of the branch flows are relaxed.

In both the aforementioned categories of approximations,
the modified OPF formulations guarantee convergence of the
proposed algorithms. The reached solutions, however, even
though mathematically sound, are not always meaningful for
the grid operation. The DC and the decoupled OPF work
sufficiently well for transmission systems, nevertheless they
can introduce large errors when used for solving the OPF

3Note that different types of controllable generators or loads can be
accounted for via their corresponding capability curves/limits.
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in the case of distribution systems (e.g., [38]). As far as
the semidefinite relaxation is concerned, its limitations have
been recently investigated. The authors in [26] show through
practical examples, that in the case of negative locational
marginal prices or strict line-flow constraints it can lead to
solutions that are not valid, namely for which the duality gap is
not zero. Furthermore, in [39] the authors show the existence
of multiple local optima of the OPF problem due to the feasible
region being disconnected and due to the nonlinearities of the
constraints; they show that the SDP formulation of the OPF
problem fails to find the global optimum in cases where there
are multiple local optima. In the same direction, a recent
review ([34]) summarizes the semidefinite relaxations applied
to the OPF problem and discusses their limitations.

Recently, another formulation of the OPF problem has been
proposed ([1,2,40]–[42]). This formulation also belongs to
the category of the semidefinite relaxations and uses the so-
called branch-flow model (BFM) for describing the network.
The BFM essentially describes the network flows by using as
variables the currents and the powers of the various network
branches, instead of the nodal injections. In [1,2] Farivar and
Low propose an OPF formulation that relies on the BFM
representation of the network and they present a two-step
relaxation procedure that turns the problem into a second-order
cone program (SOCP). The authors prove that under specific
assumptions both relaxation steps are exact for the case of
radial networks, hence a globally optimal OPF solution can
be retrieved by solving the relaxed convex problem.

In what follows, we first briefly recall the Farivar-Low
formulation of the OPF problem and then we investigate
the applicability of the branch flow model to the OPF for-
mulation. We show, on one hand, that the Farivar-Low
model misinterprets the physical network model by imposing
an ampacity constraint on a fictitious line-current flow that
neglects the contribution of the shunt components of the line
and that, on the other hand, the proof of the exactness of the
proposed relaxation requires unrealistic assumptions related to
the unboundedness of specific control variables.

III. ON THE LIMITS OF THE FARIVAR-LOW APPROACH FOR
THE SOLUTION OF THE OPF PROBLEM

A. The Farivar-Low Formulation of the OPF problem

We assume the same objective function as in Eq. 1 and
again consider that the network lines are represented using a π-
model. Contrary to the formulation in (2)-(9), we reformulate
the constraints of the OPF problem by using the branch power
and current flows as variables, similarly to [1]. To this end,
we denote by S̄` and Ī` the power and the current that flow
across the longitudinal elements of a network line ` from the
receiving toward the sending end, for which it holds that

Ī` = Ȳ`(V̄β(`+) − V̄β(`−)), ∀` ∈ L (10)
S̄` = V̄β(`+)I¯`

, ∀` ∈ L (11)

The power and current flows along the shunt elements of
the lines are taken into account in the bus power balance
constraints as nodal injections. In this direction, we denote
by Ȳb0 the sum of all the shunt elements of the lines that are

adjacent to bus b. Hence, the constraints of the OPF problem
are reformulated as follows by Farivar and Low:
∑

g∈b
S̄g −

∑

c∈b
S̄c =

∑

β(`+)=b

S̄` −
∑

β(`−)=b

(S̄` − Ȳ −1
` |Ī`|

2
)− Ȳb0 |V̄b|

2
, ∀b ∈ B (12)

|Ī`|2 =
|S̄`|2
|V̄β(`+)|2

, ∀` ∈ L (13)

|V̄β(`−)|
2

= |V̄β(`+)|
2

+ |Ȳ −1
` |

2|Ī`|2 − (Ȳ
−1
` S

¯ `
+ Y

¯
−1
` S̄`), ∀` ∈ L (14)

V
2
min ≤ |V̄b|

2 ≤ V 2
max, ∀b ∈ B (15)

|Ī`|2 ≤ I2`max , ∀` ∈ L (16)

Re(S̄g) ∈ [Pgmin , Pgmax ] , Im(S̄g) ∈ [Qgmin , Qgmax ], ∀g ∈ G (17)

Re(S̄c) ∈ [Pcmin , Pcmax ] , Im(S̄c) ∈ [Qcmin , Qcmax ], ∀c ∈ C (18)

Note that in the Farivar-Low formulation of the OPF
problem, the capability curves of the controllable loads and
generators, i.e., constraints (17,18) on the nodal power S̄ are
limited to rectangular regions. This is essential for the conic
relaxation proposed in [1,2].

Starting from this formulation, Farivar and Low relax the
equality constraints in (13) to inequalities and cast the afore-
mentioned problem as a second-order cone program. They
also prove that for radial networks a global solution of the
original OPF problem can be recovered from the solution of
the relaxed problem if there are no upper bounds on the loads.
In other words, Farivar and Low solve (12)-(18) by setting
Pcmax=∞ and Qcmax=∞ in constraint (18).

We show, in what follows, that this formulation is not
equivalent to (1-9). In particular, constraint (16) (constraint (9)
in [1]) is only an approximation of the ampacity constraints
and, moreover, the assumptions on the controllability and
bounds of the energy resources in the network are unrealistic.

B. Misinterpretation of the Physical Network Model in the
Farivar-Low OPF Formulation

The branch-flow model has been often used in load-flow
studies (e.g., [43,44]) and constitutes an accurate represen-
tation of the network model. The first problem with the
Farivar-Low formulation in (12)-(18) is that it misinterprets
the physical network model when constraining the line flows
in the network. Even though the power-flow equations in (12)-
(14) are exact when the shunt capacitances are considered as
nodal injections, the constraint (16) is imposed on a fictitious
current flow across the longitudinal component of the lines,
thus does not account for the current flow toward the shunt
elements. Therefore, the optimum of problem (12)-(18) can
be such that the line ampacity constraint is violated.

To better clarify why this occurs, we use a single-branch
toy network, as shown in Fig. 1. The line parameters, as
well as the base values of the system are given in Table I. A
purely resistive load is connected to bus 2 that we vary linearly
in the range of [100 − 10000]Ohms in order to numerically
quantify the mismatch between those quantities. We measure
the current flows at the two ends of the line, as well as the flow
along the longitudinal impedance of the line. Fig. 2 shows
the measured quantities as a function of the load. It can
be observed that the current flowing across the longitudinal
impedance of the line under-estimates the actual current flow
in the receiving end of the line.
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Fig. 1. The test network used for the numerical comparison of the current
flows at the sending/receiving end of the lines and the current flow along the
longitudinal line impedance.

Table I
PARAMETERS OF THE TEST NETWORK IN FIG.1

Parameter Value
Network rated voltage, V (kV) 15

Line parameters, R(Ohms), L(H), C(uF) (1,0.003,0.54)

As a consequence, in the Farivar-Low formulation setting
the limit on the longitudinal current flow below the line
ampacity does not guarantee that the actual line current will
respect this limit. In order to illustrate such a scenario, we
consider yet another simple test network shown in Fig. 3.
All the network lines are built by using the same values of
resistance, reactance and capacitance per km, but by assuming
different values of their length4. We assume a first test case
where the controllable device connected to bus 4 is a generator,
whereas controllable loads are connected to buses 2 and 3.
The network characteristics, the base values, the capability
limits of the controllable resources5, and the voltage and
ampacity bounds are provided in Table II. We assume that
the controllable generation operates at a unity power factor.
The problem in (12)-(18) is formulated and solved in Matlab.
The objective function accounts for loss minimization, as well
as utility maximization of the controllable generation units:

min
S̄g,S̄`,|V̄b|,|Ī`|

−
∑

g∈G
Re(S̄g) +

∑

`∈L
Re(Ȳ`)|Ī`|2 (19)

In order to investigate the order of magnitude of the viola-
tion of the ampacity constraint, we solve the OPF problem
for various line lengths and network voltage-rated values.
In particular, we assume that the line lengths are uniformly
multiplied by a factor in the range [1.25−7.5] (while keeping
the network voltage rated value to its nominal value) and the
network voltage rated value varies in the range [15 − 45]kV
(while keeping the line lengths to their nominal values). Once
the optimal solution is computed in each case, we calculate
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Fig. 2. Current flows at the sending/receiving end of the line and along the
longitudinal line impedance (log-log scale).

4Typical values of medium-voltage underground cables are considered
for the resistance, reactance and shunt capacitances of the lines.

5The upper bounds of the active and reactive power of the loads are
considered to be infinite, as required in the Farivar-Low formulation.

Table II
PARAMETERS OF THE TEST NETWORK IN FIG.3 USED FOR THE

INVESTIGATION OF THE LINE AMPACITY LIMIT VIOLATION

Parameter Value
Network rated voltage and base power, V (kV),S(MVA) 24.9,5
Line parameters, R(Ohms/km), L(mH/km), C(uF/km) (0.193,0.38,0.24)

[Pgmin , Pgmax ] (MW) [0, 2]
Pcmin (MW) (bus2, bus3) (0.05, 0.06)
Qcmin (Mvar) (bus2, bus3) (0.03, 0.027)

[Vmin, Vmax] (p.u) [0.9, 1.1]
Imax (A) 80

Table III
PARAMETERS OF THE TEST NETWORK IN FIG.3 USED FOR THE

INVESTIGATION OF THE NETWORK OPERATING POINT ON THE LINE
AMPACITY LIMIT VIOLATION

Parameter Value
[Pgmin , Pgmax ](MW) (bus 2) [0, 0.01]
[Pgmin , Pgmax ](MW) (bus 3) [0, 0.012]

(Pcmin , Qcmin )(MW,Mvar) (bus 4) 0.3, 0.15

the actual current flows in the sending/receiving end of the
lines and we compute the maximum constraint violation. The
results are shown in Fig. 4. As the line length increases, the
current flowing toward the shunt capacitors increases, thus
neglecting its contribution to the line flow leads to significant
violations of the ampacity limit. At 7.5 times the initial line
length, the violation reaches a value of 18.4%. The effect of
the network voltage-rated value is similar, with a maximum
constraint violation of 25% when the voltage value is 45kV.

In addition to the effect of the line lengths and the network
voltage-rated value, we study the effect of the network operat-
ing point on the ampacity violation. To this end, we consider
a second test case where the controllable device connected
to bus 4 is a load and generators are connected to buses 2
and 3. The capability limits of the controllable resources are
provided in Table III. For this setting, Fig. 5 shows the solution
of the Farivar-Low OPF problem, namely current flows at the
receiving/sending end of the network lines, as well as across
the longitudinal impedance. We can observe that the maximum
violation of the ampacity constraint is in the order of 39.6%.

In order to avoid current flows that exceed the lines’
ampacity limits, i.e., in order to use the BFM in an accurate

Fig. 3. Network used in the study of the Farivar-Low OPF formulation.
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lengths and the network voltage rated value.
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Fig. 5. Farivar-Low OPF solution for the current flows at the send-
ing/receiving end of the network lines and across the longitudinal line
impedance under heavy consumption and light generation conditions.

way, the Farivar-Low formulation should either consider the
actual current flows in the receiving/sending ends of the lines
as optimization variables, or should add the contribution of
the current flows toward the shunt elements of the lines to
the longitudinal current flow in the inequality constraint (16).
By adopting either of the two approaches, however, (12)-
(18) can no longer be solved efficiently as proposed in [1,2].
Therefore, the generic OPF problem cannot be convexified by
using Farivar-Low’s approach.

C. On the Assumptions Required for the Exactness of the
Farivar-Low Relaxation

In addition to the aforementioned fundamental problem,
which is related to the physical network model, Farivar and
Low require specific assumptions to hold in order to prove
the exactness of the proposed relaxations. Several of these
assumptions are too strong and not realistic.

To begin with, the OPF formulation in [1,2] assumes con-
trollability of both loads and generators in the network buses
and, in particular, assumes rectangular bounds on the powers
of loads/generators. This is quite a strong assumption, as
usually the DNO has very few specific control points available
in the network with capability curves that are typically more
complex and that account, among others, for capabilities of
power electronics and limitations of machinery. An even more
serious limitation is that the Farivar-Low model considers no
upper bounds on the controllable loads in order to prove the
exactness of the proposed relaxation. This implies that in cases
where excessive production of the generators causes violations
of the voltage or line-flows limits, local demand is invoked to
compensate for the increased generation. In order to illustrate
such a setting and to show that the result of the OPF problem
can result in unrealistic values for demand, we consider the
same network in Fig. 3 and we assume that there is high
penetration of distributed generation and a low demand. The
values of loads and generation, as well as the corresponding
limits are shown in Table IV. Solving the optimization problem
and considering infinite upper bounds on the demand results
in load values that are significantly increased, compared to
the minimum values shown in Table IV. The resulting optimal
power points are shown in Fig. 6. We show in black the initial
values for active and reactive power of loads and generation
(corresponding to the values of Table IV), and in gray the
results of the OPF solution (when not accounting for upper

Table IV
PARAMETERS OF THE TEST NETWORK IN FIG.3 USED FOR THE

INVESTIGATION OF THE UNBOUNDEDNESS OF THE CONSUMPTION

Parameter Value
[Pgmin , Pgmax ] (MW) [0, 1.2]

(Pcmin , Qcmin ) (MW,Mvar) (buses 2,3) (0.0125, 0.0026)
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initial minimum (maximum) value
of loads (generation)
Farivar−Low OPF solution with
infinite upper bounds on loads

initial minimum (maximum) value
of loads (generation)
Farivar−Low OPF solution with
infinite upper bounds on loads
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1.15x106

Fig. 6. Optimal solution of the Farivar-Low OPF formulation for the active
and reactive power set-points when upper bounds on loads are infinite.

bounds on loads). It is worth observing that the optimal active
power consumption of bus 3 is increased 23.6 times and the
reactive power consumption at buses 2 and 3 is increased 85.3
and 92 times, respectively. In a realistic setting, even if part
of the demand in the network is controllable, the amount of
available demand-response is limited and such an increase in
the consumption is most likely not possible. Therefore, in such
a case, the congestion and voltage problems should be solved
by properly controlling the generator within its capability
limits. In addition to this, typically, the active and reactive
power consumption should be linked via the corresponding
power factor. We observe, however, that the OPF solution
in this scenario results in very large values for the reactive
power consumption and, in particular, the power factor of Bus
2 is 0.03 after the OPF solution, whereas initially its value
is 0.98. In an attempt to relax this assumption, Farivar and
Low claim that the infinite upper bound on the loads, when
not applicable, can be replaced by equivalent conditions [42].
However, not only are these conditions unrealistic, they are
also not applicable in our context as they require no upper
bound on the voltage magnitudes. This is in contradiction
with the actual problem we target, i.e., voltage rise due to
high penetration of renewable energy resources.

Overall, the fundamental problems with the Farivar-Low
approach, as well as with the several additional assumptions,
prohibit its application to the generic OPF problem. As a
consequence, there is a need to design algorithms that target
the original non-approximated OPF problem that remains
inherently non-convex. Recent trends are in favor of using
ADMM for the solution of the OPF problem. Even though
ADMM requires the underlying problem to be convex in order
to guarantee convergence, it has been applied also to the case
of non-convex AC OPF problems with promising convergence
performance (e.g., [21,24]). In what follows we first present
the ADMM solution of the problem in (1)-(9) and then we
highlight specific scenarios for which ADMM fails to converge
when applied to the non-approximated OPF problem.



6

IV. ON THE APPLICATION OF ADMM FOR THE SOLUTION
OF THE OPF PROBLEM

A. ADMM-based Solution of the OPF Problem
The ADMM-based solution of the OPF problem requires

that the control variables are split into two separate groups
and that the objective function is separable across this split-
ting [45]. To this end, we introduce additional slack variables,
z̄, for the devices’ and loads’ power injections and for the line
power flows and we reformulate the OPF problem as follows6:

min
S̄g,z̄g,S̄c,z̄c,S̄`+ ,z̄`+ ,S̄`−
z̄
`− ,Ē`+ ,Ē`− ,Ī`+ ,Ī`− V̄b

−
∑

g

Ug(Re(S̄g)) +
∑

b

JV (|V̄b|)+ (20)

∑

`

JI(|Ī+
` |, |Ī−` |) +

∑

b

φ(
∑

g∈b
z̄g −

∑

c∈b
z̄c +

∑

β(`+)=b

z̄`+ +
∑

β(`−)=b

z̄`−)

subject to: S̄g = z̄g , ∀ g ∈ G, and S̄c = z̄c , ∀ c ∈ C (21)
S̄`+ = z̄`+ , and S̄`− = z̄`− , ∀ ` ∈ L (22)
Ē`+ = V̄β(`+), and Ē`− = V̄β(`−), ∀ ` ∈ L (23)

where φ is the characteristic function of the set {x̄ ∈ C : x̄ =
0}, JV is a penalty function with value 0 if Vmin ≤ |V̄b| ≤
Vmax and∞ otherwise and JI is a penalty function with value
0 if max(|Ī+

` |, |Ī−` |) ≤ I`max and ∞ otherwise.
The augmented Lagrangian for this problem is as follows:

Lω(S̄g, S̄c, S̄`+ , S̄`− , Ē`+ , Ē`− , Ī`+ , Ī`− , z̄g, z̄c, z̄`+ , z̄`− , V̄b, µ̄, ν̄, λ̄)

= −
∑

g

Ug(Re(S̄g)) +
∑

b

JV (|V̄b|) +
∑

`

JI(|Ī+
` |, |Ī−` |)

+
∑

b

φ(
∑

g∈b
z̄g −

∑

c∈b
z̄c +

∑

β(`+)=b

z̄`+
∑

β(`−)=b

z̄`−)

+
ω

2
{
∑

`

|Ē`+ − V̄β(`+) + µ̄`|2 +
∑

`

|Ē`− − V̄β(`−) + ν̄`|2

+
∑

g

|S̄g − z̄g + λ̄g|2 +
∑

c

|S̄c − z̄c + λ̄c|2

+
∑

`

|S̄`+ − z̄`+ + λ̄`+ |2 +
∑

`

|S̄`+ − z̄`− + λ̄`− |2} (24)

where µ̄, ν̄, λ̄ are the lagrange multipliers associated with the
equality constraints (21)-(23).

The ADMM algorithm at the k−th iteration consists of the
following steps:

1) First, all the devices, loads and lines update in paral-
lel the primary variables, and their internal variables,
i.e., (S̄g, S̄c, S̄`+ , S̄`− , Ē`+ , Ē`− , Ī`+ , Ī`− ) with the sec-
ondary variables, and the dual variables fixed 7:

For each network line `:

(S̄k+1
`+

, S̄k+1
`− , Ēk+1

`+
, Ēk+1

`− , Īk+1
`+

, Īk+1
`− ) =

argmin
S̄
`+
,S̄
`− ,Ē`+ ,Ē`− ,Ī`+ ,Ī`−

JI(|Ī+
` |, |Ī−` |)+

ω

2
(|Ē`+ − V̄ kβ(`+) + µ̄k` |2 + |Ē`− − V̄ kβ(`−) + ν̄k` |2

+ |S̄`+ − z̄k`+ + λ̄k`+ |2 + |S̄`− − z̄k`− + λ̄k`− |2) (25)

subject to: S̄`+ = Ē`+I¯`
+ and S̄`− = Ē`−I¯`

− (26)
Ī`+ = Ȳ`(Ē`+ − Ē`−) + Ȳ

`+0
Ē`+ (27)

Ī`− = Ȳ`(Ē`− − Ē`+) + Ȳ
`−0
Ē`− (28)

6In what follows we assume that demand is non-controllable. Also, as
in [20] the constraints (3),(9) are considered internal constraints of the lines
and devices respectively and Ī+

` , Ī
−
` are internal variables of the lines.

7Note that demand is not controllable, hence the loads do not require the
solution of an optimization problem to update their power consumption.

For each device g: (29)

S̄k+1
g = argmin

S̄g

− Ug(Re(S̄g)) +
ω

2
(|S̄g − z̄kg + λ̄kg |2)

subject to: S̄g ∈ Hg
For each load c: S̄k+1

c = S̄c (30)

2) Then, by using the updated primary variables, the sec-
ondary variables are updated, i.e.,(z̄, V̄b), on a bus level.
We denote by z̄b the vector of complex powers of all
the devices, loads and lines that are connected to bus b,
i.e., z̄b , (z̄g:g∈b, z̄c:c∈b, z̄`+:β(`+)=b, z̄`−:β(`−)=b):

z̄k+1
b = argmin

z̄b

(φ(
∑

g∈b
z̄g −

∑

c∈b
z̄c +

∑

β(`+)=b

z̄`+
∑

β(`−)=b

z̄`−)

(31)

+
ω

2
{
∑

g∈b
|S̄k+1
g − z̄g + λ̄kg |2 +

∑

c∈b
|S̄k+1
c − z̄c + λ̄kc |2

+
∑

β(`+)=b

|S̄k+1
`+
− z̄`+ + λ̄k`+ |2 +

∑

β(`−)=b

|S̄k+1
`− − z̄`− + λ̄k`− |2})

V̄ k+1
b = argmin

V̄b

(J(V̄b) +
ω

2
{
∑

β(`+)=b

|Ēk+1
`+
− V̄b + µ̄k` |2

+
∑

β(`−)=b

|Ēk+1
`− − V̄b + ν̄k` |2}) (32)

3) Finally, dual variables, i.e., µ̄, ν̄, λ̄ are updated:

µ̄k+1
` = µ̄k` + (Ēk+1

`+ − V̄ k+1
β(`+)) (33)

ν̄k+1
` = ν̄k` + (Ēk+1

`− − V̄ k+1
β(`−)) (34)

λ̄k+1
g = λ̄kg + (S̄k+1

g − z̄k+1
g ) (35)

λ̄k+1
c = λ̄kc + (S̄k+1

c − z̄k+1
c ) (36)

λ̄k+1
`+ = λ̄k`+ + (S̄k+1

`+ − z̄k+1
`+ ) (37)

λ̄k+1
`− = λ̄k`− + (S̄k+1

`− − z̄k+1
`− ) (38)

The stopping criterion for this algorithm is that the primal
and dual residuals (defined as in [45]) are less than a small
predefined tolerance or that a maximum number of iterations
has been reached.

In what follows, we show specific scenarios where the
ADMM algorithm fails to converge to a solution.

B. Investigation of the Convergence of the ADMM-based
Solution of the OPF Problem

We consider the same network in Fig. 3. Each network
bus, apart from the slack bus, has a load and a generator
connected to it. The demand in the network is assumed to
be non-controllable, whereas the generators are assumed to
be distributed solar panels with typical PV-type capability
constraints. For this scenario, the capability limits and the
values of loads and generation are given in Table V. In
addition to the loads and generation, we consider that a shunt
capacitor is connected to bus 2. In order to model this shunt
capacitor, we consider that it is part of the first network line.
In particular, we consider that the shunt capacitance on the
sending end of the π-model of the line connecting buses 1 and
2 is modified accordingly to account for the shunt capacitor.

We implement and solve the ADMM algorithm in Matlab
for two different cases that correspond to two different values
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Table V
PARAMETERS OF THE TEST NETWORK IN FIG.3 USED FOR THE

ADMM-BASED SOLUTION OF THE OPF PROBLEM

Parameter Value
Generators’ power, |S̄igmax |, i = 2, 3, 4 (MVA) 0.40, 0.39, 0.46

Generators’ power factor, cosφig , i = 2, 3, 4 0.9
Loads’ active power, Pic , i = 2, 3, 4 (MW) 2.76, 2.16, 2.46

Loads’ reactive power, Qic , i = 2, 3, 4 (MW) 1.38, 1.08, 1.23
Shunt capacitor (bus 2), case I and II (uF) (239, 859)

Penalty term gain, ω 1
Tolerance and maximum number of iterations 10−4, 104
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Fig. 7. Objective function value for case I and II (last 500 iterations).

of the size of the shunt capacitor (see Table V). In Case I,
even though the OPF problem solved is the non-approximated
non-convex one, ADMM converges, within the predefined
tolerance, in 411 iterations. The left figure in Fig. 7 shows
the objective function value as a function of the number of
iterations of ADMM. The left figure in Fig. 8 shows the
convergence of the buses’ voltage magnitudes and Fig. 9 shows
how the primal and dual residuals evolve with the iterations.
On the contrary, in Case II, ADMM fails to converge to a
solution and reaches the maximum number of iterations. This
is shown in Fig. 7 (right), 8 (right) and 10 where the objective
function, as well as the residuals and bus voltages are plotted
for the last five hundred iterations until the maximum number
of iterations is reached; we can observe that they exhibit
oscillations.

In what follows we analyze why the ADMM algorithm
converges in Case I but fails in Case II. To begin with, the
first network line has the peculiarity that the voltage at its
receiving end Ē`+ (i.e., the slack bus voltage) is fixed.8 As a
consequence, the first equality constraint in (26) becomes lin-
ear in the real and imaginary part of the voltage Ē`− , whereas
the second equality constraint in (26) becomes quadratic on
the real and imaginary part of the voltage Ē`− . In fact, the
coefficients of the quadratic terms in the latter constraint are
Re(Ȳ`) and −Im(Ȳ`)− Im(Ȳ`−0

) for the real and imaginary
parts, respectively. Due to the physics of the network, Re(Ȳ`)
and Im(Ȳ`−0

) are positive for a network line and Im(Ȳ`) is
negative. Furthermore, typically, the longitudinal reactance
Im(Ȳ`) is much larger than the shunt capacitance Im(Ȳ`−0

)
of a network line. Therefore, typically the coefficients of
both quadratic terms are positive, and the line problem in
(25) is convex for the lines that are connected to the slack
bus. This is the case for the Case I. However, in Case
II the size of the shunt capacitor, connected to bus 2, is
such that Im(Ȳ`−0

) > −Im(Ȳ`), thus the coefficient of the
aforementioned quadratic term in (26) is no longer positive
and the corresponding line problem becomes non-convex.

Apart from the aforementioned case of the shunt capacitor,

8This holds for all the lines that are connected to the slack bus.
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Fig. 9. Norm of the primal/dual residuals for case I (last 311 iterations).

the ADMM algorithm also fails to converge to a solution
when on-load tap changers (OLTCs) are included in the OPF
formulation.9 In fact, the effect of the OLTCs is similar to that
of the shunt capacitors, in the sense that the line problem in
(25) becomes once again non-convex for those lines that are
connected to regulating transformers. To better understand
why this occurs, let us consider a transformer with OLTC
capabilities between buses 1 and 2 in the network and let us
denote the ideal transformer admittance by Yt and the OLTC
ratio by α. Then based on the OLTC model in [46], the
longitudinal admittance of the first network line equals αYt
and the shunt elements of the receiving and sending ends of
the same line are α(α−1)Yt and (1−α)Yt respectively. Hence,
there is an additional control variable, namely the ratio α, that
appears in the equality constraints (26) of the first network line
problem, and both these constraints become quadratic in Ē`−
and α and non-convex.

V. CONCLUSION

In this first part of the paper we have focused on investigat-
ing the limits of the branch flow convexification proposed by
Farivar-Low in [1,2] and of the ADMM-based solution of the
OPF problem. In particular, we have discussed the misinter-
pretation of the physical model in the Farival-Low formulation
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Fig. 10. Norm of the primal/dual residuals for case II (last 500 iterations).

9For the sake of brevity we do not include the simulation results for this
specific scenario.
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of the OPF problem and the unrealistic assumptions therein.
Finally, we have provided the ADMM-based decomposition
of the OPF problem and we have shown, through specific
examples, cases for which the ADMM-based solution of the
non-relaxed OPF problem fails to converge.
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Abstract—In the first part of this two-part paper we show
that the branch-flow convexification of the OPF problem is not
exact and that the ADMM-based decomposition of the OPF fails
to converge in specific scenarios. Therefore, there is a need
to develop algorithms for the solution of the non-approximated
OPF problem that remains inherently non-convex. To overcome
the limitations of recent approaches for the solution of the
OPF problem, we propose in this paper, a specific algorithm
for the solution of a non-approximated, non-convex AC OPF
problem in radial distribution systems. It is based on the method
of multipliers, as well as on a primal decomposition of the
OPF problem. We provide a centralized version, as well as a
distributed asynchronous version of the algorithm. We show
that the centralized OPF algorithm converges to a local minimum
of the global OPF problem and that the distributed version of
the algorithm converges to the same solution as the centralized
one. Here, in this second part of the two-part paper, we provide
the formulation of the proposed algorithm and we evaluate its
performance by using both small-scale electrical networks, as
well as a modified IEEE 13-node test feeder.

Index Terms—OPF, ADMM, decomposition methods, method
of multipliers, convex relaxation, active distribution networks,
distributed algorithms, asynchronous algorithms.

I. INTRODUCTION

IN Part I of this two-part paper we present the generic
formulation of the non-convex OPF problem and we briefly

review several OPF algorithms that are based on approxi-
mations and assumptions in order to guarantee convergence.
Furthermore, we focus on the branch-flow convexification of
the OPF problem that has been recently proposed by Farivar
and Low in [1,2] and is claimed to be exact for the case of
radial distribution systems under specific assumptions, despite
the absence of apparent approximations. We show that this
claim, in fact, does not hold, as it leads to an incorrect system
model and therefore, there is a need to develop algorithms
for the solution of the non-approximated OPF problem that
remains inherently non-convex. In detail, we show through
practical examples that in [1,2], on one hand, there is a
misinterpretation of the physical network model related to the
ampacity constraint of the lines’ current flows and, on the other
hand, the proof of the exactness of the proposed relaxation
requires unrealistic assumptions related to the unboundedness
of specific control variables. Furthermore, we investigate the

Konstantina Christakou, Dan-Cristian Tomozei, Jean-Yves Le
Boudec and Mario Paolone (email: konstantina.christakou@epfl.ch,
dan-cristian.tomozei @epfl.ch, jean-yves.leboudec@epfl.ch,
mario.paolone@epfl.ch) are with the École Polytechnique Fédérale de
Lausanne, CH-1015 Lausanne, Switzerland.

application of ADMM for the solution of the original non-
approximated OPF problem. Even though ADMM requires
the underlying problem to be convex in order to guarantee
convergence, it was applied also to the case of non-convex
AC OPF problems with promising convergence performance
(e.g., [3,4]). However, we show, through practical examples,
cases for which the ADMM-based decomposition of the non-
relaxed OPF problem fails to converge.

To overcome the aforementioned limitations, here in this
second part, we propose an algorithm for the solution of the
non-approximated non-convex AC OPF problem in radial net-
works. Our proposed solution uses an augmented Lagrangian
approach and relies on the method of multipliers ([5]–[7]).
In particular, we design a centralized OPF algorithm that is
proven to converge to a local minimum of the original non-
approximated OPF problem.

With respect to the case of controlling multiple dispersed
energy resources, it is of interest to also define a distributed
solution method that is formally equivalent to the centralized
formulation. In fact, several distributed OPF algorithms are
proposed in the literature. In [8,9] the authors design a
dual-ascent algorithm for optimal reactive power flow with
power and voltage constraints. In [10,11] dual decomposi-
tion is used as the basis for the distributed solution of the
OPF problem. Finally, a significant number of contributions
propose distributed formulations of the OPF problem, based
on the alternating direction method of multipliers (ADMM)
(e.g., [3,4,10,12]–[14]).

In this direction, we present, here in this second part,
a distributed version of the proposed algorithm that, unlike
ADMM, is based on a primal decomposition [15] and does not
require that the problem be convex. In this decentralized ver-
sion of the algorithm, at each iteration, local agents, assigned
to network buses and network lines, exchange messages with
their neighbors using only local information. We prove that
the distributed algorithm converges to the same solution as the
centralized version. Finally, we present an asynchronous im-
plementation of the distributed algorithm where the messages
of the neighboring agents need not be synchronized.

The structure of this second part is the following. In Section
II we describe the proposed algorithm for the OPF solution.
We present both a centralized, as well as a decentralized
asynchronous version of the proposed algorithm. In Section III
we investigate the convergence of the proposed algorithm in
the cases where the BFM convexification leads to an incorrect
solution and ADMM fails to converge to a solution. In Section
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IV we evaluate the performance of the proposed algorithm
using a modified IEEE 13-node test feeder. Finally, in Section
V we provide the main observations and concluding remarks
for this Part II.

II. AC OPF IN RADIAL DISTRIBUTION SYSTEMS

We first write the AC OPF problem presented in Part I in
an equivalent form, and then we provide a centralized, as well
as a distributed algorithm for its resolution.

We make the following assumptions about the grid model:
A1. We consider a direct sequence representation of the grid;
A2. Any two-port component (e.g., lines, transformers etc.)

is represented as a π-equivalent;
A3. We assume a perfect knowledge of the system parame-

ters, i.e., the network admittance matrix is known;
A4. The nodal-power injections are voltage-independent;
A5. The control variables are composed by the nodal power

injections/absorptions.

A. The Proposed Centralized OPF Algorithm

We are interested in maximizing the social welfare of the
economic agents that use the grid, while maintaining an
acceptable network voltage profile and respecting the line
ampacity limits. Specifically, we tune the line ampacities
and the network voltage profiles by controlling the (P,Q)-
injections of distributed controllable devices G (e.g., renewable
generators) in a “fair” way: Each controllable device g ∈ G
has a certain utility function Ug(·), and the sum of these
utility functions is maximized subject to the satisfaction of
the network operation constraints (voltage and ampacity). The
resulting set-point is thus Pareto-optimal, i.e., no single device
can increase its utility without hurting the utility of some other
device, and locally-“fair”, i.e., the resulting set-point is a local
maximizer of the sum of the device utilities lying on the Pareto
boundary of feasible set-points.

By convention, each line ` ∈ L has a “receiving” and a
“sending” end, which we denote by `+ and `−, respectively.
These are chosen arbitrarily. A line is connected to two
adjacent buses to which we refer by β(`+) and β(`−), re-
spectively. For each line, we introduce two auxiliary variables
Ē`+ and Ē`− representing the complex voltage at the two
ends of the line. Assumptions A1-A3 allow us to express the
corresponding injected currents and powers at the two ends of
line `:

Ī`+ = Ī`+(Ē`+ , Ē`−) = (Ȳ` + Ȳ`+0
)Ē`+ − Ȳ`Ē`− (1)

Ī`− = Ī`−(Ē`+ , Ē`−) = (Ȳ` + Ȳ`−0
)Ē`− − Ȳ`Ē`+ (2)

S̄`+ = S̄`+(Ē`+ , Ē`−) = Ē`+I¯`
+ (3)

S̄`− = S̄`−(Ē`+ , Ē`−) = Ē`−I¯`
− (4)

In the remainder of this paper, unless otherwise stated, the
complex line currents and powers expressed above are always
computed according to equations (1)-(4). They are thus all
functions of Ē`+ and Ē`− exclusively, although the arguments
are often omitted for the sake of brevity. All quantities are
expressed in “per-unit”, unless otherwise specified.

For readability, we denote the vector formed by the real and
imaginary parts of variables (Ē`+ , Ē`−)` by y ∈ R4L, where
L = |L| is the number of lines. Note that for a given value of
y, the corresponding currents and powers do not necessarily
satisfy Kirchhoff’s law.

We call y feasible if it satisfies voltage consistency and
per-bus power-balance. Voltage consistency means that the
voltages of all the lines incident to a specific bus b ∈ B
are identical, i.e., have the same amplitude Vb and the same
argument ϕb:

|Ē`+ | = Vβ(`+), |Ē`− | = Vβ(`−) (5)
arg(Ē`+) = ϕβ(`+), arg(Ē`−) = ϕβ(`−), ∀` ∈ L. (6)

At each bus b ∈ B, power-balance is satisfied if and only if
∑

β(`+)=b

S̄`++
∑

β(`−)=b

S̄`− = −
∑

g∈b
S̄g−S̄(b), ∀b ∈ B, (7)

where Sg is the controlled generated power of device g found
at bus b, S̄(b) denotes the non-controllable power injection at
bus b, and S̄`+ , S̄`− are obtained via (3)-(4).

If y is feasible, it is important to note that equations (1)-(4)
describe the exact AC power-flow equations. Hence, we use
a non-approximated model of the grid.

We write the OPF formulation (Part I) equivalently:1

max
S̄g,Vb,ϕb

Ē
`+

,Ē
`−

∑

g∈G
Wg(S̄g) subject to: (8)

Feasibility constraints (5), (6), (7)
|Ī`+ | ≤ I`,max and |Ī`− | ≤ I`,max, ∀` ∈ L (9)
Vmin ≤ Vb ≤ Vmax, ∀b ∈ B (10)
S̄g ∈ Hg, ∀g ∈ G (11)

As previously stated, the objective function is the sum of
the welfare of the controllable devices Wg . In the above
formulation, we denote by G the set of controllable devices and
by S̄g = Pg + jQq the controllable injected power by device
g, subject to the capability constraint (11). The set G can
contain both generators and consumers. However, for the sake
of presentation clarity, we consider that G contains uniquely
PV generators. This is not a limiting assumption, as our
results apply to any device with controllable power injections
(including controllable loads). Non-controllable loads do not
appear in the objective function, that expresses the utility of
PV generators (a concave increasing function U(·) of active
power injection) and the losses of the power converter:

Wg(S̄g) = Ug(Pg)− η(P 2
g +Q2

g), ∀g ∈ G. (12)

We consider typical capability curves of PV power inverters:

Hg = {S̄g : |S̄g| ≤ Sg,max, |arg(S̄g)| ≤ φg,max}. (13)

In order to solve the problem (8)-(11), we convert the
inequality constraints (9) to equality constraints by introducing
slack variables i`+ and i`− as follows:

|Ī`+ |+ i`+ = I`,max and |Ī`− |+ i`− = I`,max, ∀` ∈ L (14)
i`+ , i`− ≥ 0, ∀` ∈ L (15)

1Unlike in Part I, we consider wlog that there are two types of connected
devices: they either have controllable power injection S̄g or impose an overall
fixed power injection S̄(b) in bus b.
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We denote by x the real vector of variables formed by the
artificial control variables (Vb, ϕb)b∈B, (i`+ , i`−)`∈L, and the
device controllable injected power (Pg, Qg)g∈G .

Notice that all the equality constraints above, (5), (6), (7),
and (14) can be summarized as g(y) + Ax + b = 0, where
g(·) is a smooth non-convex function that can be derived
from equations (1)-(6), and A is a positive definite matrix.
Similarly, the inequality constraints, (10), (11), and (15), can
be expressed as h(x) ≥ 0, where h(x) is a convex function
that can be derived from equations (10), (15), and (13). We
denote the objective by f(x), where f is concave.

We can thus write our problem in the more compact form:

max
x,y

f(x) (16)

subject to g(y) +Ax+ b = 0 (17)
h(x) ≥ 0. (18)

We write its augmented Lagrangian ([5]–[7]):

Lρ(x, y;λ) =f(x) + λ′(g(y) +Ax+ b)

− ρ

2
‖g(y) +Ax+ b‖2, (19)

where ρ is the weight of the quadratic penalty term added
to the classic Lagrangian function, and λ is the vector
of Lagrange multipliers associated with the equality con-
straints (17).

Our centralized iterative algorithm for solving the OPF is
based on the method of multipliers ([5, §4.2]). This method
was first introduced for solving iteratively non-linear equality
constrained problems. It is shown to converge under more
general conditions than dual ascent [16]. Algorithm 1 sum-
marizes the proposed centralized algorithm, and Theorem 1
characterizes its convergence.

Algorithm 1 Centralized algorithm for the OPF (16)-(18)
• Set k=0 and initialize control variables x and y:
S̄0
g = 0, Ē0

`+ = Ē0
`− = 1, V 0

b = 1, ϕ0
b = 0, i0`+ = i0`− = 0

(per-unit), Lagrange multipliers λ0 = 0, increasing gain
sequence (ρk)k, ρk →∞.

1: repeat
2: Maximize the augmented Lagrangian for fixed λ = λk:

(xk+1, yk+1) = arg max
x,y:h(x)≥0

Lρk(x, y;λk). (20)

3: Update the Lagrange multipliers:

λk+1 = Π[−λ̄,λ̄]

{
λk + ρk

[
g(yk+1) +Axk+1 + b

]}

(21)

4: k ← k+1
5: until the maximum number of iterations has been reached

or the change in the Lagrange multipliers between two
consecutive iterations is less than a tolerance δ > 0

The main advantage of the method of multipliers is that
there exists a finite value ρ̄ such that the problem (20) is
convex for all ρk > ρ̄. Note also that the algorithm bounds

the value of λ at each iteration. The next vector of multiplier
estimates λ is obtained after a projection on the set [−λ̄, λ̄]
defined as [−λ̄1, λ̄1] × [−λ̄2, λ̄2] × . . . ; the constant vector
λ̄ is chosen such that the sought optimal vector of Lagrange
multipliers λ∗ lies in [−λ̄, λ̄] (see [17, §2.2.2]).

Theorem 1: For smooth objective function f ∈ C2 and
suitably chosen λ̄ such that the optimal vector of Lagrange
multipliers λ∗ satisfies λ∗ ∈ [−λ̄, λ̄], Algorithm 1 converges
to a local minimum of the nonlinear progam (16)-(18).

Proof: By [17, Proposition 1.23], our problem satisfies
assumption (S) from [17, §2.2], since the equality constraint
is a C2 function of y, and the objective function is chosen to
be C2. Proposition 2.7 from the same reference guarantees
the desired convergence, if the iterates (xk, yk, λk) reach the
set D from Proposition 2.4 of [17], i.e., if there exists a
k̄ such that (xk̄, yk̄, λk̄) ∈ D (for all the following indices
k > k̄, the iterates stay in D, and convergence ensues). The
existence of such a k̄ follows from the choice of the divergent
increasing sequence of gains (ρk) and from the boundedness
of the sequence (λk).

Due to the quadratic terms in the expression of the aug-
mented Lagrangian (19), the optimization problem in (20)
does not decouple across the network and, therefore, cannot
be solved in a distributed manner. In the following section,
we reformulate this problem in an equivalent way that leads
to a distributed algorithm for its resolution.

B. Distributed Solution of the OPF Problem

We adopt a primal decomposition method [15] that gives
an iterative algorithm for the minimization of the problem
in Step 2 of Algorithm 1. In (19) the line voltages y =
(Ē`+ , Ē`−) are “coupling” variables. If these variables are
fixed to a specific value, then problem (20) decouples in
smaller, easier (convex) problems, that can be solved by local
agents.

Specifically, to solve (20) iteratively for fixed values of the
Lagrange multiplier estimates λ̂ and fixed gain ρ̂ we take the
following approach: At the n-th iteration, the value of the
coupling variables yn = (Ēn`+ , Ē

n
`−) is assumed fixed. The x

variables, i.e., the power set-points of the controllable devices
(S̄g), the bus voltages (V̄b), and the slack variables i`+ , i`− ,
are computed by solving the following constrained convex
optimization problem:

xn+1 = arg max
x:h(x)≥0

Lρ̂(x, y
n, λ̂). (22)

Next, the coupling variables y are updated as follows:

yn+1 = yn + αn(∇yLρ̂)(xn+1, yn, λ̂), (23)

where αn is a positive step-size sequence of the gradient
descent. The choice of the step-size is related to the topology
of the network and the parameters of the lines (i.e., the network
admittance matrix). For example, a large constant step-size
might not allow the algorithm to converge, whereas a small
constant step-size could cause slow convergence2.

2In order to properly tune this parameter, a dedicated off-line study can
be performed before deployment of the proposed algorithm.
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The algorithm stops when the norm of the update in the
y variables is less than some small positive tolerance ε, i.e.,
when ‖∇yLρ̂(xn+1, yn, λ̂)‖ ≤ ε.

Theorem 2: The algorithm (22)-(23) with tolerance ε in the
stopping criterion converges to a vicinity B((x∗, y∗), δ) of a
local optimum (x∗, y∗) of problem (20). If (20) is strongly
locally convex in y in a vicinity of (x∗, y∗), then δ = Θ(ε2).

Proof: (Sketch) Denote v(y) = maxx:h(x)≥0 Lρ̂(x, y, λ̂)
and x∗(y) the value of x that achieves this maximum (22).
Theorem 2.1 of [18] says that the optimum (x∗(y∗), y∗) of
maxy v(y) coincides with the one of (20). Moreover, a δ-
optimal solution (x∗(yδ), yδ) of maxy v(y) (that is, v(yδ) ≥
v(y∗)− δ) is also δ-optimal for (20).

We now show that ∇yv(y) = (∇yLρ̂)(x∗(y), y, λ̂), or
equivalently, Dx

∗(y)
Dy (∇xLρ̂)(x∗(ȳ), ȳ, λ̂) = 0. If we can show

this, then the algorithm (22)-(23) is equivalent to a gradient
ascent in y on v(y). It is easy to show that the function v(y) is
“smooth” (C2). By the strong local convexity around (x∗, y∗)
of the augmented Lagrangian, [5, Exercise 1.2.10] allows us
to conclude that δ = Θ(ε2).

Note that problem (22) is convex. Consider the optimal
multipliers µ∗ corresponding to the constraints h(x) ≥ 0.
They satisfy the KKT conditions:

(∇xLρ̂)(x∗(y), y, λ̂) =
∑

i

µ∗i (y)∇xhi(x∗(y))

µ∗i (y)hi(x
∗(y)) = 0; µ∗i ≥ 0.

Define the following functions: ψi(y) := hi(x
∗(y)). Since

x∗(y) is always feasible, it means that ψi(y) ≥ 0. Consider
the set of indices I0(y) := {i : hi(x

∗(y)) = 0}. Take some
i ∈ I0(y). In this case the function ψi(y) has an extremal
point in y, which implies that ∇yψi(y) = 0, or again that
Dx∗(y)
Dy ∇xhi(x∗(y)) = 0. For all i 6∈ I0(y), by KKT we have

µ∗i (y) = 0. By the above arguments,

Dx∗(y)

Dy
(∇xLρ̂)(x∗(y), y, λ̂)

=
∑

i

µ∗i (y)
Dx∗(y)

Dy
∇xhi(x∗(y)) = 0.

Thanks to its separability property, problem (22) can be
solved in a distributed manner. Bus agents can be responsible
for updating the power set-points of the controllable devices
(S̄g) that are connected to them, as well as their voltages (V̄b)
in parallel, and lines can be responsible for updating the slack
variables (i`+ , i`− ). Specifically, the ‘power set-points (S̄n+1

g )
of devices in bus b are obtained by solving the following
convex problem:

(S̄n+1
g ) = arg max

S̄g∈Hg

∑

g∈b
Wg(S̄g)

− ρ̂

2

∣∣∣
∑

g∈b
S̄g + S̄(b) +

∑

β(`+)=b

S̄n`+ +
∑

β(`−)=b

S̄n`− −
λ̂b
ρ̂

∣∣∣
2

,

where λ̂b is the given multiplier corresponding to the con-
straint (7) of bus b. The other problems (for the other x

variables) have simpler expressions that we do not reproduce
for brevity sake.

Similarly, (23) can be decomposed across the different
network lines: line-agents can update the voltages at their two
ends in parallel. In terms of required information, each bus
agent needs to know only the voltage values of the lines that
are incident to it, the constraints of the devices, and the state of
the loads that are connected to it. Finally, in order to compute
the partial derivatives of (23) with respect to its voltages,
each line requires solely the information of the power balance
and the voltage values of its two adjacent buses. The actual
implementation of the distributed synchronous OPF algorithm
is summarized below in Algorithm 2.

Algorithm 2 Distributed algorithm for the OPF (16)-(18)
• Set k=0 and initialize control variables x and y:
S̄0
g = 0, Ē0

`+ = Ē0
`− = 1, V 0

b = 1, ϕ0
b = 0, i0`+ = i0`− = 0

(per-unit), Lagrange multipliers λ0 = 0, increasing
diverging gain sequence (ρk)k, ρk → ∞, decreasing
tolerance sequence (εk ≥ 0)k, εk → 0.

1: repeat
2: n← 0; x̃0 ← xk; ỹ0 ← yk

3: repeat
4: x̃n+1 = arg maxx:h(x)≥0 Lρk(x, ỹn, λk)

5: ỹn+1 = ỹn + αn(∇yLρk)(x̃n+1, ỹn, λk)
6: n← n+1
7: until ‖∇yLρk(x̃n+1, ỹn, λk)‖ ≤ εk
8: xk+1 ← x̃n+1; yk+1 ← ỹn+1

9: λk+1 = Π[−λ̄,λ̄]

{
λk + ρk

[
g(yk+1) +Axk+1 + b

]}

10: k ← k+1
11: until the maximum number of iterations has been reached

or the change in the Lagrange multipliers between two
consecutive iterations is less than a tolerance δ > 0

Theorem 3: For smooth objective function f ∈ C2 and
suitably chosen λ̄ such that the optimal vector of Lagrange
multipliers λ∗ satisfies λ∗ ∈ [−λ̄, λ̄], Algorithm 2 converges
to a local minimum of the nonlinear progam (16).

Proof: The proof is similar to the one of Theorem 1.
It uses Proposition 2.16 of [17] for convergence, which only
requires at each iteration a δk-optimal solution for (20) with
δk → 0. By Theorem 2 we can conclude.

In a realistic setting, in order to take full advantage of the
distributed formulation of the OPF algorithm, as described
above and to avoid the overhead cost of coordination between
agents, the updates should be performed in an asynchronous
fashion. Contrary to ADMM-based algorithms, which require
a synchronized implementation of the updates, the proposed
algorithm can be implemented in an asynchronous manner. In
this direction, we assume that each of the bus and line agents
has its own two local poisson clocks with different rates. The
clock with the lower rate (C1) triggers the multiplier update
(21) and the clock with the higher rate (C2) triggers the events
described in steps (22)-(23).

In detail, all the control variables and the Lagrange mul-
tipliers are first initialized. Then, every time the C2 clock
of a bus ticks, this bus performs local update operations by



5

using the most recent stored values for the voltages of its
incident lines and for the associated Lagrange multipliers.
Once the bus updates its power and voltage values, it informs
the incident lines of the changes. Similarly, when the C2 clock
of a line ticks, the line agent updates the variables (i`+ , i`− )
by taking into account the most recent values of the line
current flows and associated Lagrange multipliers. In addition
to this update, the updates of the voltages of its two end-
points are triggered. In order to compute the new values, the
line uses the most recent stored values for the adjacent buses’
powers and voltages, and once the updates are completed the
line communicates this information to its neighboring buses.
Now, when the C1 clock of a bus or a line ticks, then the
corresponding agent updates the Lagrange multipliers (21). It
is worth noting, that we no longer have a serial implementation
of the various updates like the ones presented in Algorithm 2.
On the contrary, the different rates of the clocks are chosen
in such a way to ensure that, on average, a sufficient number
of the updates occurs before an update of the corresponding
Lagrange multiplier takes place.

III. PERFORMANCE EVALUATION OF THE CENTRALIZED
OPF ALGORITHM

In this section, we investigate the performances and con-
vergence properties of the centralized Algorithm 1 in several
different scenarios. In particular, we consider the cases pre-
sented in Part I of the paper, where the BFM convexification
leads to an incorrect solution of the OPF problem and ADMM
fails to converge to a solution. Additionally, we investigate
the performances of the proposed centralized algorithm under
different initial conditions of the electrical-network state. In
order to do so, we consider the same 4-bus test network that
was used in Part I of the paper. We assume a first test case
where the controllable device connected to bus 4 is a generator,
whereas controllable loads are connected to buses 2 and 3. The
network characteristics, the base values, the capability limits of
the controllable resources, and the voltage and ampacity limits
are given in Part I (Fig. 3 and Table II). In what follows,
the objective function accounts for the minimization of the
network losses, as well as for the utility of the generating
units, namely:

min
S̄g,S̄`,Vb,ϕb,|Ī`|

−
∑

g∈G
Re(S̄g) +

∑

`∈L
Re(Ȳ`)|Ī`|2 (24)

A. Effect of the Line Length, Network Rated Value and Net-
work State on the Convergence of Algorithm 1

In order to compare the performances of the proposed
algorithm with the OPF algorithm proposed in [1,2], we solve
the OPF problem for various line lengths and network voltage
rated values as in Part I of the paper. In particular, we assume
that the line lengths are uniformly multiplied by a factor in
the range [1.25 − 7.5] (while keeping the network voltage
rated value to its nominal value) and the network voltage
rated value varies in the range [15 − 40]kV (while keeping
the line lengths to their nominal values). The evolution of
the bus voltages, the line-current flows, as well as the active
and reactive powers, are shown in Figures 1-6. It is worth
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Fig. 1. Evolution of the magnitude of network voltages for various line
lengths.
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Fig. 2. Evolution of the line current flows for various line lengths.

noting that in all the cases the proposed algorithm converges
in a few iterations. Furthermore, we observe from Fig. 2 and
Fig. 5 that the line-current flows satisfy the line ampacity limit,
once the algorithm has converged, in all cases. In particular,
in Fig. 2 it is worth observing that as the line length increases
the receiving and sending-end current flows of the same line
become significantly different. The behavior of the current
flows as the voltage rated value increases is similar (Fig. 5).
This effect is due to the increasing contribution of the current
flow toward the shunt elements of the lines. In fact, we show,
in Figures 7 and 8, the amount of reactive power produced by
the shunt elements of the lines for the various values of the line
lengths and the network voltage rated values. We observe that
as the line length increases or the rated value of the voltage
increases the reactive power produced by the shunt elements
of the line increases as well.

We investigate, in addition to the effect of the line lengths
and the network voltage rated value, the performance of
the proposed algorithm under a different network operating
point. To this end, we consider a second test-case where the
controllable device connected to bus 4 is a controllable load
and generators are connected to buses 2 and 3. In this respect,
we consider an extra term in the objective function, which
represents the utility associated with the controllable load and
is given by (PL−Po)2, where Po represents a constant amount
of load that has to be served. The capability limits of the
controllable resources are shown in Table I. The convergence
of the voltages, current flows, as well as active and reactive
powers are shown in Fig. 9. For the sake of brevity, we only
show the evolution of the active and reactive power of the
controllable load of bus 4, as the controllable generators are
small and reach their maximum value upon convergence.
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Fig. 3. Evolution of the active and reactive power of the controllable devices
for various line lengths.
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Fig. 4. Evolution of the magnitude of network voltages for various values
of the network rated voltage.
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Fig. 5. Evolution of the line current flows for various values of the network
rated voltage.
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Fig. 6. Evolution of the magnitude of active and reactive power of the
controllable devices for various values of the network rated voltage.

Table I
PARAMETERS OF THE TEST NETWORK USED FOR THE INVESTIGATION OF

THE PERFORMANCE OF THE PROPOSED OPF ALGORITHM UNDER A
DIFFERENT OPERATING POINT

Parameter value
[Pgmin , Pgmax ](bus 2) (MW) [0, 0.01]
[Pgmin , Pgmax ](bus 3) (MW) [0, 0.012]

(Pcmin , Qcmin )(MW,Mvar) (bus 4) 0.3, 0.15
Po(MW) (bus 4) 1
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Fig. 7. Reactive power produced by the shunt elements of the lines for
various values of the network voltage rated value.
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Fig. 8. Reactive power produced by the shunt elements of the lines for
various line lengths.

B. Performance Evaluation of the Proposed Algorithm in the
Presence of Shunt Capacitors in the Network

In what follows, we consider the same network adopted in
the previous section and a case where each network bus, apart
from the slack, has a load and a generator connected to it.
The demand in the network is assumed to be non-controllable,
whereas the generators are assumed to be distributed solar
panels with typical PV-type capability constraints given by
(13). For this scenario, the capability limits and the values
of loads and generation are shown in Table II. In addition to
the loads and generation, we consider that a shunt capacitor is
connected to bus 2. In order to model this shunt capacitor,
we consider that it is part of the first line. In particular,
we consider that the shunt capacitance on the sending end
of the π-model of the line that connects buses 1 and 2 is
modified accordingly, to account for the shunt capacitor. For
this particular test case, it is worth noting that ADMM exhibits
oscillations and fails to converge to a solution (see Part I,
Fig.7-10).

The results for this specific test-case, for the voltage magni-
tudes and the active and reactive power of the buses, are shown
in Fig. 10. It is worth observing that the proposed algorithm
converges to a solution within a few tens of iterations; which
is contrary to the ADMM-based solution of the OPF problem.
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Fig. 9. Evolution of the magnitude of network voltages, current flows, as
well as active and reactive power of the controllable load at bus 4 for the case
of low generation and high load in the network.
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Table II
PARAMETERS OF THE TEST NETWORK USED FOR THE EVALUATION OF

ALGORITHM 1 IN THE PRESENCE OF SHUNT CAPACITORS IN THE
NETWORK

Parameter Value
Generators’ power, |S̄igmax

|, i = 2, 3, 4 (MVA) 0.40, 0.39, 0.46
Generators’ power factor, cosφig , i = 2, 3, 4 0.9
Loads’ active power, Pic , i = 2, 3, 4 (MW) 2.76, 2.16, 2.46

Loads’ reactive power, Qic , i = 2, 3, 4 (MW) 1.38, 1.08, 1.23
Shunt capacitor (bus 2)(uF) 859

Penalty term gain, ρ 104

Tolerance and maximum number of iterations 10−4, 104

[Vmin, Vmax] (p.u) [0.9, 1.1]
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Fig. 10. Evolution of the active and reactive power, as well as the voltages
of the buses when a shunt capacitor is connected to bus 2.

C. Performance Evaluation of the Proposed Algorithm under
Different Initial Conditions of the Network State

Finally, we investigate the performances of the proposed
algorithm under different initial conditions of the network state
variables. In order to do so, we initialize the magnitude of the
control variables Ē0

`+ , Ē
0
`− , V

0
b in Algorithm 1 in the range

[0.9, 1.1] and their angle in the range [−π/6, π/6], totaling 121
different cases. For each combination, we solve the centralized
OPF problem for the same network adopted in Part I (Fig. 3).
In all the cases the algorithm converges to the same solution
within a few tens of iterations. In Table III, the mean value
of the number of iterations, as well as the 95-th percentile are
shown. For the sake of brevity, we show in Fig. 11-12 the
convergence results for the voltage, as well as for the current
flows and the active and reactive power profiles for the two
extreme cases, specifically when the voltage magnitude is set
to 0.9 (1.1) and the voltage angle is set to −π/6 (π/6).

Table III
NUMBER OF ITERATIONS FOR THE SOLUTION OF THE OPF PROBLEM

(ALGORITHM 1)

Mean number of iterations 95-th Percentile
Algorithm 1 18.21 46.45

IV. PERFORMANCE EVALUATION OF THE PROPOSED
DISTRIBUTED ASYNCHRONOUS OPF ALGORITHM

For the sake of completeness, in this section, we assess
the performance of the proposed algorithm with respect to
a realistic grid represented by a modified IEEE 13-node test
feeder ([19]). The modifications are (i) balanced lines, (ii)
inclusion of secondary substations where voltage independent
PQ-injections are placed, and (iii) lines ten times longer. We
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Fig. 11. Evolution of the magnitude of network voltages, line current flows
and active and reactive power of the controllable devices when the initial
voltage magnitudes are set to 0.9 and the voltage angles to −π/6.
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Fig. 12. Evolution of the magnitude of network voltages, line current flows
and active and reactive power of the controllable devices when the initial
voltage magnitudes are set to 1.1 and the voltage angles to π/6.

use this benchmark to assess the behavior of the proposed
distributed asynchronous OPF algorithm. Also, we compare
the solution and convergence of the distributed version of the
algorithm to the centralized one.

We consider a test case where each network bus, apart from
the slack bus, has a load and a generator connected to it.
The demand in the network is assumed to be non-controllable,
whereas the generators are assumed to be distributed solar
panels with typical PV-type capability constraints. For this
test case, the capability limits and the values of loads and
generation are shown in Table IV.

We solve the OPF problem in (8)-(13) using Algorithm 1,
as well as the asynchronous implementation of Algorithm 2.
The results are shown in Fig. 13- 15. For the sake of brevity,
we plot only the evolution of the magnitudes of the minimum
voltage, the maximum voltage and the median value of the
voltage. We plot also the evolution of the minimum, maximum
and mean values of the current flows on the receiving-end of
the line and the evolution of the active and reactive powers. It
is worth observing that Algorithm 1 converges to the optimal
solution within a few iterations and also that the distributed
asynchronous implementation of Algorithm 1 converges to the
same solution as its centralized counterpart.

Table IV
CAPABILITY LIMITS AND VALUES OF LOADS AND GENERATION FOR THE

EVALUATION OF ALGORITHM 2

Bus Sgmax Pc(MW )/ Bus Sgmax Pc(MW)/
(MVA) Qc(Mvar) (MVA) Qc(Mvar)

2 0.0437 0.0025 / 0.0011 8 0.0347 0.0031 / 0.0014
3 0.0480 0.0029 / 0.0012 9 0.0403 0.0031 / 0.0013
4 0.0506 0.0032 / 0.0013 10 0.0373 0.0031 / 0.0013
5 0.0367 0.0029 / 0.0012 11 0.0482 0.0024 / 0.0010
6 0.0443 0.0029 / 0.0012 12 0.0399 0.0030 / 0.0013
7 0.0426 0.0025 / 0.0010 13 0.0436 0.0029 / 0.0012
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Fig. 13. Evolution of the voltage magnitude for the distributed asynchronous
algorithm as a function of the number of messages exchanged (left) and for
Algorithm 1 as a function of the number of iterations (right).
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Fig. 14. Evolution of the current flows for the distributed asynchronous
algorithm as a function of the number of messages exchanged (left) and for
Algorithm 1 as a function of the number of iterations (right).
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Fig. 15. Evolution of the active and reactive power for the distributed
asynchronous algorithm as a function of the number of messages exchanged
(left) and for Algorithm 1 as a function of the number of iterations (right).

V. CONCLUSION

To overcome the limitations identified in Part I, we have
proposed algorithms for the solution of the AC non-convex
OPF problem in radial networks that are proven to converge
to a local minimum. These algorithms use an augmented
Lagrangian approach and rely on the method of multipliers
for the OPF solution. The two algorithms solve the centralized
and decentralized (asynchronous) formulation of the targeted
OPF. We have shown the robustness of the centralized version
with respect to the following elements: (i) various line lengths,
(ii) various network-rated voltage values and (ii) different net-
work operating points (cases where the BFM convexification
leads to an incorrect solution), (iii) the presence of shunt
capacitors in the grid (where ADMM failed to converge to
a solution) and (iv) different initial conditions of the electrical
network state. Finally, we have verified the equivalence of the
two proposed algorithms for the case of the IEEE 13-node test

distribution feeder where realistic operating conditions have
been considered.
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