Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Student works
  4. Classification of urban structural types (UST) using multiple data sources and spatial priors
 
Loading...
Thumbnail Image
master thesis

Classification of urban structural types (UST) using multiple data sources and spatial priors

Poncet Montanges, Arnaud  
2014

Remote sensing and geographic information science offer many pos- sibilities in terms of availability of diverse data. Some products like land cover layers or digital elevation models can be extracted from imagery and enable the realization of 3D city models. Starting from these morphological and geographical sources, an approach is proposed to extract information about urban structure types (UST), i.e. types of urban habitat at the neighborhoodscale. We propose an effective processing chain to describe UST : from the different data sources, we extract spectral and spatial indices and use them as features in a machine learning process to classify these urban structural types using support vector machine classification (SVM). Moreover, Markov Random Fields (MRF) are used to take into account the spatial distribution of the classe and increase the spatial consistency. This study focuses on the city of Munich and uses as different data sources the land cover data, the 3D city model, spectral images from LandSat TM 8 and OpenStreetMap (OSM) vector data to character- ize UST. The main hypothesis is that we can discriminate among urban structural types by using land cover information, spectral properties and 3D structure: in other words, that an industrial area won’t have the same structure nor the same properties as a residential or an agricultural area. The proposed processing chain enables to predict with a precision of 70% the 11 UST. This opens possibilities to describe the urban footprint of the city, to detect the key areas for urban planification and to better understand the city dynamics.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Master_Project_UST_ArnaudPoncetMontanges copy.pdf

Access type

openaccess

Size

18.65 MB

Format

Adobe PDF

Checksum (MD5)

68b55b06368098042ff04ee1656b8b7a

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés