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Abstract—We present the concept of an acoustic rake re-
ceiver—amicrophone beamformer that uses echoes to improve the
noise and interference suppression. The rake idea is well-known in
wireless communications; it involves constructively combining dif-
ferent multipath components that arrive at the receiver antennas.
Unlike spread-spectrum signals used in wireless communications,
speech signals are not orthogonal to their shifts. Therefore, we
focus on the spatial structure, rather than the temporal. Instead
of explicitly estimating the channel, we create correspondences
between early echoes in time and image sources in space. These
multiple sources of the desired and the interfering signal offer
additional spatial diversity that we can exploit in the beamformer
design. We present several “intuitive” and optimal formulations
of acoustic rake receivers, and show theoretically and numerically
that the rake formulation of the maximum signal-to-interfer-
ence-and-noise ratio beamformer offers significant performance
boosts in terms of noise and interference suppression. Beyond
signal-to-noise ratio, we observe gains in terms of the percep-
tual evaluation of speech quality (PESQ) metric for the speech
quality. We accompany the paper by the complete simulation
and processing chain written in Python. The code and the sound
samples are available online at http://lcav.github.io/AcousticRake-
Receiver/.
Index Terms—Acoustic rake receiver, beamforming, echo

sorting, interference cancellation, noise suppression, perceptual
evaluation of speech quality (PESQ), room impulse response.

I. INTRODUCTION

R AKE receivers take advantage of the multipath propaga-
tion, instead of trying to mitigate it. The basic idea of the

rake receivers, which are commonly used in wireless commu-
nications, is to coherently add the multipath components and
thus increase the effective signal-to-noise ratio ( ). The orig-
inal scheme was developed for single-input-single-output sys-
tems [1], and it was later extended to arrays of antennas [2], [3]
that exploit spatial diversity. Thus multipath components that
are not resolvable with a single antenna because they arrive at
similar times, become resolvable because they arrive from dif-
ferent directions.
In spite of the success of the rake receivers in wireless com-

munications, the principle has not received significant attention
in room acoustics. Nevertheless, constructive use of echoes in
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rooms to improve beamforming has been mentioned in the lit-
erature [4]–[6]. In particular, the term acoustic rake receiver
(ARR) was used in the SCENIC project proposal [4].
The list of ingredients for ARRs in room acoustics is sim-

ilar as in wireless communications: a wave (acoustic instead of
electromagnetic) propagates in space; reflections and scattering
cause the wave to arrive at the receiver through multiple paths
in addition to the direct path, and these multipath components
all contain the source waveform.
The main difference is that in room acoustics we do not get

to design the input signal. Spreading sequences used in CDMA
are designed to be near-orthogonal to their shifts and orthogonal
between different users, which facilitates the multipath channel
estimation; such orthogonality is not exhibited by speech.More-
over, speech segments are very long with respect to the time
delay between two consecutive echoes, and they are a priori
unknown at the receiver.
On the contrary, there are no significant differences in terms

of the spatial structure. If we know where the echoes are
coming from, we can design spatial processing algorithms—for
example beamformers—that use multiple copies of the same
signal arriving from different directions.
Imagine first that we know the room geometry. Then, if

we localize the source, we can predict where its echoes will
come from using simple geometric rules [7], [8]. Localizing the
direct signal in a reverberant environment is a well-understood
problem [9]. What is more, we do not need to know the room
shape in detail—locations of the most important reflectors
(ceiling, floor, walls) suffice to localize the major echoes.
In many cases this knowledge is readily available from the
floor plans or measurements. In ad-hoc deployments, the room
geometry may be difficult to obtain. If that is the case, we
can first perform a calibration step to learn it. An appealing
method to infer the room geometry is by using sound, as was
demonstrated recently [10]–[13]
We may still be able to take advantage of the echoes without

estimating the room geometry. Note that we are not after the
room geometry itself; rather, we only need to know where the
early echoes are coming from. Echoes can be seen as signals
emitted by image sources—mirror images of the true source
across reflecting walls [7]. Knowing where the echoes are
coming from is equivalent to knowing where the image sources
are.
Image source localization can be solved, for example, by

echo sorting as described in [13]. Alternatively, O'Donovan,
Duraiswami and Zotkin [5] propose to use an audio camera
with a large number of microphones to find the images. Once
the image sources are localized (in a calibration phase or
otherwise), we can predict their movement using geometrical
rules, as discussed in Section V. Thus, the acoustic raking is
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Fig. 1. A block diagram for acoustic rake receivers. In this paper, we focus on
ARR beamforming weight computation, and we briefly discuss echo tracking
and image source localization. The geometry estimation block is optional (room
geometry could be known in advance), hence the dashed box.

a multi-stage process comprising image source localization,
image source tracking, and beamforming weight computation.
The complete block diagram of an acoustic rake receiver is
shown in Fig. 1.
It is interesting to note the analogy between the ARRs and the

human auditory perception. It is well established that the early
echoes improve speech intelligibility [14], [15]. In fact, adding
energy in the form of early echoes (approximately within the
first 50 ms of the room impulse response (RIR)) is equivalent
to adding the same energy to the direct sound [14]. This ob-
servation suggests new designs for indoor beamformers, with
different choices of performance measures and reference sig-
nals. A related discussion of this topic is given by Habets and
co-authors [16], who examine the tradeoff between dereverber-
ation and denoising in beamforming. In addition to the standard

, we propose to use the useful-to-detrimental ratio ( ),
first defined by Lochner and Burger [15], and used by Bradley,
Sato and Picard [14]. We generalize to a scenario with in-
terferers, defining it as the ratio of the direct and early reflection
energy to the energy of the noise and interference.
ARRs focus on the early part of the RIR, trying to concen-

trate the energy contained in the early echoes. In that regard,
there are similarities between ARRs and channel shortening
[17], [18]. Channel shortening produces filters that are much
better behaved than complete inversion, e.g., by the multiple-
input-output-theorem (MINT) [19], [20]. Nevertheless, it is still
tacitly assumed that we know the acoustic impulse responses be-
tween the sources and the microphones. In contrast to channel
shortening, as well as other methods assuming this knowledge
[19], [21], we never attempt the difficult task of estimating the
impulse responses. Our task is simpler: we only need to detect
the early echoes, and lift them to 3D space as image sources.

A. Main Contributions and Limitations

We introduce the acoustic rake receiver (ARR) as the
echo-aware microphone beamformer. We present several for-
mulations with different properties, and analyze their behavior
theoretically and numerically. The analysis shows that ARRs

Fig. 2. Listening behind an interferer by listening to echoes (illustration). A
beam directed towards the desired, green source will necessarily pick up the red
interferer's signal. Acoustic rake receiver avoids it by beamforming towards the
echoes of the desired source.

lead to significantly improved and interference cancel-
lation when compared with standard beamformers that only
extract the direct path. ARRs can suppress interference in cases
when conventional beamforming is bound to fail, for example
when an interferer is occluding the desired source (an illustra-
tion is given in Fig. 2; for a sneak-peak of real beampatterns,
fast-forward to Fig. 7). We present optimal formulations that
outperform the earlier delay-and-sum (DS) approaches [6],
especially when interferers are present. Significant gains are
observed not only in terms of signal-to-interference-and-noise
ratio ( ) and , but also in terms of perceptual evalua-
tion of speech quality (PESQ) [22].
The raking microphone beamformers are particularly well-

suited to extracting the desired speech signal in the presence
of interfering sounds, in part because they can focus on echoes
of the desired sound and cancel the echoes of the interfering
signals. The analogous human capacity to focus on a particular
acoustic stimulus while not perceiving other, unwanted sounds
is called the cocktail party effect [23]. This paper's title was
inspired by that analogy.
We design and apply the ARRs in the frequency domain. Fre-

quency domain formulation is simple and concise; it allows us
to focus on objective gains from acoustic raking. Time-domain
designs [24] offer better control over the impulse responses of
the beamforming filters, but they are out of the scope of this
paper. For a recent time-domain approach to ARRs, see [25].
Let us also mention some limitations of our results. For

clarity, the numerical experiments are presented in a 2D
“room”, and as such are directly applicable to planar (e.g.,
linear or circular) arrays. Extension to 3D arrays is straight-
forward. We do not discuss robust formulations that address
uncertainties in the array calibration. Microphones are assumed
to be ideally omni-directional with a flat frequency response.
Except for Section V, we assume that the locations of the image
sources are known. We explain how to find the image sources
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when the room geometry is either known or unknown, but we
do not provide a deep overview of the geometry estimation
techniques. To this end, we suggest a number of references for
the interested reader. We consider the walls to be flat-fading;
in reality, they are frequency selective. We do not discuss the
estimation of various covariance matrices [26].
The results in this paper are reproducible. Python (NumPy)

[27] code for the beamforming routines, for the STFT pro-
cessing engine, and to generate the figures and the sound
samples is available online at http://lcav.github.io/Acoustic-
RakeReceiver/.

B. Paper Outline
In Section II we explain the notation and the signal model

used in the paper. A brief overview of the relevant beamforming
techniques and performance analysis is given in Section III.
We formulate the acoustic rake receiver in Section IV, and
we present a theoretical and numerical analysis of the corre-
sponding beamformers. Section V explains how to locate the
image sources, and comments on localizing the direct source.
Numerical experiments are presented in Section VI.

II. NOTATION AND SIGNAL MODEL

We denote all matrices by bold uppercase letters, for example
, and all vectors by bold lowercase letters, for example . The

Hermitian transpose of a matrix or a vector is denoted by ,
as in , and the Euclidean norm of a vector by , that is,

.
Suppose that the desired source of sound is at the location
in a room. Sound from this source arrives at the micro-

phones located at via the direct path, but also via
the echoes from the walls. The echoes can be replaced by the
image sources—mirror images of the true sources across the
corresponding walls—according to the image source model
[7], [8]. An important consequence is that instead of modeling
the source of the desired or the interfering signal as a single
point in a room, we can model it as a collection of points in free
space. A more detailed discussion of the image source model is
given in Section V.
Denote the signal emitted by the source (e.g., the speech

signal). Then all the image sources emit as well, and the
signals from the image sources reach the microphones with the
appropriate delays. In our application, the essential fact is that
the echoes correspond to image sources. We denote the image
source positions by , , where denotes the largest
number of image sources considered. Note that we do not care
about the sequence of walls that generates , nor do we care
about how many walls are in the sequence. For us, all are
simply additional sources of the desired signal. The described
setup is illustrated in Fig. 3.
Suppose further that there is an interferer at the location

(for simplicity, we consider only a single interferer). The in-
terferer emits the signal , and its image sources emit
as well. Similarly as for the desired source, we denote by ,

the positions of the interfering image sources, with
being the largest number of interfering image source con-

sidered. The model mismatch (e.g., the image sources of high
orders and the late reverberation) and the noise are absorbed in
the term .

Fig. 3. Illustration of the notation and concepts. Echoes of the desired signal
emitted at can be modeled as a direct sound coming from the image sources
of . Two generations of image sources are illustrated: first ( )
and second ( ), as well as the corresponding sound rays for and
. The interferer is located at (its image sources are not shown), and the

microphones are located at .

The signal received by the th microphone is then a sum of
convolutions

(1)

where denotes the impulse response of the channel be-
tween the source located at and the th microphone—in this
case a delay and a scaling factor.
We design and analyze all the beamformers in the frequency

domain. That is, we will be working with the DTFT of the dis-
crete-time signal ,

(2)

In practical implementations, we use the discrete-time short-
time Fourier transform (STFT). More implementation details
are given in Section VI.
Using these notations, we can write the signal picked up by

the th microphone as

(3)

where models the noise and other errors, and
denotes the th component of the steering vector

for the source . The steering vector is the Fourier transform
of the continuous version of the impulse response , evalu-
ated at the frequency . The discrete-time frequency and the
continuous-time frequency are related as , where
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TABLE I
SUMMARY OF NOTATION

is the sampling period. The steering vector is then simply
.

We can write out the entries of the steering vectors explicitly
for a point source in free space. They are given as the appro-
priately scaled free-space Green's functions for the Helmholtz
equation [28],

(4)

where we define the wavenumber as , and is the
attenuation corresponding to .
Using vector notation, the microphone signals can be written

concisely as

(5)

where ,
, and is the all-ones vector. From

here onward, we suppress the frequency dependency of the
steering vectors and the beamforming weights to reduce the
notational clutter. For convenience, a summary of the notation
is given in Table I.

III. BEAMFORMING PRELIMINARIES

Microphone beamformers combine the outputs of multiple
microphones in order to achieve spatial selectivity, thereby sup-
pressing noise and interference [29]. In the frequency domain, a
beamformer forms a linear combination of the microphone out-
puts to yield the output . That is,

(6)

where the vector contains the beamforming weights.
The weights are often selected so that they optimize

some design criterion. Common examples of beamformers
are the delay-and-sum (DS) beamformer, minimum-vari-
ance-distortionless-response (MVDR) beamformer, max-
imum-signal-to-interference-and-noise (Max-SINR) beam-
former, and minimum-mean-squared-error (MMSE) beam-
former. In this paper we discuss the rake formulation of the DS
and the Max-SINR beamformers; for completeness, we first

describe the non-raking variants. Table II summarizes the all
the discussed beamformers.

A. Delay-and-Sum Beamformer
DS is the simplest and often quite effective beamformer [29].

Assume that we want to listen to a source at . Then we form the
DS beamformer by compensating the propagation delays from
the source to the microphones ,

(7)

(8)

where denotes the center of the array. The
beamforming weights can be read out from (7) as

(9)

where we used the definition of (5) and the defini-
tion of the steering vector (4). We can see from (8) that if

, then the output noise is distributed ac-
cording to , that is, we obtain an -fold decrease
in the noise variance at the output with respect to any reference
microphone.

B. Maximum Signal-to-Interference-and-Noise Ratio
Beamformer
The is an important figure of merit used to assess the

performance of ARRs, and to compare it with the standard non-
raking beamformers. It is computed as the ratio of the power of
the desired output signal to the power of the undesired output
signal. The desired output signal is the output signal due to the
desired source, while the undesired signal is the output signal
due to the interferers and noise.
For a desired source at and an interfering source at we can

write

(10)

where is the covariance matrix of the noise and the
interference.
It is compelling to pick that maximizes the (10) [29].

The maximization can be solved by noting that the rescaling
of the beamformer weights leaves the unchanged. This
means that we can minimize the denominator subject to numer-
ator being an arbitrary constant. The solution is given as

(11)

Using the definition (10), we can derive the for the
Max-SINR beamformer as

(12)

Because is a Hermitian symmetric positive definite matrix,
it has an eigenvalue decomposition as , where

is unitary, and is diagonal with positive entries. We can
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TABLE II
SUMMARY OF BEAMFORMERS

write . Because ,
and because is positive, increasing typically leads to an
increased , although we can construct counterexamples.
This will be important when we discuss the gain of the
Rake-Max-SINR beamformer.

IV. ACOUSTIC RAKE RECEIVER

In this section, we present several formulations of the ARR.
The Rake-DS beamformer is a straightforward generalization of
the conventional DS beamformer. The one-forcing beamformer
implements the idea of steering a fixed beam power towards
every image source, while trying to minimize the interference
and noise. The Rake-Max-SINR and Rake-Max-UDR beam-
formers optimize the corresponding performance measures; we
show in Section VI that the Rake-Max-SINR beamforming per-
forms best in terms of all evaluation criteria except, as expected,
in terms of .

A. Delay-and-Sum Raking

If we had access to every echo separately (i.e., not summed
with all the other echoes), we could align them all to maximize
the performance gain. Unfortunately, this is not the case: each
microphone picks up the convolution of speechwith the impulse
response, which is effectively a sum of overlapping echoes of
the speech signal. If we only wanted to extract the direct path,
we would use the standard DS beamformer (9). To build the
Rake-DS receiver, we create a DS beamformer for every image
source, and average the outputs,

(13)

where . We read out the beam-
forming weights from (13) as

(14)

where we chose the scaling in analogy with (9) (scaling of the
weights does not alter the output ). It can be seen that this is
just a scaled sum of the steering vectors for each image source.

B. One-Forcing Raking
A different approach, based on intuition, is to design a beam-

former that listens to all image sources with the same power,
and at the same time minimizes the noise and interference
energy:

(15)

Alternatively, we may choose to null the interfering source
and its image sources. Both cases are an instance of the standard
linearly-constrained-minimum-variance (LCMV) beamformer
[30]. Collecting all the steering vectors in a matrix, we can write
the constraint as . The solution can be found in
closed form as

(16)

A few remarks are in order. First, with microphones, it
does not make sense to increase beyond , as this results
in more constraints than degrees of freedom. Second, using this
beamformer is a bad idea if there is an interferer along the ray
through the microphone array and any of the image sources.
As with all LCMV beamformers, adding linear constraints

uses up degrees of freedom that could otherwise be used for
noise and interference suppression. It is better to let the “beam-
former decide” or “the beamforming procedure decide” on how
to maximize a well-chosen cost function; one such procedure is
described in the next subsection.

C. Max-SINR Raking
The main workhorse of the paper is the Rake-Max-SINR. We

compute the weights so as to maximize the , taking into
account the echoes of the desired signal, and the echoes of the
interfering signal,

(17)

The logic behind this expression can be summarized as fol-
lows: we present the beamforming procedure with a set of good
sources, whose influence we aim to maximize at the output, and
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with a set of bad sources, whose power we try to minimize at
the output. Interestingly, this leads to the standard Max-SINR
beamformer with a structured steering vector and covariance
matrix. Define the combined noise and interference covariance
matrix as

(18)

where is the covariance matrix of the noise term, and is
the power of the interferer at a particular frequency.
Then the solution to (17) is given as

(19)

It is interesting to note that when (e.g., no inter-
ferers and iid noise), the Rake-Max-SINR beamformer reduces
to , which is exactly the Rake-DS beamformer.
This is analogous to the non-raking DS beamformer (9).

D. Max-UDR Raking
Finally, it is interesting to investigate what happens if we

choose the weights that optimize the perceptually motivated
[14], [15]. The expresses the fact that adding early

reflections (up to 50 ms in the RIR) is as good as adding the en-
ergy to the direct sound in terms of speech intelligibility. The
useful signal is a coherent sum of the direct and early reflected
speech energy, so that

(20)

In applications is rarely large enough to cover all the reflec-
tions occurring within 50 ms, simply because it is too optimistic
to assume we know all the corresponding image sources. There-
fore, (20) typically underestimates the .
Alas, because (20) is specified in the frequency domain, it

is challenging to control whether the reflections in the numer-
ator arrive before or after the direct sound. Nevertheless, it is
interesting to analyze it as it provides a basis for future work on
time-domain raking formulations, and a meaningful evaluation
of the raking algorithms presented in this paper.
To compute the Rake-Max-UDR weights, we solve the fol-

lowing program

(21)

This amounts to maximizing a particular generalized Rayleigh
quotient,

(22)

Assuming that has a Cholesky decomposition as
we can rewrite the quotient (22) as

(23)

where . The maximum of this expression is

(24)

where denotes the largest eigenvalue of the matrix in
the argument. The maximum is achieved by the corresponding
eigenvector . Then the optimal weights are given as

(25)

E. SINR Gain From Raking
Intuitively, if we have multiple sources of the desired signal

scattered in space, and we account for it in the design, we should
do at least as well as when we ignore the image sources. Let us
see how large the gain can be for the Rake-Max-SINR beam-
former. We have that

(26)

Intuitively, the larger the norm of , the better the (as
is positive). To explicitly see if there is any gain in using the

acoustic rake receiver, we should compare the standard Max-
SINR beamformer with the Rake-Max-SINR, e.g., we should
evaluate

(27)

One possible interpretation of (27) is that we ask whether the
steering vectors sum coherently or cancel out.
To answer this, assume that , are the desired

sources (true and image), and let , where
is the strength of the source received by the array. Then

(28)

that is, we can expect an increase in the output approxi-
mately by a factor of when using the Rake-Max-SINR
beamformer. This statement is made precise in Theorem 1 in
the Appendix. It holds when has eigenvalues of similar
magnitude, which is typically not the case in the presence of in-
terferers. However, we show in Section VI that with interferers
present, the gains actually increase.
A couple of remarks are in order:
1) This result is in expectation; it says that on average, the

will increase by a factor of . In the worst case,
the steering vectors can even cancel out so that the

decreases. But the numerical experiments suggest
that this is very rare in practice, and we can on the other
hand observe large gains.

2) We see that summing the phasors in behaves as
a two-dimensional random walk. It is known that the root-
mean-square distance of a 2D random walk from the origin
after steps is [31].

3) Due to the far-field assumption in Theorem 1, the atten-
uations are assumed to be independent of the micro-
phones; in reality they do depend on the source locations.
However, they also depend on a number of additional fac-
tors, for example wall attenuations and radiation patterns
of the sources. Therefore, for simplicity, we consider them
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Fig. 4. Comparison of the simulated gains and the theoretical prediction
from Theorem 1 for , and . The theoretical prediction of the
gain is for , and
for .

to be independent. One can verify that this assumption does
not change the described trend.

It is reassuring to observe the behavior suggested by (28) in
practice. Fig. 4 shows the comparison of the prediction by The-
orem 1 with the gains observed in simulated rooms. In
this case, we are comparing the pure gain for white noise,
without interferers. To generate Fig. 4, we randomized the lo-
cation of the source inside the rectangular room. For simplicity
we fixed the signal power as received by the microphones to the
same value for all the image sources, so that the expected gain is

in the linear scale. The curves agree near-perfectly with
the prediction of Theorem 1.

V. FINDING AND TRACKING THE ECHOES

Thus far we assumed that the locations of the image sources
are known. In this section we briefly describe some methods to
localize them when they are a priori unknown. We assume that
we can localize the true source, or at least one image source.
Combined with the knowledge of the room geometry, this suf-
fices to find the locations of other image sources [32].

A. Known Room Geometry

In many cases, for example for fixed deployments, the room
geometry is known. This knowledge could be obtained at the
time of the deployment, or from blueprints. In most indoor en-
vironments, we encounter a large number of planar reflectors.
These reflectors correspond to image sources. With reference to
Fig. 5, we can easily compute the image source locations [7] (we
note that the image source model is not limited to right angle ge-
ometries [8]).
Suppose that the real source is located at . Then the image

source with respect to wall is computed as,

(29)

where indexes the wall, is the outward normal associated
with the th wall, and is any point belonging to the th wall.
Analogously, we compute image sources corresponding to
higher-order reflections,

(30)

Fig. 5. Illustration of image source tracking in rectangular geometries.

Fig. 6. Block diagram of the simulation setup used for numerical experiments.

The above expressions are valid regardless of the dimension-
ality, concretely in 2D and 3D.

B. Acoustic Geometry Estimation

When the room geometry is not known, it is possible to esti-
mate it using the same array that we use for beamforming. Re-
cently a number of different methods appeared in the literature
that propose to use sound to estimate the shape of a room. For
example, in [10] the authors use a dictionary of wall impulse re-
sponses recorded with a particular array. In [11] the authors use
tools from projective geometry together with the Hough trans-
form to estimate the room geometry. In [13] the authors derive
an echo sorting mechanism that finds the image sources, from
which the room geometry is then derived.

C. Without Estimating the Room Geometry

To design an ARR, we do not really need to know how the
room looks like; we only need to know where the major echoes
are coming from. One possible approach is to locate the image
sources in the initial calibration phase, and then track their
movement by tracking the true source.
We propose a tracking rule that leverages the knowledge of

the displacement of the true source. Again with reference to
Fig. 5, we can state the following simple proposition.
Proposition 1: Suppose that the room has only right angles

so that the walls are parallel with the coordinate axes. Let the
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Fig. 7. Beam patterns in different scenarios. The rectangular room is 4 by 6 metres and contains a source of interest ( ) and an interferer (+). The first-order image
sources are also displayed. The weight computation of the beamformer includes the direct source and the first order image sources of both desired source and
interferer (when applicable). (A) Rake-Max-SINR, no interferer, (B) Rake-Max-SINR, one interferer, (C) Rake-Max-UDR, one interferer, (D) Rake-Max-SINR,
interferer is in direct path.

source move from to . Then any image source , moves
to a point given by

(31)

where for odd generations, and
for even generations.

Proof: The proof follows directly from the figure. The dis-
placement of the image source is the same as the displacement
of the true source, passed through a series of reflections. Reflec-
tion matrices are diagonal matrices with on the diagonal,
and determinant equal to , hence the result.
The usefulness of this proposition is that it gives us a tool to

track the image sources even when we do not know the room ge-
ometry (as long as it has right angles). A possible use scenario
is to start with a calibration procedure with a controlled source,
and perform the echo sorting to find multiple image sources.
Then if possible, we assign to each image source a generation
(this is in fact a by-product of echo sorting), or we try different
hypotheses using Proposition 1, and choose the one that maxi-
mizes the output SINR.

VI. NUMERICAL EXPERIMENTS

In this section, we validate the described theoretical results
through numerical experiments. First, we analyze the beam-
patterns produced by the ARR; second, we evaluate the SINR
for various beamformers as a function of the number of image
sources used in weight computation; and third, we evaluate the
PESQ metric [22]. Finally, we show spectrograms that reveal
visually the improved interferer and noise suppression achieved
by the ARR.

A. Simulation Setup
We use a simple room acoustic framework written in Python,

which relies on Numpy and Scipy for matrix computations [27].
We limit ourselves in this paper to 2D geometry and rectangular
rooms. In all experiments, the sampling frequency was set to
8 kHz. An overview of the simulation setup is shown in Fig. 6.
Starting from the room geometry and the positions of the

sources and microphones, we first compute the locations of all
images sources up to ten generations. The reflectivity of the

walls is fixed to 0.9. The RIR between the source and the
microphone is convolved with an ideal low-pass filter in
the continuous domain and then sampled at the sampling fre-
quency ,

(32)
where is the number of image sources considered. We
choose the limits of such that the cardinal sine in (32) decays
sufficiently to avoid artifacts. The discrete signals from all
sound sources are then convolved with their respective RIRs,
and added together to obtain the th microphone's signal.
We use the discrete-time STFT processing with a frame size

of samples, 50% overlap and zero padding on both
sides of the signal by , and compute the beamforming in
the frequency domain. A real fast Fourier transform of size
and a Hann window are used in the analysis. By exploiting the
conjugate symmetry of the real FFT we only need to compute

beamforming weights, one for every positive frequency
bin. The length is dictated by the length of the beamforming
filters in the time-domain and was set empirically so as to avoid
any aliasing in the filter responses. We synthesize the output
signal using the conventional overlap-add method [33].

B. Results

1) Beampatterns: We first inspect the beampatterns pro-
duced by the Rake-Max-SINR and Rake-Max-UDR beam-
formers for different source-interferer placements. We consider
a m m rectangular room with a source of interest at ( m,

m) and a linear microphone array centered at ( m, m),
parallel to the -axis. Spacing between the microphones was set
to 8 cm. In Fig. 7, we show the beampatterns for four different
configurations of the source and the interferer. We consider a
scenario without an interferer, one with an interferer placed
favorably at ( m, m), and finally one where the interferer
is placed half-way between the desired source and the array, at
( m, m).
The last scenario is the least favorable. Interestingly, we can

observe that the Rake-Max-SINR beampattern adjusts by com-
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Fig. 8. Median output SINR plotted against the number of image sources used
in the design for different beamformers, at a frequency kHz. The shaded
area contains the Rake-Max-SINR output SINR for 50% of the 20000 Monte
Carlo runs.

Fig. 9. Median output UDR plotted against the number of image sources used
in the design for different beamformers, at a frequency kHz. The shaded
area contains the Rake-Max-UDR output UDR for 50% of the 20000 Monte
Carlo runs.

pletely ignoring the direct path, and steering the beam towards
the echoes of the source of interest. This is validating the intu-
ition that we can “hear behind an interferer by listening for the
echoes”. Note that such a pattern cannot be achieved by a beam-
former that only takes into account the direct path. We further
note that, while the beampatterns only show the magnitude of
the beamformer's response, the phase plays an important role
with multiple sources present.
2) SINR Gains From Raking: In the experiments in this

subsection, we set the power of the desired source and of the
interferer to be equal, . The noise covariance
matrix is set to . We use a circular array of
microphones with a diameter of 30 cm, and randomize the
position of the desired source and the interferer inside the room.
The resulting curves show median performance out of 20000
runs.
Fig. 8 shows output for different beamformers. The

one-forcing beamformer is left out because it performs poorly
in terms of , as predicted in the earlier discussion. Clearly,
the Rake-Max-SINR beamformer outperforms all others. The
output for beamformers using only the direct path (Max-

Fig. 10. Output SINR as a function of frequency for different beamformers and
. The curves show the average of 20000 runs, with averaging

performed in the dB domain.

Fig. 11. Perceptual quality in MOS, evaluated using PESQ, as a function of the
number of image sources used . The lower limit of the ordinates is set to the
median MOS of the degraded signal before processing, as measured at center
of the array. The shaded area contains the Rake-Max-SINR output for 50% of
the 10000 Monte Carlo runs.

SINR and DS) remains approximately constant. The is
plotted against the number of image sources for various beam-
formers in Fig. 9. Even though the Rake-Max-UDR beamformer
performs well in terms of the two measures, its output is per-
ceptually unpleasing due to audible pre-echoes; in informal lis-
tening tests, the Rake-Max-SINR beamformer did not produce
such artifacts. It is interesting to note that the Rake-Max-SINR
also performs well in terms of the . Similar gains
to those in Fig. 8 are observed in Fig. 10 over a range of fre-
quencies. It is therefore justified to extrapolate the results at one
frequency in Fig. 8 to the wideband .
3) Evaluation of Speech Quality: We complement the

informal listening tests and the evaluation of and
with extensive simulations to assess the improvement in speech
quality achieved by acoustic raking. We simulate a room
with two sources—a desired source and an interferer—and
compare the outputs of the Rake-DS, Rake-Max-SINR, and
Rake-Max-UDR as a function of the number of image sources
used to design the beamformers.
The same number of image sources is used for the desired

source and the interferer ( ). The performance metric
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Fig. 12. Comparison of the conventional Max-SINR and Rake-Max-SINR beamformer on a real speech sample. Spectrograms of (A) clean signal of interest,
(B) signal corrupted by an interferer and additive white Gaussian noise at the microphone input, outputs of (C) conventional Max-SINR and (D) Rake-Max-SINR
beamformers. Time naturally goes from left to right, and frequency increases from zero at the bottom up to . To highlight the improvement of Rake-Max-SINR
over Max-SINR, we blow-up three parts of the spectrograms in the lower part of the figure. The boxes and the corresponding part of the original spectrogram are
numbered in (A). The numbering is the same but omitted in the rest of the figure for clarity.

used is the PESQ [22]. In particular, we use the reference im-
plementation described by the ITU P.862 Amendment 2 [34].
PESQ compares the reference signal with the degraded signal
and predicts the perceptual quality of the latter as it would be
measured by the mean opinion score (MOS) value, on a scale
from 1 to 4.5.
We consider the same room and microphone array setting as

before (see Fig. 7(A)). The desired and the interfering sources
are placed uniformly at random in a rectangular area with lower
left corner at ( m, m) and upper right corner at ( m, m). To
limit the experimental variation, the speech samples attributed to
the sources are fixed throughout the simulation. The two sources
start reproducing speech at the same time and approximately
overlap for the total duration of the speech samples. The signals
are normalized to have the same power at the source, and we
add white Gaussian noise to the microphone signals, with power
chosen so that the of the direct sound for the desired source
is 20 dB at the center of the microphone array. All signals are
high-pass filtered with a cut-off frequency of 300 Hz. The
reference for all PESQ results is the direct path of the desired
source as measured at the center of the array ( m, m).
Themedian PESQmeasure of 10000Monte Carlo runs, given

in raw MOS, is shown in Fig. 11. The median PESQ of the de-
graded signal measured at the center of the array before pro-
cessing was found to be 1.6 raw MOS. When only the direct
sound is used (i.e., ), all three beamformers yield the
same improvement of about 0.2 raw MOS. We observe that
Rake-DS slightly outperforms the other beamformers. Using
any number of echoes in addition to the direct sound results in
larger MOS for all beamformers. When more than one image
source is used, the Rake-Max-SINR beamformer always yields
the largest MOS, with up to 0.5 MOS gain when using 10 im-
ages sources.
It is worth mentioning that in the beamformer design, we do

not assume that we know the spectrum of the source or the in-
terferer—we design as if it was flat. Thus the interferer acts as
a strong source of colored, spatially correlated, non-stationary
noise, spectrally mismatched with the designed beamformer.
There is another source of model mismatch: while the RIRs
were computed using hundreds of image sources, we use only
up to ten to design the beamformers.

4) Spectrograms and Sounds Samples: Finally, we present
the spectrograms for a scenario where we want to focus on a
singer in the presence of interfering speech. We consider the
same room, source, interferer, and microphone array geometry
as in Fig. 7(B).
The source signal is a passage by a female opera singer

(Fig. 12(A)), with strongly pronounced harmonics; the inter-
fering signal is a male speech extract. The two signals are
normalized to have unit maximum amplitude. We add white
Gaussian noise to the microphone signals with power such that
the SNR of the direct sound of the desired source is 20 dB at
the center of the microphone array. All signals are high-pass fil-
tered with a cut-off frequency of 300 Hz. The Rake-Max-SINR
beamformer weights are computed using the direct source and
three generations of image sources for both the desired sound
source (singing) and the interferer (speech).
The output of the conventional Max-SINR beamformer

(Fig. 12(C)) is compared to that of the Rake-Max-SINR
(Fig. 12(D)). We can observe from the spectrogram that the
Rake-Max-SINR reduces very effectively the power of the
interfering signal at all frequencies, but particularly in the mid
to high range. This is true even when the interferer overlaps
significantly with the desired signal. Informal listening tests
confirm that the Rake-Max-SINR maintains high quality of
the desired signal while strongly reducing the interference.
The Rake-Max-UDR beamformer provides good interference
suppression, but it produces audible pre-echoes that render it
unsuitable for speech processing applications. The sound clips
can be found online along the code.

VII. CONCLUSION
We investigated the concept of acoustic rake receivers—

beamformers that use echoes. Unlike earlier related work,
we presented optimal formulations that outperform the delay-
and-sum style approaches by a large margin. This is especially
true in the presence of interferers, hence the title “Raking the
Cocktail Party”. We demonstrate theoretically that the ARRs
improve the , and the numerical simulations agree well
with these predictions.
Beyond theoretical and numerical evaluations of the perfor-

mance measures, we demonstrated in informal listening tests
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the improved interference suppression by the ARR. Moreover,
extensive simulation determined that the ARR improves the
subjective quality, as predicted by PESQ, proportionally to
the number of image sources used. A particularly illustra-
tive example is when the interferer is occluding the desired
source—the optimal ARR takes care of this simply by listening
to the echoes.
Perhaps the most important aspect of ongoing work is the de-

sign of robust formulations of ARRs. This may involve various
heuristics, as well as combinatorial optimization due to the dis-
crete nature of image sources. We expect that the raking beam-
formers described in this paper inherit the robustness properties
of their classical counterparts. For example, the Rake-DS beam-
former is likely to be more robust to array calibration errors than
the Rake-Max-SINR beamformer. Furthermore, we expect that
taking the image source perspective makes various ARRs more
robust to errors in source locations than the schemes that assume
the knowledge of the RIR.
Another line of ongoing work investigates the time-domain

formulations of the ARRs, with some initial results already
available [25]. Time-domain formulations offer better control
over whether the echoes appear before or after the direct
sound. This provides a more natural framework for optimizing
perceptually motivated performance measures such as .

APPENDIX
THEOREM 1

We note that the theorem is stated for a linear array, but the
described behavior is universal.
Theorem 1: Assume that there are sources located

at where and
are all independent, for some such that

the far-field assumption holds. Let collect the corresponding
steering vectors for a uniform linear microphone array. Then

, where ,
and are attenuations of the steering vectors, assumed in-
dependent from the source locations. In fact,

.
Proof: Thanks to the far-field assumption, we can decom-

pose the steering vector into a factor due to the array, and a phase
factor due to different distances of different image sources. We
have that

(33)

where is the microphone spacing and . Without loss
of generality we assume that . We can further write

(34)

Invoking the independence for , we compute the above
expectation as

(35)

where denotes the Bessel function of the first kind and zeroth
order and .
Plugging this back into (34), we obtain

(36)

where .
Because ([35], Eq. 9.2.1), we

see that the expression in brackets is . Rewriting

(37)

concludes the proof.
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