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Abstract

Social network analysis is a rapid expanding interdisciplinary field,

growing from work of sociologists, physicists, historians, mathematicians,

political scientists, etc. Some methods have been commonly accepted in

spite of defects, perhaps because of the rareness of synthetic work like

(Freeman, 1978; Faust & Wasserman, 1992). In this article, we propose

an alternative index of closeness centrality defined on undirected networks.

We show that results from its computation on real cases are identical to

those of the closeness centrality index, with same computational complex-

ity and we give some interpretations. An important property is its use in

the case of unconnected networks.

1 Introduction

The study of centrality is one of the most popular subject in the analysis

of social networks. Determining the role of an individual within a society, its

influence or the flows of information on which he can intervene are examples

of applications of centrality indices. They are defined at an actor-level and are

expected to compare and better understand roles of each individual in the net-

work. In addition, a graph-level index called centralization (i.e. how much the

index value of the most central node is bigger than the others) is defined for

each existing index .

Each index provides a way to highlight properties of individuals, depen-

dently on its definition. For example, degree centrality attributes high measure

to an individual having great influence on its neighbors. Closeness centrality

highlights the players who will be able to contact easily all other members of

the network. Betweenness centrality gives highest values to individuals through

whom information is more likely to pass.
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In 1978, Linton C. Freeman wrote a seminal article reviewing three types of

centrality (Freeman, 1978). After a short review about centrality, he outlines

three indices, interpretable each in a different way, and presented in an elegant

form: the index belongs to the interval [0, 1], a value close to 1 signifying high

centrality, a value close to 0 signifying low centrality and meaning that the ac-

tor plays an accessory role at a graph-level. The index values can be compared

between actors of the same graph, or between distinct graphs (which may pro-

vide an intuition about the importance of an agent, but often is not exploitable

in-between graphs of different types).

Degree centrality is computed by counting the neighbors of each vertex. It

is given by

(1) cD(xi) =
deg(xi)

n− 1

with xi ∈ V , V the set of nodes, n = |V | and deg(xi) the degree of node xi.

Any attempt to modify or improve this definition will certainly make it more

complex.

Closeness centrality sums distances from a vertex to each other. It is defined

as

(2) cC(xi) =
n− 1∑

j 6=i
dist(xi, xj)

with xi ∈ V , n = |V | and dist(xi, xj) the distance from node xi to node xj .

There are algorithms to optimize the calculation of this index implying some

approximations (Eppstein & Wang, 2004). Some variants have been proposed

(Newman, 2003; Csardi & Nepusz, 2006; Butts, 2009). We will focus on them
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later in this document.

Betweenness centrality of a node is proportional to the number of occurrences

of itself on all geodesics of the graph. The calculation is made as follows:

(3) cB(i) =
2
∑∑ gjk(i)

gjk

(n− 1)(n− 2)

with gjk the number of geodesics from node xj to node xk, gjk(i) the number

of geodesic from xj to xk containing xi, the double sum being calculated on all

pairs (j, k) such that j 6= i 6= k and j < k. Ulrik Brandes studied it in depth and

provided an algorithm reducing computation time along with some variations

(Brandes et al. , 2006; Brandes, 2008).

Since then, these three indices have been discussed, others have been pro-

posed and some have become very popular, as Bonacich centrality index, which

uses eigenvectors (Bonacich, 1987). More than thirty years later, the three

previous indices are still accepted as the norm and in one case at least, some

improvements can be done.

Without any increase of computational complexity, this article proposes an

alternative to the index of centrality of proximity - the index of centrality har-

monic - giving comparable results (ranks are mostly the same) and a possible

interpretation on unconnected graphs unlike closeness centrality. In section 2

we define and explain how to compute the harmonic index. In section 3 and 4

we study its behavior in comparison with that of the closeness centrality. Fi-

nally in section 5 we give an interpretation of the unconnected case, show some

problematic cases and discuss its general interpretation.
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2 Classical and other closeness centrality indices

Computation for every node of the closeness centrality index (eq. 2) needs

the distances between all pairs of vertices. In the case of graph G1 (see figure

1a), the geodesic distances between vertices are reported in table 1b.

x1
x2

x3

x4

x5

(a) G1 : undirected 5-nodes graph.

x1 x2 x3 x4 x5
x1 X 1 2 3 2
x2 1 X 1 2 1
x3 2 1 X 1 2
x4 3 2 1 X 1
x5 2 1 2 1 X

(b) dij : distance matrix of graph
G1 (fig. 1a).

Figure 1: Example of a connected graph.

We compute the index of node x1 as an example:

cC(x1) =
n− 1∑
i 6=1 di1

=
5− 1

1 + 2 + 3 + 2
=

1

2
.

Unfortunately, when the graph is unconnected like in fig. (2a), closeness

centrality appears to be useless because the distance between two vertices be-

longing to different components is infinite by convention, which makes the sum

in 2 infinite too and therefore its inverse equal to zero. For every vertex of such

a graph, there is always another vertex belonging to another component: indices

of all vertices of the graph are therefore useless and the calculation of the index

is limited to the largest component, omitting the roles played by individuals of

other components. But what can we conclude from calculation if the size of the

largest connected component is not significantly greater than the second? De-

gree and betweenness centralities can always be calculated: how can we correct

the closeness centrality definition in order to be able to compute it on every

kind of network?
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x1

x2

x3

x4

x5

(a) G2: undirected 5-nodes
graph.

x1 x2 x3 x4 x5
x1 X 1 ∞ ∞ ∞
x2 1 X ∞ ∞ ∞
x3 ∞ ∞ X 1 1
x4 ∞ ∞ 1 X 1
x5 ∞ ∞ 1 1 X

(b) dij : distance matrix of graph
G2 (fig. 2a).

Figure 2: Example of an unconnected graph: sum of the elements of any line or
row of matrix (2b) is always infinite.

Some alternatives exist. In (Csardi & Nepusz, 2006), they propose to replace

the infinite distance between two vertices belonging to two distinct components

by the number of vertices of the graph: the largest geodesic possible in a graph

with n vertices is of length n − 1 (a chain-graph). Hence closeness centrality

can be generalized to the formula

(4) cα(xi) =
n− 1∑

i 6=j
dist(xi, xj) +mα

with vertices {xj}j chosen in the same connected component as the vertex xi ,

n = |V |, m the number of vertices unconnected to xi and α ∈ R+ a constant

greater than or equal to the diameter of graph.

The innovation proposed by this article is the index of harmonic centrality,

briefly described in (Newman, 2003; Butts, 2009) and defined as the sum of the

inverted distances instead of the inverted sum of the distances.

(5)
∑
i 6=j

1

dist(xi, xj)

5



The use of the harmonic mean avoid cases where an infinite distance outweighs

the others. The index is normalized by noting that on a star graph, the max-

imum is obtained by the node in the center and is |V | − 1. Thus the index of

harmonic centrality is defined by

(6) cH(xi) =
1

n− 1

∑
j 6=i

1

dist(xi, xj)
.

Let’s see two examples of calculation, with nodes x1 and x3 from G2:

(7)

cH(x1) =
1

5− 1

∑
i 6=1

1

dist(x1, xi)
=

1

4

(1
1
+

1

∞
+

1

∞
+

1

∞
)
=

1

4

cH(x3) =
1

5− 1

∑
i 6=3

1

dist(x3, xi)
=

1

4

( 1
∞

+
1

∞
+

1

1
+

1

1

)
=

1

2
.

One notices on this small example that the number of vertices belonging

to the same component as the computed vertex increases its harmonic central-

ity index, because these are all non-zero in the calculation. Thus, the index

attaches greater importance to well-connected vertices. Moreover, the index ap-

pears to have higher probability of reaching lower values when computed on an

unconnected graph, reflecting the inability to communicate between individuals

of different components (note that it is far from being systematically the case

when comparing two graphs of the same size, one connected and the other not).

The maximum value of the harmonic centralization is defined through the

study of the index on a star graph. The index of the node in the center is 1 and

of the leaves is 1
n−1(

1
1 + (n − 2)12) =

n
2(n−1) . Therefore centralization index of

harmonic centrality is

(8) CH =

2(n− 1)
∑
i

(
c∗H − cH(xi)

)
n

with c∗H = max
j

cH(xj) and n = |V |.
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3 Methods

In order to study the behavior of closeness and harmonic centralities, we

use three types of networks: random graphs generated with Erdös-Rényi model

(Erdös & Rényi, 1959; Erdös & Rényi, 1960), scale-free graphs generated with

Barabasi-Albert model (Barabasi & Albert, 1999) and some real networks. In

each case, we compute the two indices on every node and then compare the

ranks inducted by them. We decided to use Spearman’s correlation ρ which is

appropriate to this decision.

During the simulations, we generate one hundred graphs, determine each

ρ and then compute their mean and standard deviation. With the third cate-

gory of networks, we only calculate ρ. Generating a random graph according

to Erdös-Rényi model begins with a set of unconnected vertices, then for each

pair of vertices an edge is created with some fixed probability (chosen values:

see table 1). Concerning the scale-free networks, the generating method we

use begins with a complete graph of order equal to the number of edges it has

been decided to create at each time step. Then, a vertex is added at each time

step and edges are drawn with preferential attachment (Dorogovtsev & Mendes,

2003): nodes have a probability proportional to their degree of being connected

to the new node.

Those choices may be too naive or restricted: in a near future, we hope to

make measurements on assortative (i.e. positive correlation of degrees) networks

(Newman & Park, 2003; Xulvi-Brunet & Sokolov, 2004), a common property of

social networks.
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Following networks are studied and appear in table 3:

• Padgett’s florentine families (Kent, 1978; Wasserman & Faust, 1994).

We use its biggest component composed of 15 nodes and 20 edges (see

figure 3).

Acciaiuoli

Albizzi

Barbadori

Bischeri

Castellani

GinoriGuadagni

Lamberteschi

Medici

Pazzi

Peruzzi Pucci

Ridolfi

Salviati

Strozzi
Tornabuoni

Figure 3: Padgett’s florentine families.

• A network of relation between dolphins in doubtful Sound, New-Zealand

(Lusseau et al. , 2003). The graph is connected and owns 62 nodes and

159 edges.

• "A coauthorship network of scientists working on network theory and

experiment" (Newman, 2006) compiled by Mark Newman, unconnected

and made of 1589 nodes and 2742 edges. Like earlier, we only use the

biggest component, which owns 379 nodes and 914 edges. Note that this

network was compiled from only two sources: two literature reviews of the

field (see figure 4).

• A network of friendships in a karate club after a scission (Zachary, 1977).

34 nodes and 78 edges.
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Figure 4: The full network of scientists: |V | = 1589, |E| = 2742. The giant
component is easily discernible.

4 Results

In table 1 are shown the results obtained with random graphs along with

some properties of the graphs. In table 2 are shown the results corresponding

to scale-free graphs and also some properties. Mean and standard deviation are

computed among the ρ’s of all the graphs generated.

|V | p |E| mean sd
100 0.1 990 0.9946 0.0013
100 0.2 1980 0.9924 0.0027
100 0.3 2970 0.9999 8.56× 10−5

1000 0.01 99900 0.9993 4.68× 10−5

1000 0.05 499500 0.9972 0.0002
1000 0.1 999000 0.9999 1.56× 10−5

Table 1: Results for simulations of 100 random graphs in each case.

In table 3 are reported ρ’s computed on the four graphs presented earlier.
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|V | |E| edges added mean sd
100 99 1 0.9812 0.0161
100 198 2 0.9899 0.0024
1000 999 1 0.9933 0.0059
1000 1998 2 0.9988 0.0002
1000 2997 3 0.9989582 9.76× 10−5

Table 2: Results for simulations of 100 scale-free graphs in each case.

network ρ

florentine 0.9514388
dolphins 0.9380984

coauthorship 0.9612777
karate 0.953108

Table 3: Correlations of closeness and harmonic centrality measures.

5 Discussion

Correlation coefficients from tables 1, 2 and 3 are close to 1. In those cases,

we conclude that both indices behave the same.

Computational complexity of the harmonic centrality index is O(n|E|), with

n the number of nodes we decided to compute the index for. It is the same as

the closeness centrality.

There is a strong assumption when use is made of the closeness centrality:

the network has to be connected. This can lead to wrong interpretations of the

results: Padgett’s sixteen florentine families were especially chosen among more

than a hundred! A lot of links are omitted and we can seriously hypothesize

that the Pucci family is probably in the same component as the other fifteen

families appearing in the graph (see figure 3). Newman’s network (see figure

4) leads to the same conclusion because it was compiled from a selected set of

collaborations (the two literature reviews). Therefore, with its "connectedness-

limitation", closeness centrality won’t give any help when trying to understand
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the network as a whole. It isn’t useful when a study is done on graphs defined

from samples.

We have seen that the harmonic centrality behaves similarly as the closeness

centrality when the graph is connected, and can also be computed on uncon-

nected graphs. We give some interpretations.

• Nodes close to the one we are interested in will improve its measure (In

some degenerated cases, this can also lead to incompatibility with the

closeness centrality index, (see figure 5) where ρ = −0.7954545! But such

a graph is not likely to appear in social network analysis.), which means

that being in a dense cluster, even a little one, will assure this individual

a higher value of its index. In this case the exploitation of harmonic

centrality is no more compatible with closeness centrality.

(a) CLOSENESS (b) HARMONIC

Figure 5: G3. A degenerate case: ρ = −0.7954545 ! Size of each node vary
depending upon the rank of the corresponding index: a big node represents an
individual whose rank is small (1 is the best rank), a small node is an individual
with a very high rank.

• If the graph is unconnected, a non-zero value doesn’t mean the individual

can communicate to everyone else, but instead that he can play a certain

role in the graph, which can and must be compared to the ones of the
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others via the measures. Being in a small component doesn’t mean this

individual will get the smallest score (see figure 6).

Figure 6: Each node of the biggest component hasn’t got necessarily higher
harmonic centrality than nodes in other components.

• An isolate will always have an harmonic centrality of 0.

Some computations (not appearing in this article) showed us that the har-

monic centrality most often gives higher values on unconnected and sparse

graphs than the generalized centrality (See equation 4. Remark that isolates

invert this tendency.) Therefore the results from the computation of harmonic

centrality can give rise to many more interpretations than an index which gives

values very close to 0. For example, the mean of the harmonic centrality com-

puted on the network of scientists is more than twenty times higher than the

mean of the generalized centrality (0.01374 against 0.00068).

6 Conclusion

An alternative method of computing centrality has been defined and stud-

ied. High correlation of harmonic centrality with closeness centrality makes it

a good alternative, in particular because it can be computed and interpreted
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on unconnected graphs. Limitations and unexpected behavior of the index find

their origin, from what we’ve seen, only from degenerate and highly improbable

cases. Comparisons should be done on other types of graphs, especially those

reproducing properties of social networks. How to interpret the results brought

by this index may also need a more in depth study: the definition of the har-

monic centrality index uses inversions, but not in a similar way as the closeness

centrality index. How close those two indices really are is an important question

to answer.
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