Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Error estimates for finite element approximations of nonlinear monotone elliptic problems with application to numerical homogenization
 
research article

Error estimates for finite element approximations of nonlinear monotone elliptic problems with application to numerical homogenization

Abdulle, Assyr  
•
Huber, Martin Ernst  
2016
Numerical Methods for Partial Differential Equations

We consider a finite element method (FEM) with arbitrary polynomial degree for nonlinear monotone elliptic problems. Using a linear elliptic projection, we first give a new short proof of the optimal convergence rate of the FEM in the L2 norm. We then derive optimal a priori error estimates in the H 1 and L2 norm for a FEM with variational crimes due to numerical integration. As an application we derive a priori error estimates for a numerical homogenization method applied to nonlinear monotone elliptic problems.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

fem_nonlinear_monotone_abd_hub.pdf

Access type

openaccess

Size

6.44 MB

Format

Adobe PDF

Checksum (MD5)

012d03147bd680066a595384b6c48530

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés