
On Synthesizing Code from Free-Form Queries
Tihomir Gvero and Viktor Kuncak

École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
Email: firstname.lastname@epfl.ch

Abstract—We present a new code assistance tool for integrated
development environments. Our system accepts free-form queries
allowing a mixture of English and Java as an input, and produces
Java code fragments that take the query into account and respect
syntax, types, and scoping rules of Java as well as statistical
usage patterns. The returned results need not have the structure
of any previously seen code fragment. As part of our system
we have constructed a probabilistic context free grammar for
Java constructs and library invocations, as well as an algorithm
that uses a customized natural language processing tool chain
to extract information from free-form text queries. We present
the results on a number of examples showing that our technique
can tolerate much of the flexibility present in natural language,
and can also be used to repair incorrect Java expressions that
contain useful information about the developer’s intent.

I. INTRODUCTION

Application programming interfaces (APIs) are becoming
more and more complex, presenting a bottleneck when solving
simple tasks, especially for new developers. APIs contain
many types and declarations, so it is difficult to know how to
combine them to achieve a task of interest. Instead of focusing
on more creative aspects of the development, a developer
ends up spending a lot of time trying to understand informal
documentation or adapt the API documentation examples.
Integrated development environments (IDEs) help in this task
by listing declarations that belong to a given type, but leave it
to the developer to decide how to combine the declarations.

On the other hand, on-line repository host services such
as GitHub [1], BitBucket [2], SourceForge [3] and Google
Developers [4] are becoming more and more popular, hosting
a large number of freely accessible projects. Such repositories
are an excellent sources of code examples that the developers
can use to learn API usage. Moreover, their large size and
variety suggests that they can be used by machine learning
techniques to create more sophisticated IDE support. A natural
first step is to perform code search [5], though this still
leaves the user with the task of understanding the context and
adapting it to their needs. Several researchers have pursued the
problem of generalizing from such examples in repositories,
combining non-trivial program analysis and machine learning
techniques [6].

In this paper, we present a new approach that synthesizes
code appropriate for a given program point, guided by hints
given in free-form text. We have implemented our approach in
a system anyCode, and have found it to be very useful in our
experience (see Figure 2). Our approach builds a model of
the Java language based on corpus of code in repositories,
and adapts the model to a given text input. In that sense,

our approach combines some of the advantages of statistical
programming language models [6] but also of natural language
processing of the input containing English phrases, previously
done for restricted APIs [7].

Our approach builds on our past experience with the InSynth
tool [8], in which a user only indicates the desired API
type; the tool InSynth then generates ranked expressions of
a given type. With our new tool, anyCode, the input can
be interpreted as a result type, but, more generally, it can
be any text, referring to any part of an expected expression.
We find this interface more convenient and expressive than in
InSynth. Furthermore, InSynth uses only the unigram model
[9, Chapter 4], which assigns a probability to a declaration
based on its call frequency in a corpus. InSynth uses the
model to synthesize and rank expressions. In anyCode, besides
unigram, we use the more sophisticated probabilistic context
free grammar (PCFG) model [9, Chapter 14], to synthesize and
rank the expressions. We perform synthesis in three phases:
(1) we use natural language processing (NLP) tools [10]–
[12] to structure the input text and split the text input into
chunks of words based on their relationships in the sentence
parse tree; (2) we use the structured text and unigram model
to select a set of most likely API declarations, using a set
of scoring metrics and the Hungarian method [13] to solve
the resulting assignment problem [14]; (3) we finally use the
selected declarations, PCFG and unigram model to unfold the
declaration arguments. The result is a list of ranked (partial)
expressions, which anyCode offers to the developer using the
familiar code completion interface of Eclipse.

By introducing a textual input interface, we aim to automat-
ically reduce the gap between a natural and a programming
language. anyCode allows the developer to formulate a query
using a mixture of English and code fragments. anyCode
takes into account English grammar when processing input
text. To improve the input flexibility and expressiveness we
also consider word synonyms and other related words (hyper-
nyms and hyponyms). We build a related word map based
on WordNet [15], a large lexical database of English. We
present a technique to make WordNet usable in our context by
automatically projecting it onto the API jargon. We use these
techniques along with the NLP tools to support the natural
language aspect in anyCode. The techniques we implement
in anyCode are inspired by stochastic machine translation.
However, we had to overcome the lack of a parallel corpus
relating English and Java, as well as the gap between an
informal medium such as English and the rigorous syntax and
type rules of a programming language such as Java.

1

We aim to relieve the user of the strict structure of a
programming language when describing their intention. From
our perspective, IDE tools should allow a user to gloss over
aspects such as the number and the order of arguments in
method calls, or parenthesis usage. Instead, the developers
should focus more on solving important higher-level software
architecture and decomposition problems. Finally, we also
hope to lower the entry for those who are learning to program,
for whom syntax is often one of the first obstacles. To achieve
this, we find that a short text input that approximately describe
the structure of the desired expression is the most convenient.
To make the input useful for programming, we also allow a
user to explicitly write literals and local variable names in
input. Using such input, anyCode manages to synthesize valid
Java code fragments. It can do that because it does not impose
any strict requirement on the input: it has the ability to generate
likely expressions according to the Java language model, and
uses as much of the information from the input as it can extract
to steer the generation towards developer’s intention.

In summary, this paper makes the following contributions:

• A new technique that maps text to a list of ranked (partial)
expressions. It combines NLP tools, a text-declaration
matching, PCFG and unigram models to process input,
synthesize and rank expressions.

• A new text and declaration models that encode input and
a declaration as a set of words. They prioritize words
based on their importance and position, both in text and
a declaration.

• Efficiently performing text-declaration matching thanks
in part to the creation of appropriate indices and the use of
the algorithms for the assignment problem, in particular
the Hungarian method.

• A fast corpus analysis and extraction algorithm. The algo-
rithm extracts method compositions and frequencies and
build PCFG and unigram models. The implementation
combines Eclipse JDT parser, our symbol table and type-
checker.

• A customized related word-map that maps a word to its
related words. We use relations in WordNet and a novel
scoring technique that for a given word ranks and finds
the closest related words. We use a set of API words to
build the score and filter out irrelevant words.

• A benchmark set of 45 text-expression (input-output)
benchmarks and experimental result that shows the ef-
fectiveness of our techniques and can also be used to
calibrate future open ended tool that map free-form text
into Java API invocations.

II. EXAMPLES

In this section we use five examples to illustrate main
functionality of anyCode. The first example demonstrates
anyCode’s interactive deployment, the text interface, and the
use of program context to guide the synthesis.

A. Making a Backup of a File

Suppose that a user wishes to create a method that backs up
the content of a file. The method should take a file name as a
parameter and copy the content of the file to a new file with
an appropriately modified name. To implement such a backup
method, the user needs to identify the appropriate API, select
the set of its declarations (typically method calls) and combine
them into an expression. In practice, to perform this, a user
might follow these steps manually: (1) search the Internet, or
API documentation (if it exists) to find the examples of API
use, (2) select the most suitable example, (3) copy-paste it
into the working editor with code, and (4) edit the example
such that it fits into the context, using appropriate values in
the program scope. anyCode offers an automatic approach that
combines all the mentioned operations, and more. Suppose that
a user writes an incomplete piece of code of the method that
takes the parameter fname that stores the file name, as shown
in Figure 1. She also creates a variable bname that stores the
backup file name. Here, the backup name is obtained by adding
”.bak” extension to bname. In the next line the user invokes
anyCode. A pop-up text field appears where she can insert the
text, such as copy file fname to bname that specifies her desire
to copy the file content. anyCode automatically extracts the
program context from Eclipse and identifies words fname and
bname in the input as values referring to a parameter and a
local variable. anyCode then uses this information to generate
and present several ranked expressions to the user. When the
user makes her choice, the tool inserts the chosen expression
at the invocation point. In this example, anyCode works for
less than 50 milliseconds and then presents five solutions of
which the first one copies the file fname content to a file with
name bname:

FileUtils.copyFile(new File(fname), new File(bname))

This is a valid solution; it uses the method FileUtils.copyFile
from the popular ”Commons IO” library.

B. Invoking the Class Loader

Suppose that a user intends to load a class with a name
”MyClas.class”. She invokes the tool with the free-form input

load class ”MyClas.class”

anyCode automatically synthesizes and suggests the following
(partial) expressions:

1 Thread.currentThread().getContextClassLoader()
.loadClass(”MyClas.class”).getClass()

2 Thread.currentThread().getContextClassLoader()
.loadClass(”MyClas.class”)

3 Thread.currentThread().getContextClassLoader()
.loadClass(〈arg〉).getClass()

4 ”MyClas.class”.getClass()
5 Thread.currentThread().getContextClassLoader()

.loadClass(〈arg〉)

In this example anyCode generates suggestions in less than
40 milliseconds. The second suggestion turns out to be the
desired one.

2

Fig. 1. After the user inserts text input, anyCode suggests five highest-ranked well-typed expressions that it synthesized for this input.

The suggestions 1, 2, and 4 represent complete expressions.
On the other hand, suggestions 3 and 5 represent templates that
include the symbol 〈arg〉 that marks the places where local
variables are often used. The main reason why we present
templates is that a user often inserts incomplete input and
for an incomplete input the best solution is an incomplete
output, i.e., a template. If we have insisted only on completed
expressions, we would miss many interesting solutions that are
more convenient for such an incomplete input. Thus, anyCode
treats a textual input both as complete and incomplete, and
tries to find both complete and incomplete solutions.

Note that the complete expressions 1 and 2 include declara-
tions whose selection and integration does not directly depend
on the textual input. For instance, method loadClass contains
both input words load and class, whereas currentThread does
not. To reach the currentThread from loadClass we use prob-
abilistic language model for Java and its API calls, derived
from a corpus of code. Without such a model we would not
be able to construct complex expressions such as the above
one.

C. Creating a Temporary File

In the third example we demonstrate the use of semantically
related words. For instance, if a user wants to discover
templates that make a new file, she may insert ’make file’. In
a less than 80 milliseconds, anyCode generates the following
output:

1 new File(〈arg〉).createNewFile()
2 new File(〈arg〉).isFile()
3 new File(〈arg〉)
4 new FileInputStream(〈arg〉)
5 new FileOutputStream(〈arg〉)

Note that word make does not appear among the solutions,
because API designers used the word create. anyCode suc-
ceeds in finding the solution because it considers, in addition
to the words such as make appearing in the input, its related
words, which includes create. anyCode uses a custom related-
word map to compute the relevant words. We built this map
by automatically processing and adapting WordNet, a large
lexical semantic network of English words.

D. Writing to a File

Consider next the following input of a developer:

write ”hello” to file ”text.txt”

For this input, in less than 50 milliseconds anyCode outputs:

1 FileUtils.writeStringToFile(new File(”text.txt”), ”hello”)
2 FileUtils.writeStringToFile(new File(”hello”), ”text.txt”)
3 FileUtils.writeStringToFile(new File(”hello”), ”hello”)
4 FileUtils.writeStringToFile(new File(”text.txt”), ”text.txt”)
5 FileUtils.writeStringToFile(new File(〈arg〉), ”hello”)

The expressions under 1 and 2 are ranked higher than, e.g., the
solution 3 because they have a higher usage of the input text
elements. Indeed, solution 3 does not refer to one of the string
literals in the input. The synthesis algorithm and our scoring
techniques favor solutions with the greater input coverage. In
this example, the first expression performs the desired task.

E. Reading from a File

In the final example we show that our input interface may
also accept an approximate expression. For instance, if a user
attempts to write an expression that reads the file, in the first
iteration she may write the following expression

readFile(”text.txt”,”UTF−8”)

Unfortunately, this expression is not well-typed according to
common Java APIs. Nevertheless, if anyCode takes such a
broken expression, it puts it apart and recomposes it into a
correct one, suggesting (again in less than 40 milliseconds)
the following solutions:

1 FileUtils.readFileToString(new File(”text.txt”))
2 FileUtils.readFileToString(new File(”UTF−8”))
3 FileUtils.readFileToString(〈arg〉)
4 FileUtils.readFileToString(new File(〈arg〉))
5 FileUtils.readFileToString(new File(”text.txt”), ”UTF−8”)

anyCode first transforms the input by ignoring the language
specific symbols (e.g., parenthesis and commas). It then slices
complex identifiers, so called k-words, into single words. Here,
readFile is a 2-word that gets sliced into read and file. Despite
the loss of some structure in treating the input, our language

3

Input Output Rank Time
NoPU NoP All [ms]

1 copy file fname to bname FileUtils.copyFile(new File(fname), new File(bname)) >10 >10 1 47
2 does x begin with y x.startsWith(y) >10 >10 1 62
3 load class ”MyClass.class” Thread.currentThread().getContextClassLoader() >10 >10 2 31

.loadClass(”MyClass.class”)
4 make file new File(<arg>).createNewFile() >10 >10 1 78
5 write ”hello” to file ”text.txt” FileUtils.writeStringToFile(new File(”text.txt”), ”hello”) >10 >10 1 47
6 readFile(”text.txt”,”UTF-8”) FileUtils.readFileToString(new File(”text.txt”), ”UTF-8”) >10 >10 5 31
7 parse ”2015” Integer.parseInt(”2015”) >10 >10 1 16
8 substring ”ICSE2015” 4 ”ICSE2015”.substring(4) >10 >10 1 31
9 new buffered stream ”text.txt” new BufferedReader(new InputStreamReader(>10 1 1 47

new BufferedInputStream(new FileInputStream(”text.txt”))))
10 get the current year new Date().getYear() >10 >10 6 62
11 current time System.currentTimeMillis() 1 1 1 16
12 open connection ”http://www.oracle.com/” new URL(”http://www.oracle.com/”).openConnection() >10 >10 1 31
13 create socket ”http://www.oracle.com/” 8080 new Socket(”http://www.oracle.com/”, 8080) >10 >10 6 47
14 put a pair (”Mike”,”+007-345-89-23”) into a map new HashMap().put(”Mike”, ”+007-345-89-23”) >10 9 1 109
15 set thread max priority Thread.currentThread().setPriority(Thread.MAX PRIORITY) >10 >10 1 109
16 set property ”gate.home” to value ”http://gate.ac.uk/” new Properties().setProperty(”gate.home”, ”http://gate.ac.uk/”) >10 >10 3 94
17 does the file ”text.txt” exist new File(”text.txt”).exists() >10 4 1 47
18 min 1 3 Math.min(1, 3) >10 7 1 31
19 get thread id Thread.currentThread().getId() >10 1 1 31
20 join threads Thread.currentThread().join() >10 1 2 16
21 delete file ”text.txt” new File(”text.txt”).delete() >10 1 1 31
22 print exception ex stack trace ex.printStackTrace() >10 >10 7 47
23 is file ”text.txt” directory new File(”text.txt”).isDirectory() >10 >10 2 46
24 get thread stack trace Thread.currentThread().getStackTrace() >10 1 1 47
25 read line by line file ”text.txt” FileUtils.readLines(new File(”text.txt”)) >10 >10 2 94
26 set time zone to ”GMT” Calendar.getInstance().setTimeZone(TimeZone.getTimeZone(”GMT”)) >10 >10 1 47
27 pi Math.PI 2 1 1 15
28 split ”ICSE-2015” with ”-” ”ICSE-2015”.split(”-”) >10 >10 1 16
29 memory Runtime.getRuntime().freeMemory() 2 2 1 15
30 free memory Runtime.getRuntime().freeMemory() 3 4 1 16
31 total memory Runtime.getRuntime().totalMemory() 2 2 1 31
32 exec ”javac.exe MyClass.java” Runtime.getRuntime().exec(”javac.exe MyClass.java”) >10 1 1 16
33 new data stream ”text.txt” new DataInputStream(new FileInputStream(”text.txt”)) >10 >10 4 47
34 rename file fname1 to fname2 new File(fname1).renameTo(new File(fname2)) >10 >10 1 31
35 move file fname1 to fname2 FileUtils.moveFile(new File(fname1), new File(fname2)) >10 >10 1 62
36 concat ”ICSE” ”2015” ”ICSE”.concat(”2015”) >10 3 1 16
37 read utf from the file ”text.txt” new DataInputStream(new FileInputStream(”text.txt”)).readUTF() >10 >10 10 47
38 java home SystemUtils.getJavaHome() 2 1 1 15
39 upper(text) text.toUpperCase() >10 2 1 31
40 compare x y x.compareTo(y) >10 >10 1 32
41 BufferedInput ”text.txt” new BufferedInputStream(new FileInputStream(”text.txt”)) >10 >10 1 15
42 set thread min priority Thread.currentThread().setPriority(Thread.MIN PRIORITY) >10 1 1 78
43 create panel and set layout to border new Panel().setLayout(new BorderLayout()) >10 1 1 172
44 sort array Arrays.sort(array) >10 >10 1 15
45 add label ”names” to panel new Panel().add(new Label(”names”)) >10 >10 1 78

Fig. 2. The table that shows the results of the comparison of the different anyCode configurations with and without unigram and PCFG models.

model gives us the power to recover meaningful expressions
from such an input. This shows that anyCode can be used
as a simple expression repair system. The desired solution is
ranked fourth because it uses a version of readFileToString
method with two arguments, which appears less frequently in
the corpus than the simpler versions of the method.

We have evaluated our system on a number of examples;
Figure 2 shows 45 text queries and the code that we expected
to obtain in return. The “All” column indicates the rank on
which the expression was found with all features of our system
turned on, as discussed in Section IV.

III. SYSTEM OVERVIEW

In this section we give a high-level picture of the main
components of our system. Input to our system consists of
i) a textual description, explicitly typed by the developer
and ii) a partial Java program with a position of the cursor,
which anyCode extracts automatically from the Eclipse IDE.
anyCode uses the input to generate, rank and present (possibly
partial) expressions to the user. As Figure 3 shows, the

key components of anyCode are the input text parser, the
declaration search engine, and the expression synthesizer. The
method getExpressions is the main method that performs these
steps, as outlined in Figure 4.

The first goal of parsing is to identify structure of the input
text using a set of natural language processing tools. anyCode
uses the structure to group input words into WordGroups.
The intuition is that the input text corresponds to several

declarations, and grouping according to the rules of English
helps to identify these declarations from multiple input words.
Moreover, the system uses a map of related words to complete
the words given in the input with some of the related meanings
computed from a modified version of WordNet [15]. To
complement natural language input, the system uses program
context from the IDE to mark local variables and literals in the
input text. Section V describes our parsing and related word
completion techniques in more depth.

In the declaration search engine, the system uses the groups,
WordGroups, to find a subset of API declarations that are
most likely to form the final expressions. The system tries to

4

Fig. 3. anyCode system overview. The offline components run only once and for all. The online components run as part of the Eclipse plugin.

getExpressions(text, context, N−bestExprs):
// Text Parsing
(WordGroups, Literals, Locals)← parse(text, context)
// Declaration Search
DeclGroups← declSearch(WordGroups, API, Unigram)
// Synthesis
ExPCFG← extend(PCFG, Literals, Locals)
Exprs← synth(DeclGroups, ExPCFG , N−steps)
return keepBest(Exprs, N−bestExprs)

Fig. 4. The high level description of online portion of anyCode.

match word groups against declarations in our API collection.
To perform matching, the system extracts a list of words
from declarations and matches them against the words in the
groups. Based on the number of words that match, declaration
Unigram [9, Chapter 4] score, and other parameters the system
estimates the matching score. We explain this in more details
in Section VIII. Finally, for each word group the system
selects the top N−best declarations with the highest scores
and puts them in a declaration group. In summary, the method
declSearch transforms each word group into a declaration
group. Lastly, we would like to mention that API contains a set
of declarations we collect from different APIs and packages.
This is done in advance, before a user invokes anyCode for
the first time.

In the last step the system uses declaration groups and a
probabilistic context free grammar (PCFG) model [9, Chap-
ter 14] to synthesize expression. ExPCFG consists of the initial
PCFG model, pre-collected from a large Java source code
corpus and the extension, a set of production rules for literals
and local variables. The method extend extends PCFG with

the extension and returns ExPCFG. The method synth tries to
unfold declaration arguments following ExPCFG model, in N
−steps. Given a declaration, ExPCFG suggests declarations
that should fill in the argument places. The method synth
also assigns scores to the expressions, based on the ExPCFG
and declarations scores. Finally, the system uses the method
keepBest in order to filter the top N−bestExprs expressions
with the highest scores.

IV. EVALUATION

This section discusses a set of benchmarks we use to
evaluate anyCode and presents the experimental results.

A. Benchmarks

We wrote 45 benchmarks shown in Figure 2. Each bench-
mark consists of a textual description and local variables
as input, and a desired expression as output. We say that
the system passes the benchmark if for the given input, the
desired expression appears among the synthesized expressions.
We use the benchmarks to estimate the effectiveness and the
importance of different aspects of our system.

We ran all experiments on a machine with a quad-core
processor with 2.7Ghz clock speed and 16MB of cache. We
imposed a 8GB limit for allowed memory usage. Software
configuration consisted of Windows 7 (64-bit) and Java(TM)
Virtual Machine 1.7.0.55. The declaration search and the
expression synthesis algorithm make use of multiple CPU
cores.

We parametrized anyCode with N−bestExprs=10 and N−
steps=5. By using a N−step=5 limit, our goal was to evaluate
the usability of anyCode in an interactive environment (which
IDEs usually are).

Results are shown in Figure 2. The Input column represents
the textual descriptions, and the Output column represents the

5

expected expressions. The column Rank represent the ranks of
the expected expressions after we run anyCode. With >10 we
mark the case when the expected expression is not among the
top ten synthesized expressions. The Rank column is split in
three sub-columns. Each column relates to a different anyCode
configuration. The first, NoPU, denotes anyCode that does not
use unigram and PCFG models. In this setting all declarations
have the same unigram score and all PCFG productions have
the same probability. The second, NoP, denotes anyCode that
uses unigram, but does not use PCFG model. In this setting
the tool uses unigram model to select declarations, but all
PCFG productions still have the same probability. The last,
All, denotes anyCode that uses both unigram and PCFG to
guide the synthesis algorithm and to rank the expressions. The
results show that the system without the both models generates
only 6 expected expressions among the top ten solutions.
The system with unigram model generates 19 and the system
with both models generates all 45 expressions. Finally, the
column Time shows the times needed to synthesize the top
ten expressions for the anyCode with both models turned on.
All times are between 15 and 172 milliseconds, with average
of 45.4 milliseconds.

In summary, the results illustrate that our system greatly
benefits from the unigram and the PCFG models. They also
show that anyCode can efficiently synthesize the expressions
in a small period of time (in less that 200 milliseconds).

B. Threats to Validity

The primary threat is to external validity: our set of exam-
ples, while fairly large by the standards of previous literature,
may not be representative of general results. This limitation
comes from the two facts: (1) there is no standardized set
of benchmarks for the problem that we examine, and (2) we
used the same set of examples to configure and evaluate our
system. The primary purpose of the examples is to show that
our tool is able to produce a set of real-worlds examples when
configured. The parameters that we configure include declara-
tion selection and reward-penalty parameters. The declaration
selection parameters are important for our word-declaration
matching. A parallel corpus with text as input and declarations
(expressions) as output would be ideal for configuring the
parameters, however no such corpus exists. Our attempt to
create the corpus from the code and its descriptive comments
led to irrelevant examples and the low quality corpus. The
reward-penalty parameters are used to effect the size of the
expressions, the aspect over which PCFG and unigram models
have no control. In the rest of the paper we take a deeper look
at the techniques we employed in anyCode.

V. PARSING

We perform parsing both on an input text and API declara-
tions. We use parsing to prepare the text and the declarations
for the search and the matching.

In the sequel, a k-word denotes a chain of k English words
connected without a whitespace between them, as often used
in Java identifiers. The words are separated at places where a

small letter meets a capital letter. Usually, declaration names
are k-words (e.g. ”readFile” is a 2-word that contains words
”read” and ”file”). A 1-word is a single English word. A token
is either a k-word, a literal or a local variable name. A literal is
a number, a string, or a boolean value. The input text consists
of tokens, whereas declarations contain only k-words.

A. Input Text Parsing

The main idea behind input parsing is to group words
in the text such that the groups can be matched to desired
declarations. To describe the parsing we use a running example
that shows different phases of the parse method in Figure 4.
Let us assume a user inserts ’copy file fname to ”C:/user/text2.
txt”’, as shown in the first row in Table 5. Each row represent
the input to the next phase, but also the output of the previous
phase.

In the input we identify the following tokens: three single
words, one local variable and a string literal. We mark local
variables and literals as shown in the second row. In the
next phase we substitute literals and local variables with their
types, and produce the output in the third row. The intuition
is that literals and local variables will appear as declaration
arguments, accordingly, we use their types to match potential
declaration argument types. To perform our next parsing step
we use the Stanford CoreNLP [10]–[12]. The CoreNLP is a
pipeline of a natural language processing tools that takes an
English raw text as input and returns tagged text with deep
semantic connections among the words. First, we use the tools
to lemmatize and tag the words. A lemmatizer analyzes a word
context to obtain the word’s canonical form, called lemma
(e.g., ”good” is the lemma of ”better”). The Part-of-Speech
(POS) tagger assigns a part of speech tags (e.g., noun, verb,
adjective and etc.) to each word, based on the context. The
tagging is important for two reasons. The first reason is that
tagging is a necessary preprocessing step towards deeper text
analysis, which we also perform. The second reason is that
different tags impose different word places in a declaration.
For instance, we observe that verbs appear in method-names,
whereas non-verbs can appear almost anywhere. Therefore,
POS-tags can help in assigning different roles and priorities
to words. We also tag the words inside each k-word (if it
contains more than one word).

Fig. 6. Natural language semantic graph for the input from Figure 5.

To properly group the words, such that each group cor-
responds to a single declaration, we need more information

6

Parsing Example
1 Text Input copy file fname to ”C:/user/text2.txt”
2 Decomposition copy file Loc(fname) to Lit(”C:/user/text2.txt”)
3 Literals & Locals to Types copy file String to String
4 Lemmatiz. & POS Tagging copy/Verb file/Noun String/Noun to/To String/Noun

5 Grouping

1 2 3 4 5
Primary Words copy/Verb file/Noun String/Noun to/To String/Noun
Secondary Words file/Noun, to/To String/Noun String/Noun
Related Words duplicate/Verb chain/Noun chain/Noun

Fig. 5. Phases of parsing an example input sentence.

than tags can provide. Thus, we use the parser to identify
different semantical relations among the words. The result is
a semantic graph, as show in Figure 6. The graph includes
relations like ”nsubj” (a nominal subject) or ”dobj” (direct
object) that identify a predicate, a subject and an object in
a sentence. The relations are important because they separate
the words that are more likely to appear in declaration names
from the words that may appear as arguments. Because we
expect that a user will type more often declaration name words
to refer to the declaration, we call them primary words. The
other words, which are more likely to appear as arguments,
we call secondary words.

In the last phase, we form word groups, such that each group
has primary, secondary and related words (see row five in the
table). In our example we form five different groups marked
with numbers 1-5. The group contains all the words below
the corresponding number. The primary words are obtained
directly from a k-word from the phase 4. The secondary words
are connected to the primary words via the semantic graph.
Namely, the secondary words are the neighbors (children) of
the primary words in the graph. The related words are API
words that are related to the primary words. Those words
include synonyms, hypernyms and hyponyms. We build our
own map of related words using set of all API words and
WordNet [15], see Section V-C. An important constraint that
we try to fulfill is that each group contains at least one
non-verb word, because we observe that declarations usually
contain at least one non-verb word.

B. Declaration Parsing

We also use parsing in pre-processing stage to create the
representation of API declarations. We next define what we
mean by a declaration, then sketch an algorithm that extracts
words from declarations, forming a model suitable for match-
ing.

1) Declaration Representation: A declaration can be a class
method, a constructor, or a field. A declaration has a name and
type, as well as an optional owner. Declaration name is a k-
word. Declaration type can be: a Java primitive type, an API
class type or a function type with multiple argument types,
built from class and simple types. A declaration can be static
or instance. A static declaration contains the owner class name.
An instance declaration possesses also a receiver type, which
we treat as any argument type.

2) Declaration Word Model: To match a declaration with a
word group, we extract k-words from a declaration. Then we
decompose complex k-words into single ones. Next, we apply
lemmatizer and POS tagger to the words. In our final step we
put the words into the primary or the secondary group based
on the position in the declaration. The words that appear in
the declaration name become the primary words and the word
that appear elsewhere become the secondary words. Our goal
is to assign higher priority to the primary words and lower to
the secondary words. Section VIII shows the framework and
the mechanisms to assign such priorities.

The declaration parsing allows us to transform API dec-
laration set into a word-declarations hash map. This allows
us to use an input word to quickly find all declarations that
contain it. This optimization is crucial when searching for
declarations.

C. Related WordMap: Modifying WordNet

To support inputs that does not strictly follow the actual
words of API declarations, we use WordNet [15], a large
lexical database of English words. WordNet groups words into
synsets, which are sets of synonyms. Each synset represents
a different meaning of a word. WordNet is a graph with
synsets as the vertices and the relations as edges. The relations
between synsets include antonyms, hypernyms and hyponyms.

API declarations contain only a subset of English words.
We refer to this subset the API words. We build a map from
all English words in WordNet to a ranked list of related API
word meanings. A key of the map is an English word and
the value is a ranked list of related API word meanings. The
resulting related words are organized into meanings (synsets)
to whom we assign scores (a value between zero and one).
This score subsequently becomes the related weight weightr
(see Section VIII-A) of a particular related word.

We build meanings using WordNet relations. For each
English word we first find synsets (synonyms). Then, we find
the synsets’ closest hypernyms and hyponyms. We filter out
all non-API words. Finally, we assign scores using textual
descriptions assign to each synset in WordNet. We use Stan-
ford POS-tagger to tag each word in a description. Then, we
calculate a percentage of API words in the description. We
assign a description score to each synonym synset. However,
to a hypernym (hyponym) synset we assign a score that is a
product of its description score and the score of the synonym

7

synset that input word uses to reach the hypernym (hyponym).
This way we give an advantage to synonyms over their closest
hypernyms and hyponyms.

VI. DECLARATION SEARCH

We expect that the developer will often insert a short
text (two to ten words), omitting many details of a desired
expression. The advantages of such an approach for developer
are faster coding, with more time to focus on other develop-
ment aspects. Such use, however, brings further challenges
for generating expressions. A typical short and ambiguous
input does not make it clear which declarations the expression
should use, nor how to compose them. To solve this difficulty,
our first step is to use the words as a starting point in
identifying the desired declarations.

Recall from Figure 4 that the parsing phase returns word
groups, making use of relations in the parse tree. Recall also
that these word groups are enriched with related words based
on WordNet. We use such word groups to find candidate
declarations. The declarative description of this algorithm
is simple: we match a word group with all declarations,
calculate the matching score for each declaration, and find
N−bestDecl declarations with the top score. We apply the
same procedure to each group. To make the solution practical,
we split the algorithm into two steps. First, we use a word
group and the word-declaration API map to select a set of
declarations that match with at least one word in the word
group. In practice, the selected set is far smaller that the entire
API collection. As a consequence, we will have far fewer
calls to the expensive scoring procedure in the second step.
The second step calculates the score using for each selected
declaration using the matching procedure from Section VIII-A
and the unigram model. From the unigram model we obtain
the declaration probability. We apply the two steps to each
group in a list of word groups.

VII. SYNTHESIS

In this section we describe the algorithm that synthesizes the
expressions using PCFG model. Because the algorithm relays
on PCFG we first explain the model and later the expression
synthesis.

A. Probabilistic Context Free Grammar Model

The idea is to use the information on declaration composi-
tions to synthesize expressions. In general, a declaration has
multiple arguments, meaning that it simultaneously composes
with multiple declarations. We decide to treat the simultane-
ous compositions as one inseparable multi-composition. We
collect from the corpus API multi-compositions and form
the PCFG model. Intuitively, each production represents one
multi-composition. The nonterminal symbols on the left-hand
side of the production we call holes. There are three kinds of
holes: a declaration, a local variable and a literal hole. The
declaration hole explains how a declaration is simultaneously
composed with other holes. Literal and local variables holes
we treat a bit differently. During PCFG extraction, we abstract

away literal and local variable names and leave only type
information. Moreover, we do not build production rules for
literal and local variable holes from the corpus, but from the
user context. This means that our PCFG model collected from
a corpus is incomplete. We complete it once we have the
textual input and the context of the partial program where a
user invoked anyCode. From the context we build the missing
production rules and expand PCFG model. This allow us
to synthesize expressions with the local variables from the
context and literals from the textual input.

The reason why we call the non-terminals, holes, is that,
during synthesis, they appear as holes in partial expressions.
We use holes to access production rules that unfold them. We
also keep probability for each rule. Note that a single hole can
have a several different productions, e.g., denoting a several
different multi-compositions for a single declaration.

B. Partial Expression Synthesis

A partial expression denotes an intermediate result arising
in the construction of expressions of interest. A complete
expression would be made up of variables, literals, and dec-
laration applications. A partial expression may additionally
contain different kinds of holes, as well as connectors. Holes
denote places where a partial expression may expand using
the rules of PCFG. A connector denotes a place in a partial
expression that can expand by substituting another synthesized
partial expression.

Our algorithm proceeds in two following phases:
First Phase turns every declaration group into a partial
expression group. For each declaration in a declaration group:

1) We wrap a declaration name in a hole, creating the initial
partial expression.

2) We use production rules of PCFG to unfold holes in par-
tial expressions. This creates new partial expression(s).
Gradually, partial expressions grow, and we continue
unfolding them until we reach some maximum number
of steps. When we can, we insert a connector at the
place where partial expressions may merge. This way,
we leave the merging until the next phase.

3) We calculate a partial expression score, based on the
PCFG model and the declaration scores.

4) The expressions without holes form a partial expression
group. (The expressions may have connectors.)

Second Phase tries to connect as many as possible expressions
that belong to the different partial expression groups. For each
partial expression in a partial expression group:

1) We find connectors in the partial expression and substi-
tute them with the appropriate expressions from another
group. Again, this creates more partial expressions. They
gradually grow and we keep substituting connectors until
some maximum number of steps is reached.

2) The score of a new partial expression is calculated using
PCFG model, declaration scores, the text input coverage
and expression repetition parameters as explained in
Section IX.

8

3) We keep and present to a user some maximal number
of expressions.

VIII. DECLARATION SCORE

WordGroup-Declaration matching score and declaration un-
igram score influence total declaration score. More precisely
the declaration score is equal to the product of the two scores.

A. WordGroup-Declaration Matching Score
We next present a word group and a declaration match-

ing algorithm. Recall that the word group contains primary,
secondary and related words. We further split them based on
their input origin. Namely, each word has a word in input to
which it belongs. We call this word an origin; a group can
have a several origins. Our goal is to maximize the matching
score between group origins and declaration words. However,
we do not match an origin with a declaration word. Instead,
we split the group into disjoint subgroups based on origins,
and match subgroups with declaration words. A word matches
with a subgroup if a subgroup contains the lexically identical
word with the same tag. Let us create the bipartite graph such
that one set, SGS, of vertices is a set of subgroups, and the
other, W, is the set of declaration words. Also, we create
edges between subgroups and declaration words that match.
Each edge has a weight, a value between zero and one. Now,
calculating the maximum matching score turns into finding
a maximum weight matching in a weighted bipartite graph.
This is the well-known assignment problem [14]. To solve
it, we choose the Hungarian method [13], with the following
optimizations. We observed that many vertices remain without
edges, so we remove all such vertices. We also observe
that the bipartite graph is usually disconnected. We identify
its connected components, and decompose it into smaller
bipartite graphs. We calculate the score of each component and
sum them up. The final score is the word group-declaration
matching score. Another optimization is that, if we need to
calculate matching 1 to n, we simply find the maximum among
the weights. This is an important optimization because this sort
of matching and its special case (1 to 1 matching) often occur.
We define a total match weight between a group word wg and
a declaration word wd as follows:

weightmatch(wg, wd) = weighti(wg) ∗ wieghti(wd) ∗
∗ weightk(wg, wd)∗ weightr(wg)

Word Importance Weight: Primary words are more im-
portant than secondary and related words. To encode this, we
introduce word importance weight, weighti, which is a real
value between one and zero and assigns a higher value to a
primary than to the secondary and related words.

Kind Weight We reward more a matching between pri-
mary input and primary declaration words (a primary-primary
match) than a primary-secondary and a secondary-secondary
matching. (Related words are treated same as primary words
in this context.) We use a quantitative function, called kind
weight, weightk, that returns a real value between one and
zero. It assigns a higher value to a primary-primary than to a
secondary-primary and a secondary-secondary matching.

Related Word Weight We use WordNet and collection of
API words to calculate weightr (see also Section V-C). We
penalize related words that are far from the primary words.
To measure a primary-related word distance we introduce a
quantitative function, called related word weight, weightr, that
returns a real value between one and zero. Synonyms are closer
to a word than hyponyms and hypernyms.

To apply the matching algorithm, we take the maximum
weight between a subgroup SG and a declaration word w, to
be the edge (SG, w) weight:

weightmatch(SG, w)= max({weightmatch(wg, w) | wg ∈ SG})

B. Declaration Unigram Score

The unigram model [9, Chapter 4] assigns a probability to
each declaration based on call frequency in a corpus. The
higher the declaration frequency, the higher the probability.
We smooth the model by assigning the minimal frequency
value (collected in the corpus) to a declaration that does not
appear in the corpus. The declaration unigram score is equal
to the declaration probability.

IX. PARTIAL EXPRESSION SCORE

To rank the (partial) expressions, expr, and to guide the
synthesis algorithm we use the score score(expr) that is
computed by the following formula:

score(expr) = log(score(expr)pcfg) + log(score(expr)decl)

+ score(expr)cov − score(expr)rep

The PCFG score, score(expr)pcfg, is equal to the product of all
composition probabilities used in the (partial) expression. The
declaration score, score(expr)decl, is equal to the product of
all declaration scores whose declarations appear in expr. The
coverage score, score(expr)cov, estimates and favors the higher
coverage of the input text words. We say that the word is
covered if it selects a declaration in expr. Finally, the repetition
score, score(expr)rep, is proportional to the number of extra
partial expressions used in score(expr)rep. We say that a
partial expression is extra if another partial expression from the
same partial expression group is also used in score(expr)rep.
Preferably, we would like to use a single partial expression
per each partial expression group.

X. CONSTRUCTING PCFG AND UNIGRAM MODELS

We build both unigram and probabilistic context-free gram-
mar models by analyzing the corpus of projects from GitHub.

Java Code Corpus. We use the GitHub Java corpus [16]
that contains over 14’500 Java projects. The corpus includes
only projects from GitHub that were forked at least once, to
select more popular repositories. We decide to analyze each
Java source file individually to reduce analysis time and avoid
the need to execute essentially arbitrary build processes of
various projects. Whereas this reduces the quality of the data
we can extract from corpus, it is compensated by the fact that
we can analyze many more projects: we were able to analyze
14’500 Java projects containing over 1.8 million files.

9

Model Extraction. We use Eclipse JDT parser [17] to
parse each file. To improve the model we build our own
symbol table and type-checker. The symbol table keeps track
of all imported API declarations (of our interest). We analyze
an expression using the symbol table and the type-checker.
The symbol table identifies API declarations in an expression
and the type-checker checks if the expression type-checks
against them. Using those methods we extract a declaration
multi-composition along with its occurrence frequency. We
also extract the declaration occurrence frequency. Then, we
use them to calculate the composition’s and the declaration
occurrence probabilities. Finally, we use the composition and
its probability to build PCFG model, and the declaration and
its probability to build Unigram model. The models are formed
once we extract the information for all compositions and
declarations in the corpus. In general, an expression contains
user-defined declarations. We reduce their number to improve
the quality of the analysis. In particular, where suitable, we
inline local variables. The rest we mark with a special symbols
and encode them in the PCFG model.

XI. RELATED WORK

We mention related work that combine NLP and program
synthesis techniques. as well as program synthesis tools with
similar goals as our work.

SmartSynth [7] generates smartphone automation scripts
from natural language descriptions. It uses NLP techniques
to infer components and their partial dataflow from NL de-
scription. Then, it uses type based synthesis to constructs the
scripts. Macho [18] transforms natural language descriptions
into a simple programs using a natural language parser, a
database of corpus and input-output examples. It maps English
into database queries, then selects them, combines them and
test them using examples. The queries are based on variables
names. Little and Miller [19] built a system that translates
a small number of keywords, provided by the user, into a
valid expression. It extracts words from a declaration in the
context, and tries to match them using explanatory vectors.
The system tries to cover as many as possible words from the
input, using declaration words. It also penalizes the unmatched
words. NaturalJava [20] allows a user to create and manipulate
Java programs using an NL input. It uses a restricted form of
NL, based on Java‘s programming concepts, and translates it
to Java statements. It requires the user to think and explicitly
describe commands at the syntactical level of Java. Also,
Metafor [21] transforms a story (in NL form) into a program
template. It tries to obtain program structure by interpreting
nouns as program objects, verbs as functions and adjectives
as properties.

Unlike all mentioned tools, anyCode uses code corpus,
PCFG and unigram model to synthesize and rank the expres-
sions. We also automatically infer the set of words that map
to declaration (components). Finally, those tools usually relay
on the mapping model, where verbs are mapped to actions
(methods), and nouns to objects (arguments). As discussed
in Section VIII-A, we introduce a more sophisticated model

and its framework that maps an input text to declarations,
resolves complex declaration names and takes into account
related words (e.g. synonyms). We also show how to encoded
the mapping into the assignment problem and solve it using
Hungarian method.

SLANG [6] takes a program with holes and produces the
most likely completions, sequences of method calls. It uses
an N-gram language model to predict and synthesize a likely
method invocation sequence, as well as method arguments.
SNIFF [22] uses natural language to search for code ex-
amples. It collects a corpus, code examples, and uses API
documentation to annotate the examples, and method calls,
with keywords. In our previous work, InSynth [8] asks user
to specify the desired type and produces a set of ranked
expressions, instances of the desired type. InSynth ranks the
solutions based on the declaration unigram model. In this
paper, we change the input interface to the textual one, giving
a user more freedom in specifying his wishes. We additionally
use more sophisticated PCFG model, extracted from a far
bigger corpus than the one used in InSynth. CodeHint [23]
is a dynamic synthesis tool that uses a runtime information to
generate and filter candidate expressions. A user provides tests
and a specification, and tool generate candidates and checks
them against the tests and specification. To guide a generation,
the tool uses only a declaration unigram model. XSnippet
[24] takes a user query to extract Java code from the sample
repository. It offers a range of queries from generalized to spe-
cialized. XSnippet ranks solutions based on their length, fre-
quency, and context-sensitive as well as context-independent
heuristics. The user needs to initiate additional queries to
fill in the method arguments. Strathcona [25] automatically
extracts a query based on the structure of the developed code.
It does not allow a user to explicitly describe their needs.
PARSEWeb [5] uses the Google code search engine to get
relevant code examples. The solutions are ranked by length and
frequency. The advanced code completions tools [26], [27],
proposes declarations and code templates. Both systems use
API declaration call statistics from the existing code examples
to present a solutions with appropriate statistical confidence
value.

XII. CONCLUSIONS

We presented anyCode, to the best of our knowledge the
first tool for code synthesis that combines unique flexibility
in both its input and its output. On the one hand, anyCode
performs parsing of the free-form text input that may contain
a mixture of English and code fragments. On the other hand,
anyCode automatically constructs valid Java expressions for a
given program point and is able to generate combinations of
methods not encountered previously in the corpus. Ensuring
this flexibility required a new combination of techniques from
natural language processing, code synthesis, and statistical
inference. Our experience with the tool, as reported on 45
diverse examples, suggests that there is a number of scenarios
where such functionality can be useful for the developer.

10

REFERENCES

[1] GitHub repository hosting service, https://github.com/.
[2] BitBucket repository hosting service, https://bitbucket.org/.
[3] SourceForge source code repository, http://sourceforge.net/.
[4] Google Developers, https://developers.google.com/.
[5] S. Thummalapenta and T. Xie, “PARSEWeb: a programmer assistant

for reusing open source code on the web,” in ASE, 2007.
[6] V. Raychev, M. T. Vechev, and E. Yahav, “Code completion with

statistical language models,” in PLDI, 2014, p. 44.
[7] V. Le, S. Gulwani, and Z. Su, “Smartsynth: Synthesizing smartphone

automation scripts from natural language,” in MobiSys, 2013, pp.
193–206.

[8] T. Gvero, V. Kuncak, I. Kuraj, and R. Piskac, “Complete completion
using types and weights,” in PLDI, 2013, pp. 27–38.

[9] D. Jurafsky and J. H. Martin, Speech and Language Processing,
2nd ed. Prentice Hall, 2008.

[10] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard, and
D. McClosky, “The Stanford CoreNLP natural language processing
toolkit,” in ACL, 2014, pp. 55–60.

[11] M.-C. de Marneffe, B. MacCartney, and C. D. Manning, “Generating
typed dependency parses from phrase structure parses,” in LREC,
2006, pp. 449–454.

[12] K. Toutanova, D. Klein, C. D. Manning, and Y. Singer, “Feature-rich
part-of-speech tagging with a cyclic dependency network,” in
HLT-NAACL, 2003.

[13] H. W. Kuhn, “The hungarian method for the assignment problem,”
Naval Research Logistics Quarterly, vol. 2, pp. 83–97, 1955.

[14] R. Burkard, M. Dell’Amico, and S. Martello, Assignment Problems.
Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, 2009.

[15] C. Fellbaum, WordNet: An Electronic Lexical Database. Bradford
Books, 1998.

[16] M. Allamanis and S. Charles, “Mining Source Code Repositories at
Massive Scale using Language Modeling,” in The 10th Working
Conference on Mining Software Repositories. IEEE, 2013, pp.
207–216.

[17] EclipseJDT, http://www.eclipse.org/jdt/.
[18] A. Cozzie and S. T. King, “Macho: Writing programs with natural

language and examples,” University of Illinois at Urbana-Champaign,
Tech. Rep., 2012.

[19] G. Little and R. C. Miller, “Keyword programming in java,” in ASE,
2007, pp. 84–93.

[20] D. Price, E. Riloff, J. L. Zachary, and B. Harvey, “Naturaljava: A
natural language interface for programming in java,” in IUI, 2000, pp.
207–211.

[21] H. Liu and H. Lieberman, “Metafor: Visualizing stories as code,” in
IUI, 2005, pp. 305–307.

[22] S. Chatterjee, S. Juvekar, and K. Sen, “SNIFF: A search engine for
java using free-form queries,” in FASE, 2009, pp. 385–400.

[23] J. Galenson, P. Reames, R. Bodı́k, B. Hartmann, and K. Sen,
“Codehint: Dynamic and interactive synthesis of code snippets,” in
ICSE, 2014, pp. 653–663.

[24] N. Sahavechaphan and K. Claypool, “Xsnippet: mining for sample
code,” in OOPSLA, 2006.

[25] R. Holmes and G. C. Murphy, “Using structural context to recommend
source code examples,” in ICSE, 2005, pp. 117–125.

[26] M. Bruch, M. Monperrus, and M. Mezini, “Learning from examples to
improve code completion systems,” in ESEC/SIGSOFT FSE, 2009, pp.
213–222.

[27] http://www.eclipse.org/recommenders/.

11

