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Abstract

This paper, as the sequel to previous work, develops numerical schemes for
fractional diffusion equations on a two-dimensional finite domain with tri-
angular meshes. We adopt the nodal discontinuous Galerkin methods for
the full spatial discretization by the use of high-order nodal basis, employ-
ing multivariate Lagrange polynomials defined on the triangles. Stability
analysis and error estimates are provided, which shows that if polynomials
of degree N are used, the methods are (N+1)-th order accurate for general
triangulations. Finally, the performed numerical experiments confirm the
optimal order of convergence.
Keywords: 2D fractional diffusion equation; triangular meshes; nodal dis-
continuous Galerkin methods.

1. Introduction

Historically, fractional calculus emerged nearly in the same time as clas-
sical calculus as a natural extension of classic calculus. However, its appli-
cation for problems like fractional partial differential equations (FPDEs) are
less mature than that associated with classic calculus. Only during the last
few decade has fractional calculus seen a broader application as a tool to
describe a wide range of non-classical phenomena in the applied science and
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engineering, for example, the fractional Fokker-Planck equations for anoma-
lous diffusion problems, continuous time random walk models with power law
waiting time and/or jump length distribution ([2, 16]), and the subdiffusion
and superdiffusion process.

With the increasing utilization of fractional calculus it is necessary to de-
velop appropriate and robust numerical methods to solve FPDEs for practical
application. A fundamental difference between problems in classic calculus
and fractional calculus lies in the non-local nature of the factional operators
and the dependance of history, causing the essential difficulties and challenges
for numerical approximation.

In recent years, however, successful work has emerged to deal with dis-
cretizing fractional models by adapting traditional numerical schemes, in-
cluding finite difference methods, finite element methods, and spectral meth-
ods. Meerschaert and Tadjeran in [12] firstly proposed a stable difference
method – the shifted Grünwald-Letnikov formula – to approximate fraction-
al advection-dispersion flow equations. Recently, Tian et al. [20] put forward
a higher order accurate numerical solution method for the space fractional
diffusion equation, referred to as the weighted and shifted Grünwald differ-
ence operators. In [14], Li and Xu considered a space-time spectral method
for solving the time fractional diffusion equation and Deng [7] developed
finite element methods for discretizing the space and time fractional Fokker-
Planck equation. More recently, Xu and Hesthaven [21] discussed stable
multi-domain spectral penalty methods for FPDEs and Zayernouri and Kar-
niadakis [23] analyzed fractional Sturm-Liouville eigen-problems.

As an alternative, discontinuous Galerkin methods have also emerged.
In 2010, Deng and Hesthaven [9] proposed a local discontinuous Galerkin
method for the fractional diffusion equation, and offered stability analysis
and error estimates, confirming that the schemes should exhibit optional
order of convergence for the superdiffusion case. Almost in the same time, Ji
and Tang [13] presented a purely qualitative study of the solution of spatial
Caputo fractional problems in one and two dimensions using a high-order
Runge-kutta discontinuous Galerkin methods, but did not offer theoretical
results.

The main advantages of DG methods include geometric flexibility and
the support of locally adapted resolution as well as excellent parallel effi-
ciency. In [13], the authors adopted the rectangular meshes to deal with
the two-dimensional cases. This paper, as a successor to previous work [9],
discusses how to approximate fractional diffusion equations with genuinely
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unstructured grids beyond one dimension and offer a theoretical analysis for
the high dimensional case. To focus on how to overcome the difficulties of de-
veloping LDG for fractional problems with unstructured meshes, we consider
left Riemann-Liouville fractional equations and just the numerical experi-
ments are provided for the right Riemann-Liouville fractional equations; in
fact, the discussions for the right (or both left and right) Riemann-Liouville
fractional equations are similar to the left ones.

The paper is organized as follows. In Section 2, we review the needed
definitions of fractional operators and the fractional functional setting. In
the following section, we propose our numerical schemes and show the de-
tailed algorithm in computation. Section 4 gives the corresponding stability
analysis and error estimates. The numerical results are provided in Section
5 and a few concluding remarks are given in the last section.

2. Preliminaries

In this section, we introduce some preliminary definitions of fractional
derivatives and associated functional setting for the subsequent numerical
schemes and theoretical analysis.

First we recall some definitions of the fractional derivatives and integrals
listed as follows:

• left Riemann-Liouville fractional derivative:

aD
α
xu(x) =

1

Γ(n− α)

dn

dxn

∫ x

a

(x− ξ)n−α−1u(ξ)dξ

• right Riemann-Liouville fractional derivative:

xD
α
b u(x) =

(−1)n

Γ(n− α)

dn

dxn

∫ b

x

(ξ − n)n−α−1u(ξ)dξ

• left fractional integral:

aD
−α
x u(x) =

1

Γ(α)

∫ x

a

(x− ξ)α−1u(ξ)dξ

• right fractional integral:

xD
−α
b u(x) =

1

Γ(α)

∫ b

x

(ξ − x)α−1u(ξ)dξ,
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where Γ(·) denotes the Gamma function, α ∈ [n − 1, n), x ∈ (a, b), a and b
can be −∞ and +∞ respectively.

By simple linear transformations, the fractional integrals have the equiv-
alent forms, i.e.,

aD
−α
x u(x) =

1

Γ(α)

(
x− a

2

)α ∫ 1

−1

(1− η)α−1u

(
x+ a

2
+

x− a

2
η

)
dη,

xD
−α
b u(x) =

1

Γ(α)

(
b− x

2

)α ∫ 1

−1

(1 + η)α−1u

(
b+ x

2
+

b− x

2
η

)
dη.

(2.1)

On the basis of (2.1), we use the Gauss-Jacobi quadrature with weight func-
tions (1−η)α−1 and (1+η)α−1 to solve the weakly singular fractional integrals
in numerical computation. For the following Lemmas 2.1, 2.3, Definitions 2.2,
2.4, and Theorem 2.5, we refer to [10, 7, 9].

Lemma 2.1. The left and right fractional integral operators are adjoint in
the sense of the L2(a, b) inner product, i.e.,

(aD
−α
x u, v)L2(a,b) = (u, xD

−α
b v)L2(a,b) ∀α > 0, a < b. (2.2)

In order to carry out the analysis, we need to introduce the fractional
integral space here.

Definition 2.2. Let α > 0. Define the norm

∥u∥H−α(R) :=
∥∥|ω|−αû

∥∥
L2(R)

, (2.3)

where û(ω) is the Fourier transform of u(x). Let H−α(R) denote the closure
of C∞

0 (R) with respect to ∥·∥H−α(R).

Lemma 2.3.

(−∞D−α
x u, xD

−α
∞ u) = cos(απ)

∥∥−∞D−α
x u

∥∥2

L2(R)
= cos(απ) ∥u∥2H−α(R) . (2.4)

Let us now restrict attention to the case in which supp(v) ⊂ Ω = (a, b).
Then −∞D−α

x u = aD
−α
x , and xD

−α
∞ = xD

−α
b . Straightforward extension of

the above yields.

Definition 2.4. Define the space H−α
0 (Ω) as the closure of C∞

0 (Ω) with
respect to ∥·∥H−α(R).

The following theorem gives the inclusion relation between the fractional
integral spaces with different α.

Theorem 2.5. If −α2 < −α1 < 0, then H−α1
0 (Ω) is embedded into H−α2

0 (Ω)
and L2(Ω) is embedded into both of them.
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2.1. Notations for DG methods

We consider problems posed on the physical domain Ω with boundary
∂Ω and assume that this domain is well approximated by the computational
domain Ωh. Generally, we denote Ωh as Ω when no misunderstanding is
possible. This is a space filling triangulation composed of a collection of K
geometry-conforming nonoverlapping elements, Dk, i.e.,

Ω ≃ Ωh =
K∪
k=1

Dk,

and Γ denotes the union of the boundaries of the elements Dk of Ωh. Γ
consists of two parts: the set of unique purely internal edges Γi and the set of
external edges Γb = ∂Ω of domain boundaries, and Γ = Γi

∪
Γb. The shape

of these elements can be arbitrary although we will mostly consider cases
where they are d-dimensional curvilinear simplices. In the two-dimensional
case, the planar triangles are adopted.

Now we introduce the broken Sobolev space for any real number s,

Hs(Ωh) = {v ∈ L2(Ω) : ∀k = 1, 2, . . . , K, v|Dk ∈ Hs(Dk)},

equipped with the broken Sobolev norm:

∥v∥H(Ωh)
=

( K∑
k=1

∥v∥2Hs(Dk)

)1/2
.

Here, we retain the same style with the traditional Sobolev space when no
misunderstanding is possible. When s = 0, H0(Ωh) = L2(Ωh).

We introduce the approximation spaces Vh. Before that, we first define
the space of N-th order polynomials in two variables on the 2-simplex D,
P 2
N(D) such that the dimension of the approximation polynomial space is

dimP 2
N(D) = Np =

(
N + 2

N

)
,

being the minimum space in which P 2
N(D) may be complete. Let us introduce

the nodal set {x i}Np

i=1, which are the nodal points or collocation points on D.
These points must be chosen carefully to ensure well conditioned operators.
The polynomial space P 2

N(D) can be illustrated as

P 2
N(D) = span{ℓi(x ), i = 1, 2, . . . , Np}

= span{xiyj | (i, j) > 0, i+ j 6 N, (x, y) ∈ Dk},
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where ℓi(x ) denotes the two-dimensional multivariate Lagrange interpolation
basis function. These two forms are equivalent since P 2

N(D) is a finite di-
mensional polynomial space. For the explicit way to evaluate the genuinely
two-dimensional Lagrange polynomials, we refer to [12] and [11].

We also need to define a number of different inner products on the simplex,
D. Consider the two continuous functions f, g, then the inner product, the
associated L2 norm and the inner product over the surface of D are defined
as

(f, g)D =

∫
D

f(x )g(x )dx , (f, f) = ||f ||2D, (f, g)∂D =

∫
∂D

f(x )g(x )ds.

The corresponding global broken measures, inner products and norms are

(f, g)Ω =
K∑
k=1

(f, g)Dk , (f, f) =
K∑
k=1

||f ||Dk = ||f ||Ω, (f, g)Γ =
K∑
k=1

(f, g)∂Dk .

Next, we introduce some notations to manipulate numerical fluxes. For
e ∈ Γ, we refer to the exterior information by a superscript ‘+’ and to the
interior information by a superscript ‘-’. Using these notations, it is useful
to define the average

{u} =
u+ + u−

2
on e ∈ Γi,

{u} = u on e ∈ Γb,

where u can be both a scalar and a vector. In a similar fashion, we also
define the jumps along a unit normal n, as

[u] = n+u+ + n−u−, [u] = n+ · u+ + n− · u− on e ∈ Γi,

[u] = nu, [u] = n · u on e ∈ Γb.

Assume that the global solution can be approximated as

u(x , t) ≃ uh(x , t) =
K⊕
k=1

uk
h(x , t) ∈ Vh =

K⊕
k=1

P 2
N(D

k), (2.5)

where P 2
N(D

k) is the space of N-th order polynomials defined on Dk. The
local solution, u(x , t) can be expressed by

uk
h(x , t) =

Np∑
i=1

uk
h(x i, t)ℓ

k
i (x ), x ∈ Dk, (2.6)

utilizing a nodal representation.
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3. The local nodal discontinuous Galerkin methods for fractional
diffusion equations

We consider two dimensional fractional problems

∂u(x , t)

∂t
= d1

∂αu(x , t)

∂xα
+ d2

∂βu(x , t)

∂yβ
+ f(x , t), x = (x, y) ∈ R2, (3.1)

subject to appropriate boundary and initial conditions. Here, α, β ∈ (1, 2],

d1, d2 > 0, f(x , t) is a source term, and ∂α

∂xα ,
∂β

∂yβ
denote the left Riemann-

Liouville fractional derivatives. For convenience and to enable the theoretical
analysis, we restrict our problem to a homogeneous Dirichlet boundary con-
dition on the form

∂u(x ,t)
∂t

= d1
∂
∂xa

Dα−2
x

∂
∂x
u(x , t)

+d2
∂
∂y c

Dβ−2
y

∂
∂y
u(x , t) + f(x , t) (x , t) ∈ Ω× [0, T ],

u(x , 0) = u0(x ) x ∈ Ω,
u(x , t) = 0 (x , t) ∈ ∂Ω× [0, T ],

(3.2)

where Ω = (a, b) × (c, d). For the simplicity of theoretical analysis, we set
d1 = d2 = 1 without the loss of generality.

3.1. The primal formulation

Following the standard approach for the development of local discontin-
uous Galerkin methods for problems with higher order derivatives, we intro-
duce the auxiliary variables p = (px, py) and q = (qx, qy), and express the
problem as 

∂u(x ,t)
∂t

= ∇ · q + f(x , t) (x , t) ∈ Ω× [0, T ],

q = (∂
α−2px

∂xα−2 ,
∂β−2py

∂yβ−2 ) (x , t) ∈ Ω× [0, T ],

p = ∇u (x , t) ∈ Ω× [0, T ],
u(x , 0) = u0(x ) x ∈ Ω,
u(x , t) = 0 (x , t) ∈ ∂Ω× [0, T ].

(3.3)

We set hk := diam(Dk) and h := maxKk=1hk. Since the fractional integral
spaces are embedded in L2(Ω), we could assume that the exact solution
(u,p, q) of (3.3) belongs to

H1(0, T ;H1(Ωh))× (L2(0, T ;L2(Ωh)))
2 × (L2(0, T ;H1(Ωh)))

2. (3.4)
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Next, we require that (u,p, q) satisfies the local formulation(
∂u(x , t)

∂t
, v

)
Dk

= (n · q , v)∂Dk − (q ,∇v)Dk + (f, v)Dk , (3.5)

(q ,ϕϕϕ)Dk =

((
∂α−2px

∂xα−2
,
∂β−2py

∂yβ−2

)
,ϕϕϕ

)
Dk

, (3.6)

(p,πππ)Dk = (u,n · πππ)∂Dk − (u,∇ · πππ)Dk , (3.7)

(u(·, 0), v)Dk = (u0(·), v)Dk , (3.8)

for all test functions v ∈ H1(Ωh), ϕϕϕ = (ϕx, ϕy) ∈ (L2(Ωh))
2 = L2(Ωh) ×

L2(Ωh), and πππ = (πx, πy) ∈ (H1(Ωh))
2 = H1(Ωh)×H1(Ωh).

To complete the primal formulation of our numerical schemes, we need
to introduce the finite dimensional subspace of H1(Ωh), i.e.,

Vh = {v : Ωh → R
∣∣ v|Dk ∈ P 2

N(D
k), k = 1, 2, · · · , K},

and then restrict the trial and test functions v to Vh, ϕϕϕ,πππ to (Vh)
2 = Vh×Vh re-

spectively. Furthermore we define uh,ph, qh as the approximation of u,p, q .
We then seek (uh,ph, qh) ∈ H1(0, T ;Vh) × (L2(0, T ;Vh))

2 × (L2(0, T ;Vh))
2

such that for all v ∈ Vh, ϕϕϕ,πππ ∈ (Vh)
2 the following holds:(

∂uh(x , t)

∂t
, v

)
Dk

= (n · q̂h, v)∂Dk − (qh,∇v)Dk + (f, v)Dk , (3.9)

(qh,ϕϕϕ)Dk =

((
∂α−2pxh
∂xα−2

,
∂β−2pyh
∂yβ−2

)
,ϕϕϕ

)
Dk

, (3.10)

(ph,πππ)Dk = (ûh,n · πππ)∂Dk − (uh,∇ · πππ)Dk . (3.11)

The form (3.9)-(3.11), obtained after integration by parts once, is known as
the weak form, which is used for theoretical analysis in the following. For
the computational part, we introduce the strong form, recovered by doing
integration by parts once again partially, as(

∂uh(x , t)

∂t
, v

)
Dk

= (∇ · qh, v)Dk − (n · (qh − q̂h), v)∂Dk , (3.12)

(qh,ϕϕϕ)Dk =

((
∂α−2pxh
∂xα−2

,
∂β−2pyh
∂yβ−2

)
,ϕϕϕ

)
Dk

, (3.13)

(ph,πππ)Dk = (∇uh,πππ)Dk − (uh − ûh,n · πππ)∂Dk . (3.14)
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The two formulations are mathematically equivalent but computationally
different [11]. The boundary condition u|Γb

= 0 will be imposed on the
3rd equation above. To guarantee consistency, stability and optimal order
of convergence of the formulation above, we must define the numerical flux
ûh, q̂h carefully. In the two-dimensional case, we adopt the central flux,
defined as

ûh =
u+
h + u−

h

2
, q̂h =

q+
h + q−

h

2
, (3.15)

at all internal edges, and at the external edges we use

ûh = 0, q̂h = q+
h = q−

h . (3.16)

3.2. The semidiscrete scheme

We will borrow the notations for various operators from [12] to express
the semidiscrete scheme. Let us introduce some local and global vector and
matrix notations to form the local statement

uk
h = [uk

1, u
k
2, · · · , uk

Np
]T ; uh = [u1

h;u
2
h; · · · ,uK

h ]
T ,

(pk)xh = [(pk)x1 , (p
k)x2 , · · · , (pk)xNp

]T ; px
h = [(px)1h; (p

x)2h; · · · ; (px)Kh ]
T ,

(pk)yh = [(pk)y1, (p
k)y2, · · · , (pk)

y
Np
]T ; py

h = [(py)1h; (p
y)2h; · · · ; (py)Kh ]

T ,

(qk)xh = [(qk)x1 , (q
k)x2 , · · · , (qk)xNp

]T ; qx
h = [(qx)1h; (q

x)2h; · · · ; (qx)Kh ]
T ,

(qk)yh = [(qk)y1, (q
k)y2, · · · , (pk)

y
Np
]T ; q y

h = [(q y)1h; (q
y)2h; · · · ; (q y)Kh ]

T .

We also have the local mass matrix Mk with

Mk
ij = (ℓki (x ), ℓ

k
j (x ))Dk

and the local spatial stiff matrix Sk
x , S

k
y with the entries

(Sk
x)ij =

(
∂ℓj(x )

∂x
, ℓi(x )

)
Dk

, (Sk
y )ij =

(
∂ℓj(x )

∂y
, ℓi(x )

)
Dk

.

It is a little complex to compute the fractional spatial stiff matrices of (3.13)
and they need to be stored globally. However, their elements depend on the
affected regions only and they are sparse.

Next, we will discuss how to form the global fractional spatial stiffness
matrix in detail. Denote S̃x and S̃y as the global fractional spatial stiffness

matrices in the x and y direction, respectively. S̃x and S̃y are K ×K block
matrices and every element is a Np × Np matrix. Here, we use numerical
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quadrature on a triangle to compute these factional stiffness matrices. We
only describe the specific procedure of forming the global fractional spatial
stiff matrix S̃x for simplicity. S̃y is obtained in the same fashion.

The integral of a function u defined on the physical element D can be
approximated by using the Gauss quadrature rule on triangle, i.e.,∫

D

u(x )dx = J

∫
I

u(x (r))dr ≃ J

QD∑
j=1

u(x (rj))wj = J

QD∑
j=1

u(x j)wj,

where QD is the total number of Gauss quadrature weights or points and J is
the constant transformation Jacobian between the physical element and the
reference element I. The sets {rj}QD

j=1 ∈ I and {x j}QD
j=1 ∈ D are one-to-one

correspondence by an affine map. Thus, we have

(aD
α−2
x pxh, ℓ

k(x ))Dk

≃ Jk

QD∑
j=1

aD
α−2
x pxhℓ

k(x j)wj

= Jk

QD∑
j=1

1

Γ(2− α)

( ∑
m∈A

∫ xm

xm−1

(xj − ξ)1−α(pxh)
m(ξ, yj)dx

+

∫ xj

xk−1

(xj − ξ)1−α(pxh)
k(ξ, yj)dx

)
ℓk(x j)wj,

(3.17)

where A is the set of the indices of elements affected by each quadrature
points on every triangle as sketched in Figure 1.

By using (2.1) and the definition of the extension of the basis functions,

10



−1 −0.5 0 0.5 1
−1
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0
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1

P BA

Figure 1: All triangles (the ones intersected with the line AB) in x direction
affected by one Gauss quadrature point P on triangleDk: the ones intersected
with AP is for the left fractional derivative/integral and the ones intersected
with PB is for the right fractional derivative/integral.

we rewrite the above equation

(aD
α−2
x pxh, ℓ

k(x ))Dk

≃ Jk

Γ(2− α)

QD∑
j=1

[ ∑
m∈A

((
xj − xm−1

2

)2−α ∫ 1

−1

(1− η)1−α

· (pxh)m
(
xj + xm−1

2
+

xj − xm−1

2
η, yj

)
dη

−
(
xj − xm

2

)2−α ∫ 1

−1

(1− η)1−α

· (pxh)m
(
xj + xm

2
+

xj − xm

2
η, yj

)
dη

)
+

(
xj − xk

2

)2−α ∫ 1

−1

(1− η)1−α

· (pxh)k
(
xj + xk

2
+

xj − xk

2
η, yj

)
dη

]
ℓk(x j)wj.

(3.18)

Gauss quadratures with weight function (1 − η)1−α will be taken in the nu-
merical process.

Remark 3.1. In the process of computation, we must pay attention to the fact
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that there is no link between the Lagrange interpolation points and Gauss
quadrature points on the triangle.

A piece of pseudocode illustrates the formation of the left global fractional
spatial stiffness matrix.

Algorithm 1 Construction of the fractional global spatial stiffness matrix

lS̃x

1: % denote ℓℓℓk = [ℓk1, ℓ
k
2, · · · , ℓkNp]

T

2: Initialize every block of lS̃x with zero matrix
3: for k = 1:K do
4: for j = 1:QD do
5: % QD is the total number of Gauss quadrature points
6: Find the set A and lXdir of every Gauss point (xk

j , y
k
j ) on triangle

Dk

7: % lXdir is a length(A)×2 matrix to store the intervals across by
PA on each triangle

8: (lS̃x)kk = (lS̃x)kk + (xk−1
Dα−2

x ℓℓℓk(x ), ℓℓℓk(x ))Dk

9: for m=1:length(A) do

10: (lS̃x)km = (lS̃x)km+( 1
Γ(2−α)

∫ xm

xm−1
(x−ξ)1−αℓℓℓm(ξ, y)dξ, ℓℓℓk(x ))Dk

11: end for
12: end for
13: end for

Remark 3.2. It is unnecessary to store the full global fractional spatial stiff-
ness matrices lS̃x and lS̃y as they are both sparse.

We recover the global semi-discrete form (3.12)-(3.14) as

M
∂uh

∂t
= Sxq

x
h + Syq

y
h −

K∪
k=1

∫
∂Dk

n · ((qx
h, q

y
h)− q̂h)ℓ(x )ds, (3.19)

Mqx
h = lS̃xp

x
h, Mq y

h = lS̃yp
y
h, (3.20)

Mpx
h = Sxuh −

K∪
k=1

∫
∂Dk

nx(uh − ûh)ℓ(x )ds, (3.21)

Mpy
h = Syuh −

K∪
k=1

∫
∂Dk

ny(uh − ûh)ℓ(x )ds, (3.22)
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where M,Sx, Sy are global mass and stiffness matrices and there non-zero

diagonal block are constructed by Mk, Sk
x , S

k
y respectively, and

∪K
k=1 refers to

the construction of the equations simultaneously for numerical computation.

4. Stability analysis and error estimates

Before initiating the theoretical analysis, we need following result:

Lemma 4.1. Assume that Ω has been triangulated into K elements, Dk.
Then

K∑
k=1

(n · u, v)∂Dk =

∮
Γ

{u} · [v]ds+
∮
Γi

{v}[u]ds. (4.1)

The proof follows directly by rewriting and then summing the averages
and jumps of all the terms along one edge.

By using this Lemma and summing all the terms of (3.9)-(3.11), we obtain
the primal formulation: Find (uh,ph, qh) ∈ H1(0, T ;Vh) × (L2(0, T ;Vh))

2 ×
(L2(0, T ;Vh))

2 such that for all (v,ϕϕϕ,πππ) ∈ H1(0, T ;Vh) × (L2(0, T ;Vh))
2 ×

(L2(0, T ;Vh))
2 the following holds

B(uh,ph, qh; v,ϕϕϕ,πππ) = L(v,ϕϕϕ,πππ). (4.2)

We denote (·, ·) = (·, ·)Ω when no misunderstanding is possible. Recall that
the numerical flux is single valued and the homogeneous boundary condition
is assumed. Then the discrete bilinear form B can be defined as

B(uh,ph, qh; v,ϕϕϕ,πππ)

:=

∫ T

0

(
∂uh

∂t
, v

)
dt+

∫ T

0

(qh,∇v)dt

+

∫ T

0

(qh,ϕϕϕ)dt−
∫ T

0

((
∂α−2pxh
∂xα−2

,
∂β−2pyh
∂yβ−2

)
,ϕϕϕ

)
dt

+

∫ T

0

(ph,πππ)dt+

∫ T

0

(uh,∇ · πππ)dt

−
∫ T

0

(∮
Γ

q̂h · [v]ds+
∮
Γi

ûh[πππ]ds

)
dt.

(4.3)

The discrete linear form L is given by

L(uh,ph, qh; v,ϕϕϕ,πππ) =

∫ T

0

(f, v)dt. (4.4)

13



Provided that the numerical fluxes ûh, q̂h are consistent, the primal formu-
lation (4.3) is consistent, ensuring that the exact solution (u,p, q) of (3.2)
satisfies

B(u,p, q ; v,ϕϕϕ,πππ) = L(v,ϕϕϕ,πππ). (4.5)

for all (v,ϕϕϕ,πππ) ∈ H1(0, T ;Vh)× (L2(0, T ;Vh))
2 × (L2(0, T ;Vh))

2.

4.1. Numerical stability

Let (ũh, p̃h, q̃h) ∈ H1(0, T ;Vh) × (L2(0, T ;Vh))
2 × (L2(0, T ;Vh))

2 be the
approximation of the solution (uh,ph, qh). We denote euh

:= uh− ũh, eph
:=

ph − p̃h and eqh
:= qh − q̃h as the roundoff errors.

Theorem 4.2. (L2 stability). Numerical scheme (4.5) with central flux is
L2 stable, and for all t ∈ (0, T ) its solution satisfies

∥ euh
(·, t) ∥2L2(Ω)

=∥ euh
(·, 0) ∥2L2(Ω)

− 2cos((α/2− 1)π)

∫ t

0

∫ d

c

∥ epxh(·, y, t) ∥
2

H
α
2 −1 dydt

− 2cos((β/2− 1)π)

∫ t

0

∫ b

a

∥ epyh(x, ·, t) ∥
2

H
β
2 −1

dxdt.

(4.6)

Proof. We just prove the case t = T . From (4.3), we recover the perturbation
equation

B(euh
, eph

, eqh
; v,ϕϕϕ,πππ) = 0 (4.7)

for all (v,ϕϕϕ,πππ) ∈ H1(0, T ;Vh)×(L2(0, T ;Vh))
2×(L2(0, T ;Vh))

2. Take v = euh
,

ϕϕϕ = −eph
, and πππ = eqh

, to obtain

0 = B(euh
, eph

, eqh
; euh

,−eph
, eqh

)

=
1

2

∫ T

0

∂

∂t
∥ euh

(·, t) ∥2L2(Ω) dt+

∫ T

0

∫
Ω

∇ · (euh
eqh

)dxdt

+ 2cos((α/2− 1)π)

∫ T

0

∫ d

c

∥ epxh(·, y, t) ∥
2

H
α
2 −1 dydt

+ 2cos((β/2− 1)π)

∫ T

0

∫ b

a

∥ epyh(x, ·, t) ∥
2

H
β
2 −1

dxdt

−
∫ T

0

(∮
Γ

êqh
· [euh

]ds+

∮
Γi

êuh
[eqh

]ds

)
dt.

(4.8)
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In (4.8), integration by parts yields∫
Ωh

∇ · (euh
eqh

)dx =
K∑
k=1

∫
Dk

∇ · (euh
eqh

)dx =
K∑
k=1

∮
∂Dk

n · eqh
euh

ds

=

∮
Γi

(n+ · e+qh
e+uh

+ n− · e−qh
e−uh

)ds+

∮
Γb

n · eqh
euh

ds.

(4.9)

With the central flux we recover∮
Γ

êqh
· [euh

]ds+

∮
Γi

êuh
[eqh

]ds

=

∮
Γi

(n+ · e+qh
e+uh

+ n− · e−qh
e−uh

)ds+

∮
Γb

n · eqh
euh

ds.

(4.10)

Combining (4.8)-(4.10), the desired result follows.

4.2. Error estimate

For the error estimate, we define the orthogonal projection operators,
P : H1(Ωh) → Vh, Q : ((L2(Ωh))

2 → (Vh)
2 and S : (H1(Ωh))

2 → (Vh)
2. For

all the elements, Dk, k = 1, 2, · · · , K, P,Q, S are defined to satisfy

(Pu− u, v)Dk = 0 ∀v ∈ P 2
N(D

k),

(Qu− u, v)Dk = 0 ∀v ∈ (P 2
N(D

k))2,

(Su− u, v)Dk = 0 ∀v ∈ (P 2
N(D

k))2.

Theorem 4.3. The L2 error of the numerical scheme (4.5) with a central
flux satisfies

∥ u(x, t)− uh(x, t) ∥L2(Ωh)6 c(α, β)hN+1, α, β ∈ (1, 2), (4.11)

where c is dependent on α, β,Ω and N represents the order of polynomial.

Proof. We denote

eu = u(x , t)−uh(x , t), ep(x , t) = p(x , t)−ph(x , t), eq = q(x , t)−qh(x , t);

and recover the error equation

B(eu, ep , eq ; v,ϕϕϕ,πππ) = 0 (4.12)
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for all (v,ϕϕϕ,πππ) ∈ H1(0, T ;Vh)× (L2(0, T ;Vh))
2 × (L2(0, T ;Vh))

2. Take

v = Pu− uh, ϕϕϕ = ph −Qp, πππ = Sq − qh

in (4.12). After rearranging terms, we obtain

B(v,−ϕϕϕ,πππ; v,ϕϕϕ,πππ) = B(ve,−ϕϕϕe,πππe; v,ϕϕϕ,πππ), (4.13)

where ve,we and ze are given as

ve = Pu− u,ϕϕϕe = p −Qp,πππe = Sq − q .

Following the discussion in the proof of Theorem 4.2, the left side of (4.13)
becomes

B(v,−ϕϕϕ,πππ; v,ϕϕϕ,πππ)

=
1

2

∫ T

0

∂

∂t
∥ v(·, t) ∥2L2(Ωh)

dt

+ cos((α/2− 1)π)

∫ T

0

∫ d

c

∥ ϕx(·, y, t) ∥2
H

α
2 −1(a,b)

dydt

+ cos((β/2− 1)π)

∫ T

0

∫ b

a

∥ ϕy(x, ·, t) ∥2
H

β
2 −1(c,d)

dxdt;

(4.14)

and the right hand side can be expressed as

B(ve,−ϕϕϕe,πππe; v,ϕϕϕ,πππ) = I + II + III + IV , (4.15)

where

I =

∫ T

0

(
∂ve(·, t)

∂t
, v(·, t)

)
dt, (4.16)

II =

∫ T

0

[
(πππe,∇v) + (ve,∇ · πππ) + (πππe,ϕϕϕ)− (ϕϕϕe,πππ)

]
dt, (4.17)

III = −
∫ T

0

(∫
Γ

π̂ππe · [v]ds+
∫
Γi

ve [πππ]ds

)
dt, (4.18)

IV =

∫ T

0

[(
∂α−2ϕex

∂xα−2
, ϕx

)
+

(
∂β−2ϕey

∂yβ−2
, ϕy

)]
dt. (4.19)
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Using Cauchy-Schwarz inequality and standard approximation theory, we
obtain

I =
1

2

∫ T

0

∥ ∂ve(·, t)
∂t

∥2L2(Ωh)
dt+

1

2

∫ T

0

∥ v(·, t) ∥L2(Ωh) dt

6 ch2N+2 +
1

2

∫ T

0

∥ v(·, t) ∥2L2(Ω) dt,

(4.20)

where c is a constant.
In II, all terms vanish because of the Galerkin orthogonality. To deal

with the term III, let us reexamine the construction of the Lagrange inter-
polation bases. Since we require the same number of Lagrange interpolation
points on every element, the basis functions of both elements are equal along
the internal edge e ∈ Γi. Applying the Cauchy-Schwarz inequality and the
trace inequality, III can be estimated as

III = −
∫ T

0

∫
Γb

π̂ππe · [v]dsdt

6 1

2

∫ T

0

∫
∂Ω

(π̂ππe)2ds+
1

2

∫ T

0

∫
∂Ω

([v])2dsdt

6 c1h
2N+2 + c2

∫ T

0

∥ v(·, t) ∥2L2(Ω) dt, (4.21)

where Γb = ∂Ω, c1 and c2 are related with N , Ω. Due to the adjoint property
and the embedding theorem for the fractional integral, by using the Young’s
inequality, IV can be expressed as

IV 6
∫ T

0

(
1

2ε1
∥ ϕex(·, t) ∥2L2(Ωh)

+
ε1
2

∫ d

c

∥ ϕx(·, y, t) ∥2Hα−2(a,b) dy

+
1

2ε2
∥ ϕey(·, t) ∥2L2(Ωh)

+
ε2
2

∫ b

a

∥ ϕy(x, ·, t) ∥2Hβ−2(c,d) dx

)
dt

6 c/εh2N+2 + cε

∫ T

0

(∫ d

c

∥ ϕx(·, y, t) ∥2
H

α
2 −1(a,b)

dy

+

∫ b

a

∥ ϕy(x, ·, t) ∥2
H

β
2 (c,d)

dx
)
dt,

(4.22)

provided ε is sufficiently small such that cos((α/2−1)π) > cε and cos((β/2−
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1)π) > cε. Combining all the above estimates, we obtain

1

2

∫ T

0

∂

∂t
∥ v(·, t) ∥2L2(Ωh)

dt

+ (cos((α/2− 1)π)− cε)

∫ T

0

∫ d

c

∥ ϕx(·, y, t) ∥2
H

α
2 −1(a,b)

dydt

+ (cos((β/2− 1)π)− cε)

∫ T

0

∫ b

a

∥ ϕy(x, ·, t) ∥2
H

β
2 −1(c,d)

dxdt

6 (c/ε)h2N+2 + c

∫ T

0

∥ v(·, t) ∥2L2(Ωh)
dt.

(4.23)

By simplifying further, this yields

1

2
∥ v(·, T ) ∥2L2(Ωh)

+ (cos((α/2− 1)π)− cε)

∫ T

0

∫ d

c

∥ ϕx(·, y, t) ∥2
H

α
2 −1(a,b)

dydt

+ (cos((β/2− 1)π)− cε)

∫ T

0

∫ d

c

∥ ϕy(x, ·, t) ∥2
H

β
2 −1(c,d)

dxdt

6 1

2
∥ v(·, 0) ∥2L2(Ωh)

+(c/ε)h2N+2 + c

∫ T

0

∥ v(·, t) ∥2L2(Ωh)
dt

6 (c/ε)h2N+2 + c

∫ T

0

∥ v(·, t) ∥2L2(Ωh)
dt.

(4.24)

From the Grönwall’s lemma and standard approximation theory, the desired
result follows.

5. Numerical results

In this section, we offer a few numerical results to validate analysis. To
deal with the method-of-line fractional PDE, i.e., the classical ODE system,
we utilize a low-storage five stage fourth order explicit Runge-Kutta method
[12]. To ensure the overall error is dominated by space error, small time steps
are used.
Example 1 We consider the problem

∂u(x, y, t)

∂t
= −1D

α
xu(x, y, t) + −1D

α
y u(x, y, t) + f(x, y, t), (5.1)
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Table 1: Numerical errors (L2) and order of convergence on unstructured
meshes for Example 1. N denotes the order of polynomial in two variables,
and K is the total number of triangle elements.

K 32 137 378 899
N (α, β) error error order error order error order

1

(1.01,1.01) 1.55e-1 3.48e-2 2.16 1.27e-2 1.99 5.39e-3 2.11
(1.5,1.5) 1.44e-1 3.21e-2 2.17 1.22e-2 1.94 5.09e-3 2.16
(1.8,1.8) 1.34e-1 3.03e-2 2.14 1.13e-2 1.93 5.40e-3 1.82
(1.99,1.99) 1.27e-1 2.94e-2 2.11 1.07e-2 1.98 4.48e-3 2.15

K 32 137 378 899

2

(1.01,1.01) 1.65e-2 4.39e-3 2.62 5.22e-4 2.92 1.44e-4 2.97
(1.5,1.5) 1.40e-2 3.47e-3 2.76 3.41e-3 3.18 9.19e-5 3.02
(1.8,1.8) 1.33e-2 1.57e-3 3.08 3.37e-4 3.01 9.20e-5 3.20
(1.99,1.99) 1.36e-2 1.57e-3 3.11 3.56e-4 2.90 9.75e-5 3.20

K 88 137 378 562

3

(1.01,1.01) 5.51e-4 2.17e-4 4.20 3.07e-5 3.86 1.53e-5 3.82
(1.5,1.5) 3.73e-4 1.38e-4 4.49 1.88e-5 3.93 8.53e-6 4.33
(1.8,1.8) 3.30e-4 1.33e-4 4.10 2.00e-5 3.73 8.05e-6 4.99
(1.99,1.99) 3.83e-4 1.61e-4 3.92 2.55e-5 3.63 1.81e-5 4.23

where

f(x, y, t) = −e−t
(
(x2 − 1)3(y2 − 1)3 + (y2 − 1)3−1D

α−2
x (6(x2 − 1)(5x2 − 1))

+ (x2 − 1)3−1D
β−2
y (6(y2 − 1)(5y2 − 1))

)
on the computational domain Ω = (−1, 1) × (−1, 1) and α, β ∈ (1, 2). We
consider the initial condition

u(x, y, 0) = (x2 − 1)3(y2 − 1)3 (5.2)

and the Dirichlet boundary condition

u(x, y, t) = 0, (x, y) ∈ ∂Ω. (5.3)

The exact solution is u(x, y, t) = e−t(x2 − 1)3(y2 − 1)3.
Example 2 Now we expand our algorithm to fractional diffusion equations
with both the left and right fractional derivatives. We consider the model

∂u

∂t
= d+−1D

α
xu(x, y, t) + d−xD

α
1 u(x, y, t)

+ e+−1D
β
yu(x, y, t) + e−yD

β
1u(x, y, t) + f(x, y, t),

(5.4)
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Figure 2: Partial unconstructed meshes used in numerical examples

with the initial condition

u(x, y, 0) = (x2 − 1)3(y2 − 1)3

and boundary condition
u(x, y, t)|∂Ω = 0.

Here, (x, y) ∈ (−1, 1)× (−1, 1), α, β ∈ (1, 2) and d+ = d1 = 1, e+ = e1 = 1,

f(x, y, t) = −e−t

(
(x2 − 1)3(y2 − 1)3

+ (−1D
α−2
x + xD

α−2
1 )

(
6(x2 − 1)(5x2 − 1)

)
(y2 − 1)3

+ (−1D
β−2
y + yD

β−2
1 )

(
6(y2 − 1)(5y2 − 1)

)
(x2 − 1)3

)
.

The exact solution is u(x, y, t) = e−t(x2 − 1)3(y2 − 1)3.
In Table 1 and Table 2, we note a convergence rate O(hN+1), which

demonstrates that the central flux is optimal in two dimension. Note that
the small deviations from the optimal order are caused by the unstructured
nature of the grid and the numerical quadrature for fractional integral oper-
ators.
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Table 2: Numerical errors (L2) and order of convergence on unstructured
meshes for Example 2. N denotes the order of polynomial in two variables,
and K is the total number of triangle elements.

K 32 137 378 899
N (α, β) error error order error order error order

1

(1.01,1.01) 1.54e-1 3.45e-2 2.16 1.24e-2 2.00 5.19e-3 2.15
(1.1,1.8) 1.32e-1 3.11e-2 2.08 1.18e-2 1.91 5.21e-3 2.01
(1.5,1.5) 1.24e-1 2.97e-2 2.17 1.09e-2 1.96 5.19e-3 2.16
(1.99,1.99) 1.13e-1 2.66e-2 2.09 9.69e-3 1.98 4.05e-3 2.15

K 32 137 378 899

2

(1.01,1.01) 1.64e-2 2.25e-3 2.87 5.04e-4 2.93 1.66e-4 2.74
(1.5,1.5) 1.32e-2 1.62e-3 3.03 3.29e-3 3.12 9.96e-5 2.94
(1.8,1.1) 1.48e-2 2.18e-3 2.76 4.69e-4 3.00 1.28e-4 3.21
(1.99,1.99) 1.44e-2 1.64e-3 3.13 3.88e-4 2.82 1.10e-4 3.10

K 32 88 137 378

3

(1.01,1.01) 3.42e-3 5.23e-4 3.67 2.01e-4 5.25 2.47e-5 4.10
(1.5,1.5) 2.36e-3 3.01e-4 4.031 1.10e-4 5.53 1.39e-5 4.05
(1.2,1.6) 2.62e-3 3.62e-4 3.88 1.46e-4 4.98 2.31-5 3.61
(1.99,1.99) 2.36e-4 3.01e-4 4.03 1.10e-5 5.52 1.39e-5 4.05
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6. Conclusions

In this paper, we propose nodal discontinuous Galerkin methods for two
dimensional Riemann-Liouville fractional equations on unstructured meshes,
and offer a stability analysis and error estimates. Numerical experiments con-
firm that the optimal order of convergence is recovered. For the convenience
of the theoretical analysis we have restricted our models to homogeneous
boundary conditions, although this is not an essential restriction.
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APPENDIX

For the right fractional integral, similarly we also have

(xD
α−2
b pxh, ℓ

k(x ))Dk ≃ Jk

QD∑
j=1

xD
α−2
b pxhℓ

k(x j)wj

= Jk

QD∑
j=1

1

Γ(2− α)

(∑
t∈B

∫ xt

xt−1

(ξ − xj)
1−α(pxh)

t(ξ, yj)dx

+

∫ xk−1

xj

(ξ − xj)
1−α(pxh)

k(ξ, yj)dx

)
ℓk(x j)wj,

(.1)
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where B is like A we introduce before, i.e., the index of triangles crossed by
PB in Figure 1. Then

(xD
α−2
b pxh, ℓ

k(x ))Dk ≃ Jk

Γ(2− α)

QD∑
j=1

[ ∑
m∈B

((
xm − xj

2

)2−α ∫ 1

−1

(1 + η)1−α

· (pxh)m
(
xm + xj

2
+

xm − xj

2
η, yj

)
dη

−
(
xm − xj−1

2

)2−α ∫ 1

−1

(1 + η)1−α

· (pxh)m
(
xm + xj−1

2
+

xm − xj−1

2
η, yj

)
dη

)
+

(
xk − xj

2

)2−α ∫ 1

−1

(1 + η)1−α

· (pxh)k
(
xk + xj

2
+

xk − xj

2
η, yj

)
dη)

]
ℓk(x j)wj.

(.2)

Now the following is a piece of pseudocode for the right fractional stiffness
matrix.
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Algorithm 2 Construction of the fractional global spatial stiffness matrix

rS̃x

1: % denote ℓℓℓk = [ℓk1, ℓ
k
2, · · · , ℓkNp]

T

2: Initialize every block of rS̃x with zero matrix
3: for k = 1:K do
4: for j = 1:QD do
5: % QD is the total number of Gauss quadrature points
6: Find the set B and rXdir of every Gauss point (xk

j , y
k
j ) on triangle

Dk

7: % rXdir is a length(B)×2 matrix to store the intervals across by
PB on each triangle

8: (rS̃x)kk = (rS̃x)kk + (xD
α−2
xk−1

ℓℓℓk(x ), ℓℓℓk(x ))Dk

9: for t=1:length(B) do

10: (rS̃x)kt = (rS̃x)kt + ( 1
Γ(2−α)

∫ xt

xt−1
(ξ − x)1−αℓℓℓt(ξ, y)dξ, ℓℓℓk(x ))Dk

11: end for
12: end for
13: end for
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