Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. EPFL thesis
  4. Effective Lagrangian Perspectives on Electroweak Symmetry Breaking
 
doctoral thesis

Effective Lagrangian Perspectives on Electroweak Symmetry Breaking

Thamm, Andrea  
2014

We use an effective Lagrangian approach to address the question of the dynamics of electroweak symmetry breaking in the Standard Model (SM) and its relation to the hierarchy problem. Composite Higgs models provide a solution by describing the recently discovered Higgs-like scalar particle as a composite pseudo Nambu-Goldstone boson that dissolves into its constituents above a certain high energy scale. We discuss many features of the low energy description of composite Higgs models and present an explicit realisation in a flat extra dimension showing explicitly that top partners with masses below 1TeV are expected in a natural theory. Naturalness requires New Physics not much above the weak scale and hence motivates the search for direct and indirect evidence of physics beyond the SM at the LHC and future colliders. As an indirect probe at the LHC, we propose a dedicated analysis of single top production in association with a Higgs boson to lift the degeneracy in the sign of the top Yukawa coupling. We move on to an extensive study of WW scattering, double and triple Higgs production at future linear colliders to estimate their impact on the parameter space of a strongly interacting Higgs boson. Direct probes of New Physics at the LHC include the search for heavy vectors and fermions. We introduce a model-independent strategy to study narrow resonances which we apply to a heavy vector triplet of the SM for illustration. We conclude by summarising current constraints and the expected reach of future colliders on the parameter space of a minimal composite Higgs model. This thesis is based on the papers in Refs. [1–4].

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

EPFL_TH6346.pdf

Access type

openaccess

Size

5.6 MB

Format

Adobe PDF

Checksum (MD5)

e0d2a12297aa8bc93a6217a8babf02b7

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés