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Abstract

A direct multiscale method coupling Molecular Dynamics to Finite Element simulations is in-
troduced to study the contact area evolution of rough surfaces under normal loading. First, a
description of the difficulties due to using the Bridging Domain Method at finite temperatures
is discussed. This approach, which works well at low temperatures, is based on a projection, in
an overlap region, of the atomic degrees of freedom on the coarser continuum description. It is
shown that this leads to the emergence of a strong temperature gradient in the bridging zone. This
has motivated the development of a simpler approach suitable for quasi-static contact problems
conducted at constant but finite temperatures. This new approach is then applied to the normal
loading of rough surfaces, in which the evolution of the real contact area with load is monitored.
Surprisingly, the results show little influence of the contact area on temperature. However, the
plastic events, in form of atomic reshuffling at the surface and dislocation activity, do clearly de-
pend on temperature. The results show also a strong and temperature-dependent relaxation of the
initial rough surfaces. This natural mechanism which alters atomic asperities brings to question
the classical atomic description of roughness.

1. Introduction

Contact between surfaces is essential in many natural processes and technological applica-
tions. Nonetheless, our understanding of contact mechanics and its important by-products which
are friction and wear can arguably still be considered at its infancy. In contact problems, ex-
perimental, numerical or theoretical analysis is complicated by the wide range of phenomena
that occurs concurrently at various scales. In the last decades, the advancement of Atomic Force
Microscopy has generated a breadth of fundamental experiments that give us new hopes of under-
standing the origins of frictional forces. The push towards nanoscience and nanotechnologies,
which emphasize surface mechanisms, has only exacerbated this strong interest. Not surpris-
ingly, the number of both continuum and atomic scale studies of contact has seen a strong and
recent increase.

Perhaps one of the most fundamental sub problem of contact mechanics is that of two rough
surfaces brought in normal loading. Traditional theories [1, 2, 3, 4] often assume that a stressed
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solid with a rough surface responds elastically to external load. This leads to a linear dependence
of the contact area with the applied pressure. The idea is that the applied stress allows more and
more asperities to contact and thus sustain load. The fractal nature of surfaces is often a key point
to exploit statistical properties on deforming asperities leading to the described linear behavior.
Numerical studies [5, 6, 7, 8, 9] at both continuum and molecular levels showed that this trend is
effective even when including plastic deformation. Finite element (FE) simulations [6] have also
shown that the real contact is constituted of small clusters at which atomic interactions should
dominate. This has motivated recent nanoscale contact simulations, in which the roughness
dependency as well as the elastic-plastic contribution to the overall deformation were investigated
[10, 11]. However, few studies have analyzed the influence of temperature on surface roughness
and contact evolution.

This is surprising since contact, especially during sliding motion, generates important temper-
ature gradients due to plastic flow [12]. In this context surface topologies can be altered due to
thermal expansion and the accompanying pressure confinement. Furthermore, heat generation
and heat transfer through contacting asperities depend on the contacting profile [13]. The inter-
dependency between surfaces and thermal conduction must be modelled correctly. Be it at the
macroscale, for sliding or rolling contact, or at the nanoscale during nano-indentation or nano-
scratching experiments, understanding temperature evolution and its influence on deformation
mechanisms at interacting asperities is of crucial importance.

In this work, we focus on the effect of temperature on normal contact. The study is conducted
at the nanoscale using molecular dynamics as the principal model. This necessitates long simula-
tion runs to let temperature equilibrate. In order to reduce the computational costs, we introduce
a direct multiscale coupling between molecular dynamics and a finite element engine.

One can distinguish two main coupling strategies. The first one merges interface atoms with
boundary mesh nodes at a given interface in order to allow information passing [14, 15, 16].
Finite temperatures can be achieved by means of time averaging [17] or with an implicit modeling
of thermal properties [18]. Nevertheless, the mesh constraint is very demanding. Indeed the mesh
preparation needs the coupled nodes to match atomic sites. Furthermore, the mesh should then
refine down to the atomic scale, which induces a large computational time.

The other family includes a bridging zone [19, 20, 21, 22], which is a transition region where
the atomic contribution is matched to continuum at a scale above. At low temperatures these
methods were extensively studied to prevent spurious effects such as wave reflections [23]. To
the best of our knowledge, finite temperature above hundreds of Kelvin were not considered
in previous studies. In this paper, we will test the limitations of the Bridging Domain method,
which applies a projection, before proposing a coupling strategy that can work well in three-
dimensional cases within a thermostated environment.

In the next section, we present the details about the Molecular Dynamics (MD) model used to
represent a perfect crystal copper. Thermal expansion is taken into account so that zero internal
pressure is maintained. Then we present the coupling methodology, starting with a demonstration
of the inherent limitations of projective methods, and our solution to palliate these difficulties.
In the fourth section we build a body with a free rough surface that is to be pressed against a
rigid flat plate. Then, we report our results regarding the influence of temperature on contact
and pressure measurements, as well as on plastic activity at the contacting interface. Finally a
discussion about the stability of the constructed surfaces is presented before concluding.
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2. MD model

The purpose of this section is to describe the MD simulation model. The simulation model
uses a perfect FCC copper crystal. The Cartesian reference frame of axes is set along the lattice
directions. The Embedded Atom Method (EAM) [24] is used to model the inter-atomic interac-
tions. The basic equations of the EAM potential are described as:

1
Eun =3 ; V(r) + Z F(o;) 2.1)
pi =, 00ri)) 22)
J#I

where V is a pair potential, ¢(r) is the electronic density contribution with respect to the distance
r of a neighbor atom, p; is the electronic density associated with atom i, r; is the position of atom
i,r;j = r; —r; and r;; is the norm of the vector r;;. Then the force that is to be applied on a given
atom k is:
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EAM potentials commonly define pair potential and electronic density by means of tabulated
functions. In our simulations we used the functions developed by Mishin [25] that accounts well
for the dislocations activation energies. Also a time step of 1 fs is used to integrate the governing
equations of motion.

One difficulty in finite temperature MD studies is that the crystal lattice parameter (referred to
“a” later on) is temperature dependent. Thermal expansion must be taken into account in order
to maintain constant pressure. We computed these lattice constants with a cubic simulation box
made of 4000 copper atoms using NPT (constant number of atoms, pressure and temperature)
ensemble. In these simulations the global domain size is allowed to vary in order to accom-
modate pressure and temperature effects. We introduced a zero pressure constraint and several
temperatures were elected. Table 1 presents the obtained lattice constants as well as the thermal
expansion coefficients. They match the values revealed by other studies [25]. The crystalline
bodies used in our work were all built accounting for the thermal expansion.

Temperature in Kelvin | Lattice constant in A | Thermal expansion in 105K ™!
100 3.620 1.518
200 3.625 1.533
300 3.631 1.552
400 3.637 1.589
500 3.643 1.605
600 3.650 1.631
700 3.657 1.666
800 3.664 1.698
900 3.671 1.731

Table 1: Lattice constant and thermal expansion at different temperatures



3. Multiscale approach

As mentioned earlier, we use a concurrent multiscale approach with atomic to continuum cou-
pling to simulate the behavior of materials in contact. Full atomic details are retained in critical
regions of the material where asperities are contacting (and exhibit a complex deformation be-
havior), while macro or continuum models are employed to describe deformation in regions more
remote from the contact. Let us define Q* and Q the atomic domain and the continuum domain
respectively. In Q4 the model introduced in the previous section is used. In QFF the well-known
linear momentum balance expression for a continuum with no body force is used:
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where o is the Cauchy stress tensor, p is the mass density, v is the velocity field and C is the elas-

ticity tensor. For the copper material we use a constitutive anisotropic law that has the following
elasticity tensor:

Cih Cnp Cip O 0 0
Cpn Cip Cpp 0 0 0
| C2 Ci» Cin O 0 0
€= 0 0 0 Cyq O 0 32)
0 0 0 0 Cyu O
0 0 0 0 0 Cu

The elastic constants C;j, Ci, and C44 were computed in [26] at various temperatures and are
recalled in table 2.

Temperature in Kelvin | Cy; Ciz Cys
100 171.0 | 119.6 | 78.5
200 163.2 | 114.8 | 75.4
300 160.2 | 112.3 | 72.2
400 152.1 | 109.2 | 69.9
500 143.2 | 102.2 | 66.4
600 1404 | 99.8 | 61.6
700 131.5 | 96.6 | 58.8
800 123.8 | 944 | 54.8
900 111.5 | 84.2 | 54.1
1000 106.1 | 81.9 | 51.1

Table 2: Elastic constants in GPa at different temperatures from [26]

In the Bridging Domain method [19, 20], FE and MD models are used to represent continuum
and fine (atomic) scales respectively while a transition region allows the proper handling of
wave reflections at low temperature [23]. But, to the best of our knowledge this method was
never tested in a true finite temperature situation. In the following subsection we first recall the
coupling details before presenting the problems occurring for finite temperatures. Ultimately we
introduce a correction that prevents problems related to thermal fields.
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3.1. Bridging Domain method

We refer to the coupling method introduced by Belytschko and Xiao [19], which couples con-
tinuum models with molecular models using an overlapping region Q, in which both the contin-
uum and molecular domains coexist. A global Hamiltonian is taken as the sum of the weighted
Hamiltonians of both the molecular and continuum parts. The global multiscale Hamiltonian is
simply given as

H=E*+E¢ (3.3)

where E4 and E€ are the atomic and continuum Hamiltonian contributions, expressed as
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with E; the energy fraction for atom i, X; its initial position, E, the energy fraction for element
e, OE, its potential energy density and a stands for an arbitrary weighting function. Here the
notation q represents the vector of atomic positions while u represents the nodal displacements
vector. In addition qg4, qqr, Ugre and ugr refer to spatial zones: they are used to indicate that a
subset of the degrees of freedom (DOFs) is considered.

The two models are coupled in the bridging sub domain by constraining the DOFs in order to
enforce the displacement continuity using a Lagrangian constraint formulation. The constraints
in the bridging sub domain (2F) hold on velocities and are expressed as:

VieQf g = Z @;Xiay —d; = 0 (3.5)
J

where ¢, denotes the shape function associated to node J. For notation purposes, we consider
indexes in upper case and in lower case to refer to finite-element quantities and atomic quantities
respectively. If there are L atoms in the coupling zone QF then L constraints are considered. The
governing equations for the coupled multiscale domain are then formulated using the Lagrangian
multiplier method. The Lagrange multipliers A = (4;),-;_; are obtained by solving the linear
system of equations

HA = g* (3.6)

with g* the value of the constraint vector before correction and H is the L x L constraint matrix
defined as

Hyj= Y o/XesX)N;" = i's; 3.7)
J

where M; = a(X;)M; and fm; = (1 — a(X;))m;, considering that M; is the lumped mass on node
I and m; is the mass of atom i. Finally, considering the modified forces f'i and f’, (due to the
weighted Hamiltonian), the discrete governing equations within the two models are expressed as
follows: ) .

{ M[jiI =Af1 - Yot er(Xp) 3.8)

md; =1, — 4 ’
for which the integration in time is performed using the SHAKE algorithm [27]. Details of the
derivation of the above equations are presented in [19, 20, 23]. We insist again on the fact that
both FE and MD DOFs of the overlapping area are modified by the application of the constraint.
This brings consequences in the finite temperature regime as discussed in the following subsec-
tion.
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Figure 1: Model used to test the Bridging Domain. The coupling area is presented in red, while the white upper zone
is constituted of atoms and the white bottom zone is continuum only. The top blue layer is a region of fixed atoms that
provides a boundary condition to the atomic model.

3.2. Finite Temperature with the Bridging Domain

Since we wish to investigate the influence of temperature on contact evolution, we seek to
apply a finite temperature throughout the substrate body. To that purpose we use a thermostat in
the atomic zone. The coupling scheme will change the temperature field as we demonstrate be-
low. In essence the Bridging Domain can be considered as a projection that pushes gradually the
atomic DOFs to the interpolated continuum fields. These are obviously smoother than the noisy
atomic description of velocities. While we try to maintain constant temperature, the coupling
scheme has a cooling effect on the coupled atoms.

Let us define the simplest patch test to evaluate the capacity of a coupling method at finite
temperatures. This test considers a piece of material at uniform temperature and zero pressure.
In such conditions, mechanical and thermodynamic equilibrium is initially set. Thus, for a robust
coupling method, temperature should remain constant. Let us introduce the geometry defined in
figure 1. The top part () is modelled with MD while the bottom part (Q) is driven by
finite elements. The overlapping zone follows the Bridging Domain strategy. For the boundary
conditions we maintain fixed the top layer of atoms (presented in blue), as well as the bottom
free surface of the mesh. In the other two directions periodicity is imposed. The temperature is
maintained to a constant value by means of a Berendsen [28] thermostat which includes a viscous
force that is applied to thermostated atoms. This leads to a rescaling of atomic velocities by a

parameter « following:
At (T
o= 1+—(—°—1) (3.9)
T \T

where At is the time step used, 7 is a time parameter that sets the strength of the coupling with

the heat bath, T is the heat bath temperature and 7 is the actual temperature of the domain. Such

a thermostat is applied in the atomic zone Q4 \ QF which excludes coupling and finite element
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Figure 2: Temperature profile along the vertical direction (a). The decay of temperature is particularly evident. The
temperatures were extracted along a vertical line as presented on the left image of (b). The kinetic energy removal
happens very quickly. At time r = 0 no projection is applied, and already at time ¢ = 1ps the projection dropped
almost all temperature in the coupling region as seen in (b). The temperature profiles issued from a full molecular
dynamics simulation is presented for comparison purposes. The non-physical temperature gradient created is due to the
projective nature of the Bridging Domain method. An important point to note is the impact on the non-coupled zone of
the temperature profile which implies a strong modification of the dynamics in Q4.

zones. Therefore, atoms in the coupling zone (colored in red) are driven by their proper dynamics
and the coupling corrections.

The dynamic evolution of the model was computed with no load. Temperatures of 100, 200
and 300 Kelvins were considered. After a few time steps, the coupling has effectively changed the
temperature profile as can be seen in figure 2. Also, the temperature profiles that are obtained by
using only molecular dynamics with no coupling were extracted and are presented in this figure.
Again, the temperature through the bridging zone cannot be constant since the coupling algorithm
projects the noisy velocities of single atoms to the much smoother continuum velocity field. The
difference in scale from atomic to the defined mesh leads to an impossibility of representing very
high frequencies. Therefore, as heat within MD is represented by atomic lattice vibrations, the
projection results in a temperature drop in the bridging zone. We note here that this has also an
effect on the atoms in Q* since the Berendsen thermostat is maintained globally. This explains
why, in a region, the temperature is above the thermostated temperature (see figure 2). Clearly,
our coupling (and projection) strategy is not suitable for a finite temperature problem since it
impacts temperature also in the uncoupled zone.

This temperature change induces yet another side effect. Indeed, the introductory part pre-
sented that the volume of the copper crystal was set accordingly to maintain zero pressure and
constant temperature. Since the projection modifies the kinetic energy of the coupled atoms,
these want to shrink their attributed volume in order to go back to ground state. Ultimately, this
temperature decrease manifests mechanically as an internal spurious displacement along the neg-
ative temperature gradient in the coupled area. Arguably, the observed displacements are small
(~ 0.8 A at 500K) and may be considered as a small side effect compared to the temperature
gradient.

Despite our best efforts, we could not find an easy scheme to compensate for this tempera-
ture gradient and the shrinkage sustained by the coupled atoms. Since the coupling damps quite
strongly kinetic energy it makes any thermostat in QF unusable (and unstable) to fix this tem-
perature decrease. Concerning the internal displacement, the use of a force in a single direction
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Figure 3: On subfigure (a) we present the proposed coupled domain used with finite temperature. Besides the atomic
zone (Q*) and the continuum zone (QFF), two zones are defined where coupling is done separately. In Q! mesh nodes
are constrained to atomic mean displacement and in Q2 atomic displacements are interpolated from the mesh to provide
a moving boundary condition to Q. Subfigure (b) shows the temperature profiles obtained with the method proposed in
section 3.3.

cannot compensate a volumetric change. A patch to these problems would require changing the
inter-atomic potential, which is technically complex. Instead, we changed the coupling method,
so that no temperature cooling would take place. This is the purpose of the next section.

3.3. Multiscale coupling at finite temperature

In order to achieve a reasonable coupling that does not lead to an artificial cooling of the
system, the previously presented set of equations must be changed. Indeed, we need to remove
any projection that modifies the atomic field and thus would damp a part of the kinetic energy.
We will separate the coupling in two zones Q' and Q? as depicted in figure 3. In the first one the
atomic DOFs will not be modified whereas the continuum DOFs will be constrained to match
the atomic solution. Thus the kinetic energy of these atoms is left untouched preventing the
previously mentioned side effects and providing a mechanism for passing information from MD
to FE. In Q?, the reverse operation is performed by constraining atoms to the continuum fields
by means of a simple interpolation. One inconvenient is that no wave reflection treatment is
introduced here but The following procedure is thought only for constant finite temperatures.

In Q! we constrain the mesh nodes to atomic displacements. Since mesh nodes in the bridging
zone are now fictive and purely driven from MD, let us consider the following constraints:

g =) ¢/Xouy - di (3.10)
J

where mesh nodes are to be corrected and the atomic velocities and positions are not modified.
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In Q! the governing equation for continuum DOFs is:

Mpi; =1, - > Le;(Xy) (3.11)

L
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The SHAKE [27] integration scheme provides:

n+l/2 At At L
W, =0y + e — e 2 Aker(Xi)

2M;
n+l _ ;n+l - n+1/2
ujt = ut + A

. 3.12
evaluation of f}”l (3.12)
o+l _ en+l/2 0 At en+l
LA R TR ¢

with the requirement that the constraint function should be respected, we combine 3.10 and 3.12

to obtain:
L
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Where uj”” =uf +uf + ZA—A’/IIf;‘. It also means that x superscript denotes displacement values

before the application of the constraint. Thus a new constraint matrix H is defined so that:

H. = Z i Xper(Xj)

L= 3.14
j o (3.14)

J

It leads to a comparable linear system HA = g* to solve in order to compute the multipliers. Once
the Lagrange multipliers are obtained, we can constrain the nodal displacements to a coherent
state with the atomic displacements. However the formulation also needs a correction of the
velocities. Finally, the following algorithm is to be used:

(1) o} =u] + Aoty
2) uf =u!+An;
3) g =X, eXpu} - dpt
(4) A=H,'g
(5) w=ur - ﬁ S Apr(Xi) (3.15)
(6) u111+1 = u; - ZA_/{/II i‘:l /]-kQDI(Xk)
(7) evaluation of f™+!
®) wrtt =yt A
M,
) Gobackto(1)

Clearly this creates a one way coupling process from MD to FE. The reverse exchange of
information is then processed in Q? by providing a moving boundary condition to the atomic
model. The temperature of boundary atoms is now related to the vibration modes of the finite
element part. Since the velocity of mesh nodes are smaller, because of the change of scale, the
imposed velocity onto the atoms is almost zero. Nevertheless no thermal energy flux is occurring
in that area, as revealed in figure 3 which shows a constant temperature profile.

This method was used with the previously defined patch test with success. We also loaded the
top surface and verified that the final static state was coherent with continuum theory. Neverthe-
less this method can probably not be applicable in NVE (number of particles, volume and energy
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remain constant) ensemble at very low temperatures since the amount of kinetic energy trapped
by reflections at the interface would modify the dynamics of the MD region. But projection
methods are not applicable here as well due to thermal expansion.

Our proposed coupling scheme shares common features with seamless methods [17]. One
may therefore question the utility of bridging zone at all when no wave reflection treatment is
performed. Indeed, CADD method has been used at finite temperature with nodal time averaging
to transfer mechanical fields at thermodynamic equilibrium [17]. Here, the same goal is achieved,
but the overlap region opens perspectives for computation of local temperatures and heat fluxes
which seems very difficult in the context of an edge-to-edge coupling formulation. Another
advantage of overlapping methods stands in the reduction of the number of degree of freedom
since, in opposition to seamless methods, the finite element mesh does not need to be refined
down to the atomic scale. Our method is thought to be a starting point for an energy balance
equation that would lead to proper treatment of energy fluxes.

4. Results

This section presents the obtained results concerning a normal loading of rough (self-affine
fractal) surfaces. Our setting considers the loading of a flat surface (moving downwards) onto
a deformable rough surface which is maintained at a desired temperature. To construct such a
surface we first consider a pristine piece of crystalline copper in which we cut a fractal surface.
The description of the fractal surface is given by a Voss [29, 30] algorithm. Also we took into
account the thermal expansion described in section 2. We prepared two 3D geometries with
different surface roughness. As illustrated in figure 4, one surface was parameterized to a Hurst
exponent H = 0.7 and root mean square of heights A = 10a while a flatter one was set to have
H = 0.8 and A™ = 5a. In both cases, the section is L? with L = 32a, which is small enough
to allow fast computations on a parallel computing machine while having around 100 000 atoms
in the atomic zone. The deepness of the atomic domain is also taken as 32a but since some
layers where removed at the free surface the exact global height is effectively a little reduced.
Nevertheless, the coupling allows to have an additional elastic zone of 64a being 128 additional
atomic layers. The mesh is made of 10 x 10 X 20 elements. While the inter-atomic potential used
for the substrate is the EAM described previously, the interactions between atoms from the rigid
plate and substrate have been modified: a Lennard Jones potential with a cutoff radius of a V2/2
(first neighbors distance) is used in order to discard the adhesive forces (removing the adhesive
forces when using EAM is a complicated task since the electronic contribution is not a pair-wise
term).

Before loading the rigid plane the substrate is allowed to equilibrate to a required temperature,
which modifies the surface as will be presented later. Again, the constant temperature was con-
strained using a Berendsen thermostat [28]. The thermostat was applied on the molecular part
since the continuum zone only handles mechanics.

After equilibration, we allow the top flat rigid surface to descend downwards and create contact
in reaction to an applied initial pressure of 0.1 GPa. The pressure is regularly incremented by 0.1
GPa every 10ps. Thus the loaded surface has 10ps to equilibrate, which establishes a quasi-static
loading of our substrate.

The simulation was run on a parallel cluster, with one processor dedicated to finite element
elasticity, while 32 processors were occupied in the time integration of molecular dynamics.

10



Figure 4: The surface profiles obtained with a Voss [29, 30] algorithm are presented. Underneath, the substrate is
composed of copper atoms. The flat body above the substrates is the rigid surface to be pressed against the rough
surfaces. The left surface is flatter than the one on the right.

We used LAMMPS' for molecular dynamics and a in-house code for finite elements, while
LibMultiScale [31] was carrying the coupling process.

4.1. Measurement method for contact area and load

As our objective is to follow the evolution of the contact area with load, it is necessary to mon-
itor precisely the applied pressure. We impose a constant pressure on the rigid body following
the same strategy depicted in [32]. We set the center of mass of the top body to move according
to a unique force. This force is computed with:

F:Zf“’—P-LZ 4.1)

where P is the desired pressure, and f* is the initial per atom force issued from standard molec-
ular dynamics. We then “distribute” such a force over all the atoms so that the resulting atomic
acceleration becomes uniform and follows:

Su [~ P12
=
my

Vi e Qs (4.2)
with Q"% the domain of the rigid plate and m, the mass assigned to each atoms in Q"¢ We re-
duced arbitrarily the mass of these atoms so that the contacting force is transmitted with reduced
inertial effects. We used m, = em,, with m,, being the mass of a single copper atom. Having
€ << 1 the rigid body is light enough to move freely, therefore enforcing an almost constant
pressure at the contacting asperities.

Thttp://lammps.sandia.gov/
11



074 07+
-,
- ~
067 e 100K yal 067 * 100K e
< 4 300K e P A4 300K L
o5 500K ) e o5 500K ) Atee
° —— linear expansion ,/ ° ——linear expansion *e
2 ~ g i
] v =] Vs
8 0.4 27 enatatant 80.a] S
- -’ ,Qk 9 -,
] A 0t 3 47 e A
5 faate® & A
hLEE! s o 503 e
8 45 8 Apoontts
P - P ave™
§ 024 ,,ﬁfi:‘“‘ § 02 AA*""‘
o9 s
ibee *
& )QK.-O
01 0.1 -
3
gl '
0 T T T T 1 04— — —T T |
0 1 ° L, 2 4 5 0 1 2 3 5
Load W/L? in GPa 25
(a) (b) Load W/L? in GPa

Figure 5: Contact area ratio A/L? with respect to the applied load expressed in GPa. The left graph is obtained from the
H = 0.8 (a) surface while on the right is from the # = 0.7 (b) surface.

Concerning the contact area ratio, it is to be understood that we have to manage a data structure
to represent atoms (or points). A contacting point is then defined by the position of a substrate
atom that is close enough (closer than a V2 /2) to an atom from the upper body. In addition, con-
tacting particles should be accounted in surface area units implying a projection on the horizontal
plane.

4.2. Contact area ratio versus load

We loaded the two surfaces from 0.1 GPa to 4 GPa and measured contact area. The results are
presented in figure 5 for the two surfaces separately. The first observation is that, in accordance
to continuum theories, we observe a linear regime for small loads. The linearity ends for both
surfaces at around 1.5 GPa corresponding to 20% of contact. Beyond the threshold that defines
linear regime, important plastic events occur at the surface. Two kind of mechanisms, which will
be described in section 4.3, lead to hardening of the material at the surface. This is characterized
by the change of slope, in the contact area ratio versus load of figure 5 and 6. The other important
remark is that the temperature does not seem to change substantially the observed measures. This
is surprising since the elastic constants are temperature dependent. Still, it does not mean that
temperature has no impact on the mechanics as will be shown below.

Figure 6 contrasts the contact area ratio obtained with the two different surfaces. It appears
that the linear regimes are almost comparable. However the flatter surface presents a greater
hardening. This can be explained by the extent of plastic activity in the bulk. Indeed, the non
reversible phenomena that can occur in the substrate have been identified to be of two kinds at
this scale [10]: reshuffling of atoms and dislocation emissions. These two mechanisms both exert
influence on the evolution of the contact area with load. Dislocation emission is dominant for
the flattest surfaces (H = 0.8) and generates the strongest hardening. When surfaces become
rougher (H = 0.7), another important mechanism emerges, atom reshuffling, that takes the form
of atoms being pushed around at the surface. In view of figure 6, atom shuffling brings local
hardening that resolves by itself after further loading and reshuffling (stepped behavior in figure
5b). The next subsection will present how we identified plastic events and their energy activation
in relation to temperature.
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Figure 7: Atoms that changed neighbors after relaxation was performed. The left is for H = 0.8 while the right is for
H = 0.7. Note that the rougher surface goes through more intense reshufiling.

4.3. Plastic activity

A plastic event, be it a dislocation or a non reversible motion of atom can be characterized at
the atomic scale by a simple criterion. Indeed, while during an elastic deformation a given atom
is displaced with all its neighbors, when a dislocation is created a slip system is activated. Along
this slip plane, atoms have changed neighbors. The same happens for any non reversible process.
Therefore as in [10] we track the atoms that changed neighbors during the simulation.

Figures 7 and 8 present the atoms selected based on such a criterion. Figure 7 shows these
atoms just after surface relaxation. Since all the free surface appears in the figure, we can state
that during the initial relaxation these surfaces were subject to intense reshuffling. Then, figure
8 presents the simulation at a later time, for an applied load of 1GPa. The H = 0.8 surface
generated a dislocation into the bulk part whereas the rougher surface only reshuffled surface
atoms. This can also be seen on figure 9 in which the plastic events occurring after the initial
relaxation are counted.

In the case of the flatter surface, the plastic count only increases slowly until around 800M Pa.
Then the dislocation presented on figure 8 is created and is seen by the important increase in
the plastic counter. Also it is well known that the temperature impacts the activation energy of
dislocations and this is observable here. Indeed, the plastic counter jump appears later for lower
temperatures (figure 9). In contrast, the rougher surface (curve on the right) shows more gradual
plastic activity, with slightly higher slope, but with no dislocation emission. Furthermore, it
appears that the plastic reshuffling is not temperature dependent (at least not as clearly as the
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Figure 8: Atoms that changed neighbors when the applied load is 1GPa. The left is the for H = 0.8 while the right is for
H = 0.7. Note the dislocation emission on the left image.
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Figure 9: Plastic event counter with respect to applied load in GPa. The results for the flatter (H = 0.8) and rougher
surfaces (H = 0.7) at 300K are presented on the left and right figures respectively.
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Figure 10: Absolute plastic events detected for the surface with H = 0.7 at various temperatures.

dislocation activation threshold is).

Overall, it seems that in our calculations the reshuffling of the atoms at the free surface is
much more predominant than what is observed in 2D [10]. We believe that this is due to the
three-dimensional geometry used here which allows a rearrangement of the atoms in all direc-
tions making this phenomenon less energy consuming. This is also believed to be a possible
explanation for the non dependency of the contact area with respect to the temperature even
though elastic constant are temperature dependent.

However, “plastic” relaxation of surfaces is clearly temperature dependent. Figure 10 shows
the absolute plastic counter for the rougher surface that accounts for atoms that lost their neigh-
bors during relaxation. The temperature plays an important role in the modification of the topol-
ogy: the warmer the surface is, the less stable it is. The destruction of the roughness is thus
effective with no load. This means simply that the surface fractal characteristics that were used
to build our model were modified during that initial stage. Figure 11 shows the increment of
plastic activity during relaxation with respect to temperature (the plastic level at 100K was taken
as a reference). The rougher surface is much less stable than the flatter one as stated by the
progression of the data points of figure 11.

5. Conclusion

In this paper, a methodology to study nanoscale normal contact of a rough surface at finite
temperature has been introduced. The main simulation tool is Molecular Dynamics but a cou-
pling algorithm was introduced in order to lower the computational cost. The actual gain of
the approach allowed to reduce by a factor two the computation time. This gain is expected to
increase with larger models.

We showed that the Bridging Domain method (and more generally projective approaches)
cannot handle finite-temperature coupling since the development of strong thermal gradients and
related thermal expansion and volume forces are extremely difficult to correct. We then proposed
a coupling strategy that could successfully prevent the spurious effects exhibited by the Bridging
Domain method. The advantages of our approach are that the coupling zone needs a priori no
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Figure 11: Plastic event after initial relaxation with respect to the temperature for the two studied surfaces.

geometrical pre-requisites and that it can be much smaller than its bridging-zone counterpart.
However, the catch is that the method looses the ability to absorb high frequencies at 0 Kelvin.

This approach was tested with the normal loading of two rough surfaces. We measured the
real contact area as a function of the applied pressure. In accordance with experimental and
theoretical evidence, we observed a linear dependence of area on load, and this even if plastic
deformation mechanisms were dominating. Surprisingly, we could not observe a dependence of
the slope on temperature. As the elastic constants decrease with temperature, it was expected that
the slope would drop as well. The mechanisms for this are still unclear. A possible explanation
is that plasticity is the dominant effect at this scale. Indeed, we have shown evidence of intense
plastic activity and this in two forms, dislocation emission and reshuffling of the atoms at the
surface. For a large range of loadings reshuffling is the main mechanism behind plasticity. This
mechanism appears to be particularly important in our 3D study, hinting at a clear difference
with 2D studies in which surface atom motion can occur only in two directions. Our results indi-
cate that atomic shuffling initiated during contact is not temperature sensitive. Atomic shuffling
mechanisms seem also to take more importance for rougher surfaces.

Yet another possible explanation for the lack of temperature dependence of the area versus
load curve is our system size. One could argue that the section used does not contain enough
atoms to form a substantial statistical data set. The noise generated might prevent us to extract
contact measures with precision. In future work, we will take full advantage of the multiscale
methodology and study much larger sections. Also, the relaxation of atomic surfaces at finite
temperatures has opened the question of the definition of atomic roughness. Indeed, we may put
in question the notion that surfaces show drastic change of slopes at the atomic scale. Studying
larger sections would allow us to represent fractal surfaces at the scale of ‘microscopic’ asperities
while considering smooth surfaces with perhaps a few atomic steps at the finer scale. Finally, our
future studies will include the development of coupling methods that can handle thermal fluxes
as these may become dominant in sliding contact applications.
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