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Abstract Learning a Hidden Markov Model Temporal Replay

Learning to recognize, predict, and generate spatio—temporal patterns A four—-state HMM was presented to the network, with states defined The network was trained on input defined by a spatio—temporal pattern
and sequences of spikes is a key feature of nervous systems, and by differing Poisson firing statistics over 225 input neurons. with two stochastically branching trajectories.
essential for solving basic tasks like localization and navigation. How > Input neurons indicated the current color (black or white) of the pixels
this can be done bv a3 spikine network however remains an open OO D DT ot oo T Optimal » Network learned both the spatial attributes (feedforward weights) and the temporal progression
_ y P g ' ' | P 2 (8823) (Learned) (recurrent weights) of the input pattern
question. Here we present a STDP-based framework extending a 2 |
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previous model [1], that can simultaneously learn to abstract hidden z 0.018 (0.035)
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states from sensory inputs and learn transition probabilities [2] between E 0.095) (0.047)
these states in recurrent connection weights.
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a stochastic “replay” of observed trajectories.
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IBRORRE @ A network model with additional transition neurons for encoding and fime (8
X) e (%) [ learning Finite State Machines (FSMs) was trained on observations
from a four—state maze traversal task. After training, the network Conclusions
Each output neuron zj encodes a hidden cause over the input, where resolved the current state given only transition symbols.
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Up I T 0 We have presented a recurrent spiking neural network architecture,

o : ! | which can be trained to perform dynamical Bayesian inference of hidden
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wy,; = logp(yz = 1|z = 1, w)

rec

w,, = logp(zr = 1|2k = 1, w).

Trained on input generated by a Hidden Markov Model, the activity of 4 || 3
the Winner-Take-All (WTA) network evolves as a single-sample
(unitary) particle filter [3].
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Depression on every presynaptic spike; weight— and time— dependent
potentiation if postsynaptic neuron fires within a time window.
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