Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. A composable method for real-time control of active distribution networks with explicit power set points. Part I: Framework
 
Loading...
Thumbnail Image
research article

A composable method for real-time control of active distribution networks with explicit power set points. Part I: Framework

Bernstein, Andrey  
•
Reyes Chamorro, Lorenzo Enrique  
•
Le Boudec, Jean-Yves  
Show more
2015
Electric Power Systems Research

The conventional approach for the control of distribution networks, in the presence of active generationand/or controllable loads and storage, involves a combination of both frequency and voltage regulation atdifferent time scales. With the increased penetration of stochastic resources, distributed generation anddemand response, this approach shows severe limitations in both the optimal and feasible operation ofthese networks, as well as in the aggregation of the network resources for upper-layer power systems. Analternative approach is to directly control the targeted grid by defining explicit and real-time setpointsfor active/reactive power absorptions/injections defined by a solution of a specific optimization problem;but this quickly becomes intractable when systems get large or diverse. In this paper, we address thisproblem and propose a method for the explicit control of the grid status, based on a common abstractmodel characterized by the main property of being composable. That is to say, subsystems can be aggre-gated into virtual devices that hide their internal complexity. Thus the proposed method can easily copewith systems of any size or complexity. The framework is presented in this Part I, whilst in Part II weillustrate its application to a CIGRÉ low voltage benchmark microgrid. In particular, we provide imple-mentation examples with respect to typical devices connected to distribution networks and evaluate ofthe performance and benefits of the proposed control framework.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

2015 - COMMELEC - Part I_1.pdf

Type

Publisher's Version

Access type

openaccess

Size

1.12 MB

Format

Adobe PDF

Checksum (MD5)

e303ade310b4ad43e85b747fca75c944

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés