Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. The Next 700 BFT Protocols
 
research article

The Next 700 BFT Protocols

Aublin, Pierre-Louis
•
Guerraoui, Rachid  
•
Knezevic, Nikola  
Show more
2015
ACM Transactions on Computer Systems

We present Abstract (ABortable STate mAChine replicaTion), a new abstraction for designing and reconfiguring generalized replicated state machines that are, unlike traditional state machines, allowed to abort executing a client's request if "something goes wrong." Abstract can be used to considerably simplify the incremental development of efficient Byzantine faulttolerant state machine replication (BFT) protocols that are notorious for being difficult to develop. In short, we treat a BFT protocol as a composition of Abstract instances. Each instance is developed and analyzed independently and optimized for specific system conditions. We illustrate the power of Abstract through several interesting examples. We first show how Abstract can yield benefits of a state-of-the-art BFT protocol in a less painful and errorprone manner. Namely, we develop AZyzzyva, a new protocol that mimics the celebrated best-case behavior of Zyzzyva using less than 35% of the Zyzzyva code. To cover worst-case situations, our abstraction enables one to use in AZyzzyva any existing BFT protocol. We then present Aliph, a new BFT protocol that outperforms previous BFT protocols in terms of both latency (by up to 360%) and throughput (by up to 30%). Finally, we present R-Aliph, an implementation of Aliph that is robust, that is, whose performance degrades gracefully in the presence of Byzantine replicas and Byzantine clients.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

The_next_700bft_prot_a12-aublin.pdf

Type

Preprint

Version

http://purl.org/coar/version/c_71e4c1898caa6e32

Access type

openaccess

Size

1.25 MB

Format

Adobe PDF

Checksum (MD5)

7b3bcc1b5d1353fec6e52404c0b26ad1

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés