Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. The geometry of algorithms using hierarchical tensors
 
research article

The geometry of algorithms using hierarchical tensors

Uschmajew, Andre  
•
Vandereycken, Bart
2013
Linear Algebra and Its Applications

In this paper, the differential geometry of the novel hierarchical Tucker format for tensors is derived. The set HT,k of tensors with fixed tree T and hierarchical rank k is shown to be a smooth quotient manifold, namely the set of orbits of a Lie group action corresponding to the non-unique basis representation of these hierarchical tensors. Explicit characterizations of the quotient manifold, its tangent space and the tangent space of HT,k are derived, suitable for high-dimensional problems. The usefulness of a complete geometric description is demonstrated by two typical applications. First, new convergence results for the nonlinear Gauss-Seidel method on HT, k are given. Notably and in contrast to earlier works on this subject, the task of minimizing the Rayleigh quotient is also addressed. Second, evolution equations for dynamic tensor approximation are formulated in terms of an explicit projection operator onto the tangent space of HT,k. In addition, a numerical comparison is made between this dynamical approach and the standard one based on truncated singular value decompositions. © 2013 Elsevier Inc.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

1-s2.0-S0024379513002115-main.pdf

Access type

openaccess

Size

740.88 KB

Format

Adobe PDF

Checksum (MD5)

5d955e1634d14dfc4eb1bbb336ce3aec

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés