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Abstract

We study scale effects on the conductivity of crystalline contacting interfaces. The ap-
proach focuses on the role played by lattice vibrations in the thermal conductivity using
finite elements and molecular dynamics models. A special effort is made at calibrating the
continuum model directly from molecular dynamics simulations. An innovative method
that uses the temperature evolution issued from an impulse boundary condition is em-
ployed to compute heat conductivity, which is notoriously known as difficult to measure.
Using this approach, a parametric study is conducted on a set of contacting surfaces
on which we specify asperities wavelengths. It is shown that the usual power laws that
relate contact area ratio with thermal conductivity do not apply at the nanoscale.

Keywords: Heat, thermal conductance, molecular dynamics, finite elements, Fourier
conduction, ballistic conduction.

1. Introduction

For many engineering applications, the thermal conductivity of an object having
an internal interface is of paramount importance. For instance, the current trend for
miniaturization brings the need for nanoscale cooling systems [1], which calls for a good
knowledge of the thermal contact conductance from the heat source to the heat regulator.

Machined, fractured, and even polished surfaces all seem to follow the general de-
scription of fractal surfaces with parametrized power spectrum density [2—4]. Further-
more, the surface topology of the contact interface between two solids strongly alters
the contact conductance. Thus the interface properties can be deduced from contact
conductance measures and reversely surface properties can be chosen to tune the con-
ductivity. Experimentally, a conductance power law is observed, which writes k o< p?
with x the conductance, p the applied pressure, and 5 an exponent [5-7]. These laws
found applications in several macroscale finite elements studies [8, 9].

Several theories and numerical simulations justifying this correlation exist. One of
these modeling approaches, as developed in [10-16], uses the parallel existing between
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elastic deformation theory and diffusion equation (heat/electrical conduction) to derive
a relation of proportionality between the incremental stiffness at the surface and the
conductance. It takes the form of the relation k % with d the mean separation at
the contacting interface. This pressure/stiffness variation depends on the mechanical
interface deformations in response to loading [17-20] and helps to recover the power
law relating pressure and contact conductance. Differences amongst theories stand on
the approach used to derive the mechanics of the contact rather than the conductivity
problem itself. This assumes that every contacting asperity contributes to the global
conductivity according to their contact area, which does not take into account possible
heat transport interactions between asperities.

Even though this is certainly acceptable at macroscopic scales, when going down to
the atomic scale the discreteness of matter leads to a ballistic phonon heat transport
[21-23]. Phonons are quantum of lattice vibrations, which are quantized because of
small distances to boundaries or low temperatures. Some phonons of low frequency
admit an important mean free path - especially in pristine crystalline materials - unless
an obstacle is introduced. This means that the energy transport is not following the
classical Fourier heat equation but rather a classical wave equation. Thus the heat flow
will be perturbed when the geometry implies short distances between free boundaries.
A surface topology displaying small wavelengths clearly falls in that condition. This
phonon scattering effect has been studied experimentally, theoretically and in numerical
simulations [24-32]. However, simple geometries were considered in the theories, and
numerical studies rarely included the presence of defects.

Classical molecular dynamics can qualitatively catch the lattice vibration contribu-
tion in the heat conduction. To the best of our knowledge, there are only two classes
of methods that can be used to measure the heat conductivity within MD simulations.
The first relies on the Green-Kubo statistical relation to extract the conductance from an
entire group of atoms supposed at equilibrium [33]. This is quite accurate but the equi-
librium assumption must be fulfilled and renders difficult the introduction of localized
defects. Non equilibrium molecular dynamics [34] belongs to the second class. It imposes
a heat flux that brings a temperature gradient. The ratio of the flux to the induced tem-
perature gradient is a measure of the thermal conductivity. Unfortunately, temperature
gradients obtained with this method are perturbed when defects are introduced. This
motivates a new approach to extract thermal conductance from material samples with a
customized defect profile.

The objective of this work is to describe scale effects on crystalline-material conduc-
tivity by comparing continuum (finite elements) and molecular dynamics simulations.
This scale effect is directed toward contact conductance by introducing an interface with
a topology involving a single wavelength. This will be achieved within three parts. In
a first section we present our numerical models. The Fourier heat equation and the
finite-element model will be briefly introduced. Then an important effort will be done
in describing the molecular settings and especially the methods used to extract physical
constants. In a second part, we introduce a new procedure that is aimed at extracting
thermal conductance when defects are present in the material. This technique, which
uses the predicted response to a temperature impulse, will be described and validated
against Green-Kubo predictions but also against finite elements computations. The third
part introduces contacting interfaces as the base of a parametric study. From that study,
the relation between contacting area and conductance will be presented for both atomic
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and macroscopic scales. We conclude with a discussion and contrast our results with
power-laws observed at the macroscale.

Nomenclature

k Thermal conductivity

Q@ Thermal diffusivity

€ Lennard Jones energy parameter

ar, Linear thermal expansion coefficient

ay Volumique thermal expansion coefficient

J Global energy flux

S; Stress tensor computed on atom i

A\ Velocity of atom i

10) Lennard Jones potential function

p Mass density

o Lennard Jones distance parameter, the atomic radius
a Face cubic centered lattice dimension

Cy Heat capacity at constant volume per unit of mass
€ Energy of atom 4

ky Boltzmann constant

m Atomic mass

T Temperature

Vi Current volume surrounding atom 4



2. Numerical models

The purpose of this section is to describe the modeling properties of the continuum
and atomic scale models. At the continuum level the heat transport follows the Fourier
heat equation taking the form:

pe, T = —kV3T (1)

where p is the density of the solid considered, ¢, is the mass specific heat capacity
at constant volume and T is the temperature scalar field. The heat equation above has
no volumetric heat generation term since we will not consider this kind of energy input
in our study. The numerical continuum models will all use an unstructured mesh and
an explicit integration scheme applied to a lumped [35, 36] heat capacity approximation
of (1). To be able to compare this continuum description of heat transport to atomic
scale simulations, the physical constants should be calculated directly using molecular
dynamics simulations.

All our molecular dynamics simulations will consider a generic material for which the
initial state is a perfect crystal with a face centered cubic (FCC) lattice with dimension
a (ap = 4.032 A for ground state). The mass of each atom is set to m = 26.98 g/mol.
The inter-atomic potential used to drive atoms is the Lennard Jones potential [37, 38].
The expression of the associated global potential energy is:

Eio = % 3 o(riy)  with  G(r)=e <(:)12 - (:)6) o

i,

where 0 = 2.596 A and e = 2.4621 kcal/mol have been computed to fit a Young’s modulus
of 68 GPa and a Poisson ratio of ~ 0.3. The cutoff radius has been chosen as 7., =
6.039 A so that atoms interact up to their fourth neighbors. More details are available
within [39] for the derivation of Lennard Jones parameters from Young’s modulus and
Poisson ratio. Using this description of the atomic interactions, the physical constants
relevant to the continuum analogy, mass density, heat capacity and heat conductivity,
are computed in the following section.

2.1. Mass density and thermal expansion

A FCC crystal with the lattice constant o(7) will have a mass density given by the
formula:

D) = oo = (1 u ) T = (1 u ) gy 3)

where m is the atomic mass. a(7) admits a temperature dependence resulting from
the thermal expansion ar (7). We monitored the volume expansion as a function of
temperature in an isothermal-isobarc enemble (NPT) . The result is the lattice parameter
versus temperature evolution presented on figure 1. At ground state the density is pg ~
1.65 g/mol/Ag. At 100 K the thermal expansion is az(100) ~ 0.00396 K—! and the

density thus computed is p(100) ~ 1.627 g/mol/A?’.
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Figure 1: MD measure of the relative increase in

the equilibrium lattice size with respect to tem- Figure 2: MD measure of the variation of total
perature. The expansion factor is the slope of this energy with respect to temperature. The heat ca-
curve, which is constant in the range 100 — 150 pacity is the slope of that curve which is constant
Kelvins. in the range between 100 to 150 Kelvins.

2.2. Heat capacity

The mass specific heat capacity can be computed as the variation of total energy
with respect to a change of temperature at constant volume. Figure 2 presents the curve
obtained during such a simulation on a cubic box. The observable linear relation states
that the heat capacity remains constant in the range of temperatures we wish to treat in
the present work (100 - 150 Kelvins). This allows to provide the engineering parameter
¢, (100) ~ 2.18987 - 10~* kecal /g /K. Several simulations of various sizes where performed
(but not presented here) that show that the measured capacity does not depend strongly
on the domain size when at least a decade of atoms is considered.

2.3. Heat conductivity

Last but not least is the conductivity parameter. As stated in the introduction
many paths can be found in the literature in order to extract such a coefficient from
molecular simulations. Among them, the Green-Kubo statistics [33] method and the
Non Equilibrium Molecular Dynamics (NEMD) [34] are well-established tools in the
case of homogeneous material. The advantage of the Green-Kubo relation is that it
connects the transport coefficients to the auto-correlation of the energy flux fluctuations
at equilibrium and this for any triggered temperature. The drawback stands in the fact
that the domain must be homogeneous and at an equilibrated state. Also fairly long
simulations have to be made for getting convergence of the auto-correlation functions.
Nevertheless, in order to define the settings of our model, the approach is well suited
since we can choose precisely the temperature at which we seek the heat conductivity.
For the calibration of our constants we conducted two molecular dynamics simulations,
one at 100 K, the other at 150 K. The simulations consist of a cubic box containing 256
atoms with periodic boundary conditions. The global energy flux vector is defined as

[40]:
J= % zi:eivi - Zz: S;Vivi (4)
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Figure 3: Auto-correlation of the energy flux with respect to time at temperatures 100 and 150 Kelvins.
The exponential trends are also provided by the dashed lines.

where V is the volume of the system, V;, e;, vi and .S; are per-atom quantities, respectively
volume, energy, velocity and stress tensor. The Green-Kubo relation is:

V o0
k= W/0 (3(0), 3())dt (5)

where k; is the Boltzmann constant and the angular brackets stand for time averaging.
Figure 3 presents the time-averaged auto-correlation function (J(0), J(¢)) for the two sim-
ulations. As can be seen, the global behavior can be approximated with an exponential
function. Thus the integral of equation (5) can be computed semi-analytically and it gives
the values k1go = 3-10~* kcal/mol/(fs- A - K) and k50 = 1.9-10~* keal/mol/(fs - A - K)
which corresponds in more usual units to k190 = 20 W/m/K and k150 = 13.1 W/m/K. It
is worth noticing that the computed conductivities are small when compared to metallic
systems. Indeed in these molecular dynamics simulations, the electronic contribution to
conduction is not part of the model, thus leading to small conduction values. For the
purpose of the present study, which aims at comparing atomistic and continuum scales
for phonon conduction, the generic material that has been defined allows us to ignore
this point.

In this section we have computed the constants of the Fourier continuum model of
the diffusion equation (1) directly from the molecular dynamics settings. However, the
homogeneity of the material as well as a simple cubic form of the domain was assumed.
This makes such a method unsuitable in the case of materials containing defects. In
order to address this issue, the coming section will present a procedure to extract heat
conductivity in more general situations.
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3. Heat conduction measure by response function analysis

One of the main goals of this work is to introduce a robust measure of the effective heat
conduction when defects are introduced. For example, when only a fraction of an internal
surface remains in contact the voids surrounding contacting asperities will restrain the
total heat flux bringing a lower thermal contact conductance. As previously mentioned,
the Green-Kubo statistics approach is unsuitable because of the local inhomogeneity.
Also, the NEMD approach becomes extremely difficult since the geometrical bottlenecks
will perturb the temperature gradient construction.

Thus, a direct approach is now proposed. It consists in measuring the temperature
evolution when a heat impulse is imposed as a boundary condition. This temperature rise
will be compared to its Fourier analytical prediction. Even though the physics involved
at the atomistic scale differ from those represented by the Fourier heat equation, we will
demonstrate in the following that the approach remains quite accurate. Let us consider
a 1D bar of size L fitting in the range [0, L]. At initial time ¢ = 0 the bar is considered
at thermal equilibrium of temperature Tj,;;. A Heaviside step of temperature T}¢q is
applied to one edge of the bar while the other edge follows null thermal flux condition.
Hence, the problem to solve can be expressed as:

. 0T
pc, T = —k% YV € [0, L] (6)
T(x,0) = Tinit
oT (z,t
o) |

or
T(0,8) = They V£>0

A solution of the above problem can be found in [41] for the case where the heat con-
ductivity is assumed constant. The temperature evolution follows:

T(LA) = (Tyog — Tonie) (1= 257 ED macpeye | g 7

( ,)7( req — init) _;;me + Linit ()

where « is the sought diffusivity. The obtained solution has the form of an infinite Fourier
series with terms of decreasing magnitude with time forward.

In the context of molecular dynamics simulations, it is not clear yet whether the
temperature evolution will follow the continuum diffusion equation since the discreteness
of matter perturbs the heat transport, especially when small system sizes are considered.
We used a molecular dynamics simulation with a plain block of atoms with dimensions
I x1x L with L = 448a and [ = 24a. This is a system containing 1,032,192 atoms.
The elongated geometry allows us to consider the problem as 1D. The equilibrium state
at initial time is obtained by taking into account the thermal expansion described earlier
concurrently with an initial set of Gaussian velocities. We relax the system, so as to
obtain an adequate velocity distribution, with a Langevin thermostat at temperature
100 Kelvins which is applied on the entire set of atoms. Then the thermostat is changed
to impose a temperature of 150 Kelvins on a thin layer of atoms at the bottom of the
model. This creates the sought Heaviside boundary condition. Fixed atoms at the top
of the domain provide the null heat flux boundary condition. The measure of the mean
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kinetic energy with equipartition formula gives the temperature evolution with respect
to time.
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Figure 4: Temperature evolution resulting from a Heaviside change of temperature. Blue is the molecular
dynamics result. The red curve represents the temperature evolution computed by solving Fourier
equation with finite elements with the diffusivity set to kiso (value computed with the Green-Kubo
approach). The green curve presents the best fit to the MD temperature evolution when using equation

(7).

We wish now to compare temperature profiles with the analytical result of (7).
The obtained record of temperature is foreground with the analytical prediction on
figure 4. By fitting the MD temperature evolution to the equation (7), one can mea-

sure the diffusivity as a = 0.493 A® /fs which leads to the conductivity value k =
1.8-10~* kcal/mol/(fs - A - K) when assuming constant capacity, which was observed in
the studied range of temperature (see figure 2). The fitted curve is plotted in green on
figure 4. This represents a small error %ﬁfo of around 6% to the Green-Kubo prediction
of k150. The chosen jump of temperature Treq — Tinie = 50 is an intermediate value,
not too large, so that the Fourier prediction of (7) is not suffering inaccuracy from the
variation of conductivity, and not too small, so that thermal noise is not polluting the
curve fitting process.

In order to know the possible impact of using a Fourier model we performed a finite
element simulation using the conductivity coefficient k159. The finite element tempera-
ture evolution obtained is presented on Figure 4 as the red curve. It can be seen that
the global trend is respected whereas the attention needs to be drawn to the onset of the
temperature rise where molecular dynamics present a faster increase of temperature (see
zoom in figure 4). Fourier theory does not reproduce the onset of temperature evolution
which can be explained by the fact that the conductive bar has a finite size, constituted
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of discrete atoms. This imposes that a part of the kinetic energy is transported at sound
speed. This ballistic energy transport, is not taken into account by (7) since only Fourier
heat equation is considered. This effect is expected to reduce with temperature increas-
ing (acoustic waves disperse quicker with increasing thermal noise, a phenomenon known
as phonon-phonon scattering). Also, much longer bars are expected to follow better our
Fourier profile because the distance is another factor limiting the propagation of coherent
acoustic waves. Unfortunately both of these physical arguments cannot easily be verified
with the classical molecular dynamics tool because of the inter-atomic potential inaccu-
racy at high temperatures, and of the additional computational cost involved. On the
other hand it is clear that the behavior at the beginning of the curve does not alter too
importantly the measure of the conductivity done by curve fitting. We thus conclude that
equation (7) is effective in determining thermal conductivity. This numerical approach
will be used in the rest of the paper to characterize heat conductivity in the case of bars
presenting defects. As a summary, table 1 shows the computed physical constants.

Atomic units SI units
€ 2.4621 [kcal /mol] 1.712-10720  [J]
o 2.596 [A] 2.596-10"10  [m]
Teut 6.039 Al 6.039-10719  [m]
m 26.98 g/mol] 4.4801-107%°  [kg]
a(T =0) 4.0320 [A] 4.0320-10719  [m]
a(T = 100) 4.04797 Al 4.04797-1071°  [m]
az(100 < T < 150) 0.00396 K] 0.00396 K]
o(T = 0) 1.65 [g/mol /A 2739.89 kg /m?]
p(T = 100) 1.627 g/mol/A”] 2701.7 kg /m®]
(100 < T < 150) | 2.18987.10~%  [kcal/g/K] 916.85 J/kg/K]
K100 3.107% [kcal/mol/fs/A /K] 20 [W/m/K]
K150 1.9.107* [kcal/mol/fs/A /K] 13.1 [W/m/K]
Kyt 1.8.107* [kcal/mol/fs/A /K] 12.2 [W/m/K]

Table 1: Summary table of the constants used for the MD and FE models.

4. Heat conduction through a contact interface

In order to study the conductivity through contacting asperities, we introduce defects
with simple geometries so as to allow partial contact and thus partial heat transfer
through the bar. Square asperities with steep borders are used for that purpose. Such
an asperity is presented on the schematic of figure 5(a). In the domain considered,
important regions are associated with tags (see 5(a)): temperature is measured in region
2, the thermostat is applied in region 5, regions 1 and 6 are fixed, and regions 3 and 4
are free of constraints. Around the asperities, the voids (hashed region on figure 5(a))
are filled with insulating (fixed) atoms. This insulating and rigid zone was introduced
so that small asperities do not collapse because of thermal fluctuations as several of
our attempts demonstrated (not presented here). Indeed the heating process creates a
thermal expansion that can lead to important shear stresses in pillars of small sections.
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Figure 5: Schematic for the domain geometry which includes a single asperity (a), four asperities made
of crystalline atoms (b), one single asperity made of finite elements (c). On (a), L stands for the width,
h the length of the asperity and R is the contacting length ratio. For the upper body, the atoms into
region 1 are fixed while in region 2 the temperature is monitored. The region 3 is free of constraints
as well as the region 4 in the lower body. Region 5 is constrained to a Langevin thermostat and region
6 contains fixed atoms. The hashed regions are filled with insulating (fixed) atoms. On (b), only the
bottom part is presented so that the asperity division process is illustrated. The dimensions are given
by L = 24A, R = 0.5, h = rewt and D = 2. The color scale used on (c) represents one temperature
gradient typically obtained during continuum heat propagation simulations.

The model size L, the height of the crenel h, and the contact length ratio R are the three
parameters which fully describe the domain shape when a single asperity is introduced.
In order to study the influence of the asperity size without changing the global size (and
thus the number of atoms) we also provided a division factor D that introduces D?
asperities of area (RL/D)? each. This allows to decrease the asperity size while keeping
the area of contact constant. An example of domain is presented for L = 24a, R = 0.5,
h = rey and D = 2 on figure 5(b). The Z-axis is normal to the contact surface. The
usage of periodic boundary conditions on the sides of our box, ensures that we model an
infinite surface.

Using the procedure described in the previous section, we conducted similar heat
transport simulation in order to study the influence of the asperity size (i.e. wavelength)
on the thermal contact conductance. In next section, the influence of the geometry
parameters on molecular dynamics and finite elements heat propagation is sought.

4.1. Temperature evolutions

Figure 6(a) shows the effect of the contact area ratio on the MD temperature evolution
in region 2 (see figure 5(a)) for a constant system size L = 24a. The temperature
profiles follow an exponential shape with a time constant increasing for a decreasing
contact ratio (a small contact area reduces the heat flux through the system, which
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Figure 6: Temperature evolution in region 2 (see figure 5a) for a system with section size L = 24a and
for various contact ratio: a) MD, b) FE.

delays the temperature rise). Figure 6(b) presents the obtained finite element analog.
Finite elements curves are comparable to MD results even though time constants of
exponential functions seem to differ substantially for the lowest contact ratios. Thus the
measured conductivities will denote different trends as will be shown in the following
section.

4.2. Thermal contact conductance

The effective conductivity has been extracted using equation (7) from the temperature
profiles so as to exhibit the dependence to contact area ratio. Figure 7 shows the relative
conductivity (k/ko with ko the conductivity for A/Ag = 1) as a function of contact
ratio, and this for asperities of several sizes. The single asperity finite element reference
is also shown. The first observation is that the continuum Fourier heat equation does
not provide the same trend as the molecular dynamics model. The main difference is
brought by the slope at 0 % of contact. In the case of MD these slopes are all finite and
not null, independently of the number of asperities. On the contrary, for the continuum
calculations the slope looks infinite. This can be explained by the heat propagation
nature being ballistic or diffusive.

When diffusive behavior is predominant, the scattering of phonons is not significant.
This of course is the case when the scale of the asperity is large when compared to
phonon’s mean free path. Then, several analytical work predict a thermal contact con-
ductance kq ~ VA [5]. In the ballistic regime, the corpuscular nature of phonons needs
to be taken into account by including the scattering processes due to the interaction
of phonons with boundaries of the contacting region. In that case Little [25] showed a
relation of the form k;, ~ A. These two simple behaviors would lead to either infinite or
finite slopes for diffusive and ballistic heat transport respectively. But it is clear from
figure 7(a) that our atomistic model does not follow k/kg oc (A/Ag)? - with 3 # 1 - be it
for single asperity up to 49 asperities. This is probably due asperity interactions, which
also come from periodic boundary conditions.

If the law directing contact conductance relations is a combination of diffusive and
ballistic heat transport then it can explain the observed finite slopes. In the case of semi
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Figure 7: Relative conductivity with respect to contact area ratio for a domain of size L = 24a. The
plain curves are obtained with a finite elements model whereas the dashed curves are obtained from
molecular dynamics simulations. For these, the number of asperities where varied so as to present the
influence of changing the per-asperity area to the global conductivity.

infinite domains for a single asperity, the work of Wexler [24], which used Boltzmann
transport equation to enrich Little’s formulas, allowed to introduce an interpolation term
from ballistic regime to the diffusive-like behavior. Let us introduce a mixed behavior

following:
1

" oz + /(@)

where x = A/Aj, and a and 8 are the ballistic and diffusive contributions respectively.
Fitting with a least square approach the above relation with the thermal conductance is
providing figure 8(a). Even though the fit is not perfect (especially for FE), the trends are
well represented. Furthermore, figure 8(b) shows that the diffusive contribution (resp.
ballistic contribution) is decreased (resp. increased) when the scale of the asperity is
diminished.

Because of the periodic boundary conditions, equation (8) cannot capture fully ac-
curately our numerical results. Therefore, we considered a more generic shape which
approximates satisfactorily the diffusion relations:

k(x)/ko(z) (8)

1
axP + bz

k(z)/ko(z) = 9)
where a, b are two constants and p, g two exponents. Fitting this relation with the thermal
conductance is providing a good approximation of the law in the MD and FE simulation
cases as presented on figure 9(a). On figure 9(b) the fit coefficients and exponents are
extracted for various numbers of asperities. It should be noticed that the sum of a
and b coefficients is unity (within a numerical error) and have thus balanced effects. The
parameter a (resp. b) decreases (resp. increases) when increasing the division parameter.
The exponents show also variations with respect to the number of asperities making x?
evolve from 298 to £73/2 and z¢ from z°7 to x—0-39.
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wavelength of the surface.
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Figure 10: (a) Slope function s(x) = who = azpTTypgaTT Plotted for FE and MD models for various

number of asperities. (b) Value of s(0.01) for the different geometry configurations for FE and MD
models.

In the finite element case the fitted values provide:

1 x
0.582-05 + 0.422065 .58

This is interesting since the square root shape provided by the analytical derivation of
[5], which considered simple boundary conditions, is recovered asymptotically for a small
contact area. Another interesting point is that the fitting process computed a non null
coefficient b. Since the Fourier equation is solved in the FE case, b cannot represent a
ballistic effect and is rather believed to be influenced by the boundary conditions.

The slope at small contact ratio is also interesting as it distinguishes the results for
various numbers of asperity. We can define a slope function as the slope of the line
connecting the origin point to any point x on the diffusivity curve. This leads to the

expression:
1 1 1
—— B e — 11
s(@) x <ax1’ + bx? > axPtl + pratl (11)

k/ko = when x — 0 (10)

The function s is presented on figure 10 for which we can see a difference of behavior
between MD and FE (scale effect), and between distinct number of asperities. The slope
at the origin might diverge or converge depending on the number of asperities. This can
be explained by computing the derivative of equation (9):

axP~lp 4 bzl lq P
(k(x)/ko) = — (P + bai )2 ~ =TT P=l when x —0 (12)

The slope at the limit of zero contact area is finite only if p < —1, which is not always

the case. This shows again that the global behavior is a combination between diffusion

and ballistic regimes. Nevertheless if we decide a threshold of A/Ay = 0.01 the values

taken by s for all the ran simulation can be observed on figure 10(b). It is clear that

the wavelength - or number of asperities - is influencing the initial slope which must

have a correlation with phonon’s mean free path. Thus parameters in equation (9) are
14



depending on the ballistic regime contribution. This point will need further investigation
to establish correlations.

5. Conclusion

We computed the thermal contact conductance of surfaces characterized by cubic
geometries of varying scales, in view of understanding the differences between atomic and
continuum predictions of heat conduction. It is acknowledged that heat conductivity is
difficult to determine. Classical methods cannot be used to compute thermal conductance
of materials containing a localized defect as occurs at a contacting rough interface. An
important contribution of our work is the development of a novel method that addresses
this issue. Our approach is based on the analysis of the temperature profile from one
edge of a solid due to a temperature impulse created at the opposite side. These profiles
are then fitted to a predictive model based on the Fourier heat equation.

Finite element (FE) and molecular dynamics (MD) parametric studies have been
conducted on a large set of contact surfaces where asperities sizes and global contact
area ratio were varied. While generally both FE and MD display a similar trend for the
variation of conduction as a function of the contact area ratio, we could observe clear
distinct features. At small contact areas, the continuum simulation displays a strong
variation (infinite) of conductance, which recalls the classical square root diffusion law.
On the contrary, the atomistic scale shows smaller variation of the conductivity.

The different slopes at 0% contact area, observed while solving MD and FE, are
recognized to belong to the ballistic and diffusive regime respectively. In the literature,
the analytical approaches dealing with the conductivity through two objects joined by a
small bridge, all consider semi-infinite geometries, which is not applicable for the present
study. In order to characterize our observations, we parametrized the observed conduc-
tivity with a general equation providing good fits to our results. The slopes at the origin
where contact vanishes have been computed allowing to establish a dependence to the
number of asperities, or equivalently to the surface wavelength. It is tentative to think
that the phonon scattering resistance to heat transfer could be related with this slope,
introducing the idea that the gap of scales from atomistic to Fourier theory would be
wavelength dependent.

For a real contact between random rough surfaces, the largest wavelength is acknowl-
edged to contribute the most to the observable conductivity. Therefore, these results
are interesting in the context of ultra-smooth non metallic surfaces for which the rough-
ness belongs to the nanoscale. Then, the interactions between asperities may impact the
conductivity because of ballistic effects.
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Appendix A. Appendix: Temperature time-dependence Fourier solution to
impulse stimulation.

Let us consider the problem as 1D, so that the differential equation to solve is written:

oT (x,t) O*T(x,t)
o x 0 (A1)

where +y is the heat diffusivity coefficient. The classical way to solve this heat equation is to
consider the domain [0, L] with boundary conditions fixing temperature 7'(0) = T'(L) = 0.
The method of separation of variables for the heat equation leads:

T(z,t) = A(z)B(t) (A.2)

When introducing (A.2) in (A.1) we obtain the following relation:

A'() _ B(1)

YA ~BE (A.3)

with v a constant. Solving the first order differential equation acting on B leads to a
first partial solution:
T(x,t) = e " A(x) (A4)

leading to the family of solutions:
A(x) = Creos(wz) + Casin(wz) (A.5)

By imposing the boundary conditions at initial time 7'(0) = T'(L) = 0 we obtain that C;
is zero. The admissible values of w appear to be of the kind:

km
wi =+ (A.6)
Thus a family of A satisfying (A.3) is found:
. kmx
Ag(z) = szn(T) (A7)

Inserting (A.7) into (A.3) we obtain v = v(£%)2 so that the family (or generator) of
solutions described above is

T(z,t) = e*ﬂ%“)gtsm(T) (A.8)

Using the Fourier transform of the initial condition T'(x,0), the general form of the
solution is then

T(x,t) =Y cksm(’”Tx)e—v(%)’"t (A.9)
k

This clearly states that the temperature variation depends on the frequency contributions
to initial condition.
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For the present study we wish to model a symetric problem with an impulse located
at x = 0 and x = L while the rest of the domain is at temperature T}, = 1. So that the

initial condition can be defined by the function:

0 ifr=00orxz=Lorz=-L
glxz)y=1¢ 1 ifx €]0, L]
-1 ifer €] —L,0[

The Fourier coefficients are evaluated following the integral:

L
Cr = l/ g(a:)sin(k?TTx)dx

Only Fourier coefficients being odd are non zero so that we finally obtain:

T

() = 4; e+ D)

and the solution to our heat equation becomes:

o

4 1 T
T(z,t)=—=) in((2p +1)—)e
(2,1) WFOQPHSW(( p+1)7 e

(2p21)7\' )2t

For instance the value of the temperature at position L/2 verifies:

L cos(pm)e (2N
2p+1

_ é Z (_1)P e_ﬂy((2ptl)7f)2t
T 2p+1

T(L/2,t) = %i
p=0

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

Since any linear combination of solution to the heat equation is also a solution (as

long as the boundary conditions are well imposed) the function

a(xat) = (Treq - Tznit) (1 - T(l’,t)) + Tinit

(A.20)

is solution of the heat equation with an initial condition having a zero temperature
everywhere but for x = 0 and x = L where the temperature is equal to T}, at all times.
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