Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. alpha-Synuclein-induced dopaminergic neurodegeneration in a rat model of Parkinson's disease occurs independent of ATP13A2 (PARK9)
 
research article

alpha-Synuclein-induced dopaminergic neurodegeneration in a rat model of Parkinson's disease occurs independent of ATP13A2 (PARK9)

Daniel, Guillaume  
•
Musso, Alessandra  
•
Tsika, Elpida  
Show more
2015
Neurobiology Of Disease

Mutations in the ATP13A2 (PARK9) gene cause early-onset, autosomal recessive Parkinson's disease (PD) and Kufor-Rakeb syndrome. ATP13A2 mRNA is spliced into three distinct isoforms encoding a P5-type ATPase involved in regulating heavy metal transport across vesicular membranes. Here, we demonstrate that three ATP13A2 mRNA isoforms are expressed in the normal human brain and are modestly increased in the cingulate cortex of PD cases. ATP13A2 can mediate protection toward a number of stressors in mammalian cells and can protect against a-synuclein-induced toxicity in cellular and invertebrate models of PD. Using a primary cortical neuronal model combined with lentiviral-mediated gene transfer, we demonstrate that human ATP13A2 isoforrns 1 and 2 display selective neuroprotective effects toward toxicity induced by manganese and hydrogen peroxide exposure through an ATPase-independent mechanism. The familial PD mutations, F182L and G504R, abolish the neuroprotective effects of ATP13A2 consistent with a loss-of-function mechanism. We further demonstrate that the MV-mediated overexpression of human ATP13A2 is not sufficient to attenuate dopaminergic neurodegeneration, neuropathology, and striatal dopamine and motoric deficits induced by human a-synuclein expression in a rat model of PD. Intriguingly, the delivery of an ATPase-deficient form of ATP13A2 (D513N) to the substantia nigra is sufficient to induce dopaminergic neuronal degeneration and motor deficits in rats, potentially suggesting a dominant-negative mechanism of action. Collectively, our data demonstrate a distinct lack of ATP13A2-mediated protection against alpha-synuclein-induced neurotoxicity in the rat nigrostriatal dopaminergic pathway, and limited neuroprotective capacity overall, and raise doubts about the potential of ATP13A2 as a therapeutic target for PD. (C) 2015 Elsevier Inc. All rights reserved.

  • Details
  • Metrics
Type
research article
DOI
10.1016/j.nbd.2014.10.007
Web of Science ID

WOS:000346328100021

Author(s)
Daniel, Guillaume  
Musso, Alessandra  
Tsika, Elpida  
Fiser, Aris
Glauser, Liliane
Pletnikova, Olga
Schneider, Bernard L.
Moore, Darren J.
Date Issued

2015

Publisher

Academic Press Inc Elsevier Science

Published in
Neurobiology Of Disease
Volume

73

Start page

229

End page

243

Subjects

PARK9

•

Parkinsonism

•

Kufor-Rakeb syndrome

•

ATP13A2

•

Heavy metals

•

Alpha-synuclein

Editorial or Peer reviewed

REVIEWED

Written at

EPFL

EPFL units
UPMOORE  
Available on Infoscience
February 20, 2015
Use this identifier to reference this record
https://infoscience.epfl.ch/handle/20.500.14299/111357
Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés