
A Monocular Pose Estimation System based on Infrared LEDs

Matthias Faessler, Elias Mueggler, Karl Schwabe and Davide Scaramuzza

Abstract— We present an accurate, efficient, and robust pose
estimation system based on infrared LEDs. They are mounted
on a target object and are observed by a camera that is
equipped with an infrared-pass filter. The correspondences
between LEDs and image detections are first determined using
a combinatorial approach and then tracked using a constant-
velocity model. The pose of the target object is estimated with
a P3P algorithm and optimized by minimizing the reprojection
error. Since the system works in the infrared spectrum, it is
robust to cluttered environments and illumination changes. In
a variety of experiments, we show that our system outperforms
state-of-the-art approaches. Furthermore, we successfully apply
our system to stabilize a quadrotor both indoors and outdoors
under challenging conditions. We release our implementation
as open-source software.

SUPPLEMENTARY MATERIAL

An open-source implementation and video of this work
are available at: http://rpg.ifi.uzh.ch/software

I. INTRODUCTION

A. Motivation

Rescue missions in disaster sites are extremely challenging
for robots since they have to deal with unforeseeable and
unstructured environments. Furthermore, these robots need
to have many attributes, such as being able to overcome
obstacles, being reasonably fast, and being able to manipulate
their environment. We plan on using a team of heterogeneous
robots (aerial and ground) to collaborate and make use of
their individual strengths to address these challenges. Since
mutual localization is one of the most fundamental parts
in controlling a team of mobile robots, a system that can
accurately and reliably estimate the mutual pose of the robots
is necessary. For both indoor and outdoor operations, it needs
to be robust to cluttered environments, dynamic scenes, and
illumination changes. Part of our robot team are quadrotors
of approximately 0.5 m in size (see Fig. 1a). Small quadrotors
have fast dynamics and, thus, need a frequent and precise
estimate of their 6 DOF pose to be stabilized. Furthermore,
small quadrotors have limited payload and battery power,
as well as limited onboard-processing power. Hence, the
pose estimation system must be lightweight, energy efficient,
and computationally inexpensive. Existing systems lack the
combination of all these requirements.

We propose a pose estimation system that consists of
multiple infrared LEDs and a camera with an infrared-pass
filter. The LEDs are attached to the robot that we want to

The authors are with the Robotics and Perception Group, University
of Zurich, Switzerland—http://rpg.ifi.uzh.ch. This research was
supported by the Swiss National Science Foundation through project number
200021-143607 (“Swarm of Flying Cameras”) and the National Centre of
Competence in Research Robotics.

(a) Stabilizing a quadrotor above a ground robot.

(b) View from the camera on the ground robot.

Fig. 1: A camera with an infrared-pass filter is mounted on a ground
robot and used to stabilize a quadrotor above it. The red circles in
(b) indicate LED detections. The pose estimate is illustrated by the
projection of the body-fixed coordinate frame of the quadrotor.

track, while the observing robot is equipped with the camera.
Since this system operates in the infrared spectrum, the LEDs
are easy to detect in the camera image. This also applies
to situations with cluttered backgrounds and illumination
changes. The infrared LEDs can be detected by motion-
capture systems and their position on the target object can,
thus, be precisely determined. Furthermore, the camera only
requires a short exposure time, which allows for high frame
rates (up to 90 fps in our system). To track an object, only a
few LEDs need to be mounted. However, this is not an issue
in terms of power consumption or payload, even for small
quadrotors.

In our experiments, we compare the performance of our



system to a previous approach [1] and pose estimation from
AprilTags [2] as well as a motion capture system (we use
OptiTrack1). Furthermore, we show that our system meets
all the stated requirements and can be used to stabilize a
quadrotor.

B. Related Work

Our work is in line with other monocular vision-based
pose estimation systems [1], [3], while improving on ac-
curacy, versatility, and performance. Since [1] uses passive
markers or LEDs in the visible spectrum, their performance
decreases in cluttered environments and in low-light condi-
tions. While their system is restricted to four markers, our
algorithm can handle any number of LEDs to increase robust-
ness. Additionally, our system is robust to false detections.
The setup of [3] uses a special event-based camera [4] with
LEDs that blink at different frequencies. The great advantage
of this camera is that it can track frequencies up to several
kilohertz. Therefore, pose estimation can be performed with
very low latencies. Its precision, however, is limited due to
the low sensor resolution (128x128 pixels).

Nowadays, artificial patterns, such as ARTags [5] and
AprilTags [2], are often used for mutual localization. In
addition to a pose estimate, they also provide a unique ID of
the tag. Those patterns require a large, flat area on the target
object. This makes them unsuitable for micro-aerial vehicles,
since it would interfere with their aerodynamics.

Another popular method for pose estimation are motion-
capture systems, such as OptiTrack and Vicon.2 While these
systems yield high precision at high frame rates (up to
350 Hz), they are proprietary, expensive, and typically require
a fixed installation with many cameras. In single-camera
mode, OptiTrack uses the marker size, d, for estimating its
3D position and can, thus, compute a 6 DOF pose using
only three markers. However, the marker size in the image,
d∗, degrades quickly for larger distances to the camera
z. Consequently, also the accuracy of the pose estimate
degrades: d∗ ∝ d/z. Large markers are also not suitable
for micro-aerial vehicles. Nonetheless, all findings of this
paper could also be applied for single-camera motion capture
systems.

Estimating the camera pose from a set of 3D-to-2D point
correspondences is known as Perspective from n Points
(PnP) (or resection) [6]. As shown in [6], the minimal
case involves three 3D-to-2D correspondences. This is called
Perspective from 3 Points (P3P) and returns four solutions
that can be disambiguated using one or more additional
point correspondences. To solve the P3P problem, we use
the algorithm in [7], which proved to be accurate while
being much faster than any previous implementation. A
comprehensive overview of PnP algorithms can also be
found in [7] and references therein. Furthermore, we use
P3P to initialize an optimization step that refines the pose
by minimizing the reprojection error based on all detected
LEDs.

1http://www.naturalpoint.com/optitrack/
2http://www.vicon.com/

A heuristic approach that provides near-optimal marker
configurations on the target object is presented in [8]. Since
the geometry of micro-aerial vehicles restricts the configura-
tion space drastically, we do not apply such algorithms and
rely on some heuristics mentioned in Section II-A.

The remainder of the paper is organized as follows. In
Section II, we describe the prerequisites of our system.
Our algorithm is described in Section III and evaluated in
Section IV.

II. SYSTEM PREREQUISITES

A. Hardware

Our system consists of infrared LEDs at known positions
on the target object and an external camera with an infrared-
pass filter. With at least four LEDs on the target object and
the corresponding detections in the camera image, we can
compute the 6 DOF pose of the target object with respect
to the camera. However, to increase robustness, our system
can also handle more than four LEDs on the target object.
Furthermore, in case of self-occlusions or false positive
detections, e.g. caused by reflections, we are still able to
recover the full pose if at least four LEDs are detected.

The placement of the LEDs on the target object is ar-
bitrary, but must be non-symmetric. In addition, the LEDs
should not lie in a plane to reduce ambiguities of the pose
estimation. To increase precision, they should span a large
volume. Robustness can be increased if the LEDs are visible
from as many view points as possible.

B. Calibration

As mentioned above, our system requires knowledge of
the LED configuration, i.e. the positions of the LEDs in the
reference frame of the target object. Since infrared LEDs
are detectable by a motion capture system, we can use it
to determine the positions of the LEDs with sub-millimeter
accuracy. To do so, we first assign the desired coordinate
frame to the target object in the motion capture system (we
used OptiTrack) using a calibration stand (see Fig. 2). This
can be achieved by knowing the exact marker positions on
the calibration stand and mounting the target object on it.
Then, we can track the target object in the motion capture
system and read out the positions of the single LEDs,
which can be transformed into the target-object coordinate
frame. Furthermore, we need to know the intrinsic camera
parameters, which we obtain using the camera calibration
tools of ROS.3

III. ALGORITHM

A. Overview

The flowchart of our algorithm is presented in Fig. 3. The
current camera image, the LED configuration, and previously
estimated poses serve as inputs to our algorithm. In a first
step, we detect the LEDs in the image. Then, we determine
the correspondences using prediction or, if that fails, using a

3http://wiki.ros.org/camera_calibration/



Fig. 2: Calibration stand 1 to determine the exact location of
the LEDs in the reference frame of a target object using a motion-
capture system. The quadrotor, the target object 2 and the AprilTag
3 were used to perform the experiments in Section IV.

combinatorial brute-force approach. Finally, the pose is op-
timized such that the reprojection error of all detected LEDs
is minimized. This optimization also returns the covariance
of the pose estimate, which is crucial information in further
processing, e.g., in filtering or SLAM applications. All steps
are described in more detail below.

B. Notation

We denote the LED positions on the target object as
li ∈ R3, the number of LEDs as nL, and the LED con-
figuration as L = {l1, l2, . . . , lnL}. The detections of the
LEDs in the image are denoted as dj ∈ R2, measured
in pixels. The number of detections is nD and the set of
detections is D = {d1,d2, . . . ,dnD}. Note, while L results
from the calibration, D depends on the current image. A
correspondence of an LED li and a detection dj is denoted
as ck = 〈li,dj〉 ∈ C ⊂ L × D. Poses are denoted as
P ∈ SE(3). We use grayscale images I(u, v) : Nw×h →
{0, 1, . . . , 255}, where w and h denote the image width and
height, respectively.

Image LED
detection

Last poses Prediction

Correspond-
ence search

LED configuration

Pose
optimization

Pose with
covariance

Fig. 3: Flowchart showing the main steps of our algorithm.

C. LED Detection

Since we are using infrared LEDs whose wavelength
matches the infrared-pass filter in the camera, they appear
very bright in the image compared to their environment.
Thus, a thresholding function is sufficient to detect the

LEDs D,

I′(u, v) =

{
I(u, v), if I(u, v) > threshold,
0, otherwise.

(1)

This threshold parameter depends on the shutter speed
of the camera settings. However, we found that a large
range of parameters works well (80–180). We then apply
Gaussian smoothing and group neighboring pixels to blobs.
To estimate the center of these blobs with sub-pixel accuracy,
we weigh the pixels with their intensity. The center is then
calculated using first image moments that are defined as

Mpq =
∑
u

∑
v

upvqI′(u, v). (2)

The weighted center, i.e. the (distorted) LED detection in the
image, is then

û = M10/M00, (3)
v̂ = M01/M00. (4)

In all calculations to come, we assume the standard pin-
hole camera model. Thus, we have to correct the detections
dj for radial and tangential distortion. We do this using the
OpenCV library [9].

D. Correspondence Search

Since the different LEDs cannot be distinguished from
each other in the image, we need to find the correspondences
between the LED detections, D, in the image and the LEDs,
L, on the target object. To do so, we make use of the P3P
algorithm in [7] to compute four pose candidates for every
combination of three detections in the image, D3, and every
permutation of three LEDs on the target object, L3. For
every pose candidate, we then project the LEDs that were not
used to compute the pose candidate, L\L3, into the camera
image. If such a reprojection has a nearest neighbor of the
detections D closer than a threshold λr, we consider the LED
to correspond to this detection. For the reprojection-distance
threshold, we typically use λr = 5 pixels. To be robust to
outliers, we form a histogram with bins for every detection-
LED pair. A histogram bin is increased whenever a pair is
considered to be a correspondence. This procedure returns
the set of correspondences C and is summarized in Algo-
rithm 1. The procedure for finding the final correspondences
from the histogram is illustrated in Fig. 5.

For nD detections and nL LEDs on the object, we will
obtain N pose candidates,

N = 4 ·
(
nD
3

)
· nL!

(nL − 3)!
. (5)

This number grows quickly for a large nD or nL. However,
since we use only a few LEDs (typically four or five)
and false-positive detections are rare, this is not an issue.
Numbers of pose candidates computed according to (5) are
shown in Fig. 4.



nL

nD 4 5 6 7 8

4 384 960 1,920 3,360 5,376

5 960 2,400 4,800 8,400 13,440

6 1,920 4,800 9,600 16,800 26,880

Fig. 4: Number of pose candidates N based on the number of
detections nD and the number of LEDs on the target object nL.

Algorithm 1 Correspondence search
for all D3 ∈ Combinations(D, 3) do

for all L3 ∈ Permutations(L, 3) do
Lr ← L \ L3

P ← P3P(D3,L3)
for all P ∈ P do

found← False
for all l ∈ Lr do

p← project(l, P )
for all d ∈ D do

if ‖d− p‖2 < threshold then
inc(histogram(l, d))
found← True

end if
end for

end for
if found then

inc(histogram(L3,D3))
end if

end for
end for

end for

E. Prediction

Since the brute-force matching in the previous section
can become computationally expensive, we predict the next
pose using the current and the previous pose estimates. A
constant-velocity model is used for prediction. The pose P
is parametrized by twist coordinates ξ. We predict the next
pose linearly [10, p. 511],

ξ̂k+1 = ξk + ∆T
(
ξk − ξk−1

)
, (6)

∆T =

{
0, if nP = 1,

(Tk+1 − Tk)/(Tk − Tk−1), if nP ≥ 2,
(7)

where Tk is the time at step k and nP the number of
previously estimated poses.

Using the predicted pose, we project the LEDs into the
camera image. We then match each prediction with its closest
detection, if they are closer than a threshold. (Note that
this threshold is different from λr). This condition prevents
false correspondences, e.g. if an LED is not detected. We
typically use 5 pixels for that threshold. We then check if
the predicted correspondences are correct. To do so, we

D
L

l1 l2 l3 l4 l5

d1 1 12 0 1 0

d2 0 3 2 1 8

d3 1 0 1 13 1

d4 1 0 1 4 1

d5 2 1 0 1 1

d6 11 3 0 2 2

Fig. 5: Correspondence histogram. The numbers indicate how often
a small reprojection error of LED li to the detection dj was found.
Under ideal conditions, this value is

(
nL
3

)
for a correspondence

and zero otherwise. In practice, we iteratively search for the
highest number in the histogram, take the respective LED and
image point as the correspondence, and then ignore that column
in all subsequent iterations. Note that this allows a detection to
correspond to multiple LEDs, but not vice versa (cf. Section IV-
B). In this example, in the first iteration, we match l4 and d3,
i.e. c1 = 〈l4,d3〉. All further correspondences are also marked in
bold. Note that l3 was not matched since all remaining entries in its
column are lower than a threshold (we chose 0.5

(
nL
3

)
). This LED

might be occluded (cf. Section IV-B) or its detection failed.

compute the four pose candidates with the P3P algorithm
for every combination of three correspondences. We then
compute the projection of the remaining LEDs and check if
at least 75 % of them are below the reprojection threshold
λr. If this is true for one of the four pose candidates of
more than 70 % of the combinations of correspondences, we
consider them as correct. In case we could not find the correct
correspondences, we reinitialize the tracking using the brute-
force method from the previous section.

F. Pose Optimization

To estimate the target-object pose, P ∗, we use all cor-
respondences in C and iteratively refine the reprojection
error [11, p. 286f.] starting with a solution from the P3P
algorithm as an initial estimate, that is

P ∗ = arg min
P

∑
〈l,d〉∈C

‖π (l, P )− d‖2, (8)

where π : R3 × SE(3) → R2 projects an LED into the
camera image. For the optimization, we parametrize the
pose using the exponential map and apply a Gauss-Newton
minimization scheme.

The covariance of the final pose estimate, ΣP ∈ R6×6, is
a byproduct of the Gauss-Newton scheme, since it requires
the computation of the Jacobian matrix, J ∈ R2×6. Using the
derivation of [12, p. 182ff.], we can compute J in closed-
form. The covariance of the pose, ΣP , is then obtained
by [13]

ΣP =
(
J>Σ−1D J

)−1
, (9)

where ΣD ∈ R2×2 is the covariance of the LED detections,
which we conservatively set to ΣD = I2×2 · 1 pixel2.



TABLE I: Comparison of pose estimation performance.

April-
Tags [2]

Breitenmoser
et al. [1]

Our
system

Mean Position Error 1.41 1.5 0.74 cm
Standard Deviation 1.02 0.7 0.46 cm
Max Position Error 11.2 12.1 3.28 cm

Mean Orientation Error 1.53 1.2 0.79 ◦

Standard Deviation 1.61 0.4 0.41 ◦

Max Orientation Error 19.5 4.5 3.37 ◦

IV. EVALUATION

A. Benchmarks

To evaluate our system, we compare it to a previous sys-
tem [1] and to AprilTags [2]. A MatrixVision mvBlueFOX-
MLC200w monochrome camera4 with an infrared-pass filter,
a resolution of 752x480 pixels, and a field of view of
90◦ was used for the experiments. Furthermore, we added
reflective markers to the camera to obtain ground truth in
an OptiTrack motion-capture system. On the target object,
we mounted SMD LEDs (of type Harvatek HT-260IRPJ or
similar) since they proved to have a wide radiation pattern.
We used either a configuration of four or five infrared LEDs
on the target object (see Fig. 2). Both configurations have a
circumsphere radius of 10.9 cm. Since the infrared LEDs are
directly visible in the motion capture system, no additional
markers were needed to obtain the ground truth data of the
target object. To have a direct comparison, we attached an
AprilTag with edge length of 23.8 cm to the target object.
For pose estimation from the AprilTags, we used a C++
implementation.5

In a first run, the target object is positioned at a fixed
location while the camera is moving. We used nL = 4 LEDs
on the target object and performed excitations of the camera
in all six degrees of freedom. Fig. 6 shows position and
orientation as well as the respective errors. Since our setup
is virtually identical to [1] and the trajectory follows the
similar excitations in all six degrees of freedom, we claim
that the results are comparable. In Table I, we compare our
performance to the system in [1] and to AprilTags [2]. As an
orientation error metric, we used the angle of the angle-axis
representation. Since we cannot measure the precise location
of the center of projection of the camera, we use the first
10 % of the data for hand-eye calibration. We also estimate
the pose of the AprilTag with respect to the target object
in the same way. The dataset consists of 7,273 images. In
2 images (0.03 %), not all 4 LEDs could be detected. In
another 2 images, no solution was found. Thus, in 99.94 %
of all images, a good estimate was found.

In a second experiment, we evaluated the error with
respect to the distance between the camera and the target
object. We used nL = 5 LEDs on the target object to
increase robustness. The camera was moved from 0.8 m

4http://www.matrix-vision.com/
5http://people.csail.mit.edu/kaess/apriltags/

1 2 3 4 5
0

0.1

0.2

distance from camera [m]

po
si

tio
n

er
ro

r
[m

]

(a) Position error.

1 2 3 4 5
0

2

4

6

distance from camera [m]

or
ie

nt
at

io
n

er
ro

r
[d

eg
]

(b) Orientation error.

Fig. 7: Boxplot of the pose estimation errors with respect to the
distance between the target object and the camera. The target object
was equipped with nL = 5 LEDs.

to 5.6 m, while recording a total of 2,651 images. Fig. 7
shows the boxplots for both position and orientation. For the
orientation error, we used again the axis-angle representation.
In 3 images (0.04 %) at more than 5 m distance, incorrect
correspondences lead to pose estimates that were off by more
than 90◦ in orientation. We consider them as outliers and,
thus, they are not shown in Fig. 7b.

B. Occlusions and Alignment of LEDs

Here we take a deeper look at two special cases. First, we
evaluate the estimation error in situations where an occlusion
occurs. In Fig. 8b, we show such a situation. Since at least
four LEDs are always visible for the entire duration of the
occlusion, the estimation error does not change significantly
(cf. Fig. 10).

Secondly, we look at the situations where two LEDs
appear as one in the image (e.g. in Fig. 9b). In such
situations, they cannot be detected separately. Thus, as soon
as the two LEDs are detected as one, there is an immediate
increase in the estimation error. As the LEDs appear closer to
each other, the error decreases until the two LEDs are almost
perfectly aligned. It then increases until the two LEDs can
again be detected separately, whereafter it drops to the initial
values. This behavior can be seen in Fig. 11.



0 50 100 150
−0.5

0

0.5

1

1.5

2

2.5

time [s]

po
si

tio
n

[m
]

xest yest zest

0 50 100 150
−150

−100

−50

0

50

100

time [s]

an
gl

e
[d

eg
]

αest βest γest

0 50 100 150

−2

−1

0

1

2

time [s]
an

gl
e

er
ro

r
[d

eg
]

α β γ

0 50 100 150
−2

−1

0

1

2

time [s]

po
si

tio
n

er
ro

r
[c

m
] x y z

Fig. 6: Estimation of position and orientation, as well as the respective errors. Ground truth is not shown because there is no visible
difference to the estimated values at this scale. The orientation is parametrized with Euler angles, i.e. yaw (α), pitch (β), and roll (γ).
The target object was equipped with nL = 4 LEDs. For four out of a total of 7,273 images, no estimate could be resolved.

(a) T1 (b) T2 (c) T3

Fig. 8: Camera images (a) before, (b) during, and (c) after an LED
occlusion. The camera images were inverted for better contrast.
The estimation errors for this experiment are shown in Fig. 10.
The arrow indicates the LED that is occluded.

(a) T1 (b) T2 (c) T3

Fig. 9: Camera images (a) before, (b) during, and (c) after an
alignment of two LEDs. The camera images were inverted for better
contrast. The estimation errors for this experiment are shown in
Fig. 11. The arrow indicates the two LEDs that were aligned.

C. Quadrotor Stabilization

To show the applicability of our system in a real-world
scenario, we demonstrate closed-loop control of a quadrotor6

using pose estimates of our system at 40 Hz. We attached
nL = 5 LEDs to a quadrotor, which is based on the
PIXHAWK platform [14] (see Fig. 2), and mounted the
camera on a KUKA youBot [15] (see Fig. 1). We used a

6A video is included as an attachment to this paper.

0.5 1 1.5 2
0

0.25

0.5

0.75

1

T1 T2 T3

time [s]

po
si

tio
n

er
ro

r
[c

m
]

0.5 1 1.5 2
0

0.25

0.5

0.75

1

1.25

1.5

or
ie

nt
at

io
n

er
ro

r
[d

eg
]

Fig. 10: Error plots of position and orientation during an LED
occlusion. As an orientation error metric, we used the angle of the
angle-axis representation. The red interval indicates the duration of
the occlusion. The times Ti correspond to the images in Fig. 8.

lens with field of view of 120◦. Our system is robust enough
to handle illumination changes from daylight to complete
darkness, false detections, occluded LEDs, and dynamic
backgrounds. It is also fast and precise enough to stabilize
the quadrotor when it gets pushed or flies outdoors with
unpredictable winds.

D. Execution Time

The mean and maximum execution times for each step of
our algorithm can be found in Table II. They were measured
while running our system on a dataset with 2,400 images
and LED configurations consisting of 4 and 5 LEDs. For
the timing, we enforced a brute-force correspondence search
in each step. However, if we use prediction, this search is
required less than 0.2 % of the time. We used a laptop with



0.5 1 1.5 2 2.5
0

0.25

0.5

0.75

1

T1 T2 T3

time [s]

po
si

tio
n

er
ro

r
[c

m
]

0.5 1 1.5 2 2.5
0

1

2

3

4

or
ie

nt
at

io
n

er
ro

r
[d

eg
]

Fig. 11: Error plots of position and orientation when two LEDs
appear as one in the camera image. As an orientation error metric,
we used the angle of the angle-axis representation. The red interval
marks the duration of the alignment. The times Ti correspond to
the images in Fig. 9.

TABLE II: Execution times of the individual steps of our algorithm
(corresponding to subsections III-C to III-F)

N
um

be
r

of
L

E
D

s

L
E

D
de

te
ct

io
n

[m
s]

C
or

re
sp

on
de

nc
e

se
ar

ch
[m

s]

Pr
ed

ic
tio

n
[m

s]

Po
se

op
tim

iz
at

io
n

[µ
s]

To
ta

l
(w

/o
pr

ed
ic

tio
n)

[m
s]

To
ta

l
(w

/
pr

ed
ic

tio
n)

[m
s]

n
L
=

4 Mean 2.7 1.1 0.2 31 5.0 3.8

σ 0.9 0.6 0.1 10 1.4 1.1

Maximum 5.1 5.7 0.6 94 10.1 6.5

n
L
=

5 Mean 2.7 4.9 0.3 36 9.0 3.8

σ 0.8 2.0 0.1 11 2.5 1.1

Maximum 5.1 14.0 0.7 93 17.6 9.3

an Intel i7-3720 (2.60 GHz) processor. Note that on average
the LED detection makes up 71 % of the execution time. This
could be drastically reduced by defining a region of interest
around the predicted detections, as is done in [1].

V. CONCLUSIONS

We presented an accurate, versatile, and robust monocular
pose tracking system based on infrared LEDs. Compre-
hensive experiments showed its superiority over previous
approaches for pose estimation and its applicability to robots
with fast dynamics such as quadrotors. Our system is avail-
able as an open-source ROS [16] package, so that it can
easily be integrated into other robotic platforms.

Future work will include the extension to track multiple
objects and will integrate the dynamical model of the target
object for prediction and filtering. Furthermore, we plan
to use the system for mutual localization in a team of
quadrotors.

ACKNOWLEDGEMENT

We gratefully acknowledge the contribution of Flavio
Fontana for helping with the quadrotor experiments.

REFERENCES

[1] A. Breitenmoser, L. Kneip, and R. Siegwart, “A Monocular Vision-
based System for 6D Relative Robot Localization,” in IEEE/RSJ Intl.
Conf. on Intelligent Robots and Systems (IROS), 2011.

[2] E. Olson, “AprilTag: A robust and flexible visual fiducial system,” in
IEEE Intl. Conf. on Robotics and Automation (ICRA), 2011.

[3] A. Censi, J. Strubel, C. Brandli, T. Delbruck, and D. Scaramuzza,
“Low-latency localization by Active LED Markers tracking using a
Dynamic Vision Sensor,” in IEEE/RSJ Intl. Conf. on Intelligent Robots
and Systems (IROS), 2013.

[4] P. Lichtsteiner, C. Posch, and T. Delbruck, “An 128x128 120dB 15us-
latency temporal contrast vision sensor,” IEEE J. Solid State Circuits,
vol. 43, no. 2, pp. 566–576, 2007.

[5] M. Fiala, “ARTag, a fiducial marker system using digital techniques,”
in Proc. IEEE Int. Conf. Computer Vision and Pattern Recognition
(CVPR), 2005.

[6] M. A. Fischler and R. C. Bolles, “Random sample consensus: a
paradigm for model fitting with applications to image analysis and
automated cartography,” Commun. ACM, vol. 24, no. 6, pp. 381–395,
1981.

[7] L. Kneip, D. Scaramuzza, and R. Siegwart, “A Novel Parametrization
of the Perspective-Three-Point Problem for a Direct Compuation of
Absolute Camera Position and Orientation,” in Proc. IEEE Int. Conf.
Computer Vision and Pattern Recognition (CVPR), 2011.

[8] T. Pintaric and H. Kaufmann, “A Rigid-Body Target Design Method-
ology for Optical Pose-Tracking Systems,” in Proc. ACM Symp. on
Virtual Reality Software and Technology (VRST), 2008.

[9] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software
Tools, 2000.

[10] J. Gallier, Geometric Methods and Applications For Computer Science
and Engineering, ser. Texts in applied mathematics. New York, NY,
USA: Springer, 2001.

[11] R. Szeliski, Computer Vision: Algorithms and Applications, 1st ed.
New York, NY, USA: Springer, 2010.

[12] E. Eade, “Monocular Simultaneous Localisation and Mapping,” Ph.D.
dissertation, Cambridge University, 2008.

[13] B. Bell and F. Cathey, “The iterated Kalman filter update as a Gauss-
Newton method,” IEEE Trans. on Automatic Control, vol. 38, pp. 294–
297, 1993.

[14] L. Meier, P. Tanskanen, L. Heng, G. H. Lee, F. Fraundorfer, and
M. Pollefeys, “PIXHAWK: A micro aerial vehicle design for au-
tonomous flight using onboard computer vision,” Autonomous Robots,
vol. 33, pp. 21–39, 2012.

[15] R. Bischoff, U. Huggenberger, and E. Prassler, “KUKA youBot - a
mobile manipulator for research and education,” in IEEE Intl. Conf.
on Robotics and Automation (ICRA), 2011.

[16] M. Quigley, K. Conley, B. P. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source Robot Operating
System,” in IEEE Intl. Conf. on Robotics and Automation (ICRA)
Workshop on Open Source Software, 2009.


