Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Near-Optimal Sensor Placement for Linear Inverse Problems
 
research article

Near-Optimal Sensor Placement for Linear Inverse Problems

Ranieri, Juri  
•
Chebira, Amina
•
Vetterli, Martin  
2014
IEEE Transactions on Signal Processing

A classic problem is the estimation of a set of parameters from measurements collected by only a few sensors. The number of sensors is often limited by physical or economical constraints and their placement is of fundamental importance to obtain accurate estimates. Unfortunately, the selection of the optimal sensor locations is intrinsically combinatorial and the available approximation algorithms are not guaranteed to generate good solutions in all cases of interest. We propose FrameSense, a greedy algorithm for the selection of optimal sensor locations. The core cost function of the algorithm is the frame potential, a scalar property of matrices that measures the orthogonality of its rows. Notably, FrameSense is the first algorithm that is near-optimal in terms of mean square error, meaning that its solution is always guaranteed to be close to the optimal one. Moreover, we show with an extensive set of numerical experiments that FrameSense achieves state-of-the-art performance while having the lowest computational cost, when compared to other greedy methods.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

RCV2014.pdf

Access type

openaccess

Size

2.3 MB

Format

Adobe PDF

Checksum (MD5)

bf7c4b821837d8ea34f5ef5eb8a759c7

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés