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Abstract. In this paper, we propose reduced basis multiscale finite element methods
(RB-MsFEM) for elliptic problems with highly oscillating coefficients. The method is based
on multiscale finite element methods with local test functions that encode the oscillatory
behavior ([4, 14]). For uniform rectangular meshes, the local oscillating test functions are
represented by a reduced basis method, parameterizing the center of the elements. For tri-
angular elements, we introduce a slightly different approach. By exploring over-sampling
of the oscillating test functions, initially introduced to recover a better approximations of
the global harmonic coordinate map, we first build the reduced basis on uniform rectan-
gular elements containing the original triangular elements and then restrict the oscillating
test function to the triangular elements. These techniques are also generalized to the case
where the coefficients dependent on additional independent parameters. The analysis of
the proposed methods is supported by various numerical results, obtained on regular and
unstructured grids.
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1. Introduction. The development of efficient and accurate numerical methods for solving
problems with highly oscillating coefficients is an area of research that is increasingly active. This
is not only driven by applications in subsurface flows or the modeling of novel materials, but also
by the prohibitive cost of solving such problems using a straightforward approach where all scales
are adequately resolved.

To address and, ultimately overcome, the computational cost of resolving the finest scale, mul-
tiscale finite element methods (MsFEM) have been developed in [15, 16, 10, 17, 9]. In this approach,
accuracy is achieved by locally solving a fine scale problem. These solutions are subsequently used
to build the multiscale finite element basis, encoding the local fine structure, to capture the fine
scale information of the leading order differential operator. Originally, MsFEM was proposed for
linear finite elements but generalized in [4] to enable the use of high-order elements by local oscil-
lating test functions (or harmonic coordinates). In [14], we proposed an alternative formulation of
high-order MsFEM using related ideas, albeit introducing a more natural formulation.

The local oscillating test functions must be solved for each element of the coarse mesh and
each of these local problems must be resolve to fully capture the local fine scale. Hence, these local
problems has many degrees of freedom (DOFs) and a fast solver of these local problems is central to
the efficiency of MsFEM. To address this, we consider the reduced basis method (RBM) as an ideal
technique that provides an efficient representation of the solution to parametric problems in many-
query and real-time scenarios, see introductions in [23, 24, 25]. This idea has been pursued by a
few authors recently in the context of multi-scale problems, as in [7], where reduced basis methods
are used to represent the homogenized coefficients. In [21], the author use a set of reduced bases to
represent multiscale finite element basis functions for parameter dependent problems using MsFEM
developed previously in [16]. In [11], a reduced basis based method is discussed for MsFEM with
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local eigenfunction basis functions and a local reduced basis discontinuous Galerkin approach is
proposed for a two-phase flow problem in [19]. In the context of the related FE-HMM, reduced
basis finite element heterogeneous multiscale method is proposed in [1], and an adaptive version is
discussed in [2].

In this paper, we focus on the development of reduced basis multiscale finite element method
(RB-MsFEM) for MsFEM based on local oscillating test functions([4, 14]). The central element of
the reduced basis method is the parametrization of the problems to be solved. For local oscillating
test functions, it is natural to choose the locations of the elements as parameters. A tempting
alternative is to choose all vertices as parameters. However, if local elements of different sizes and
shapes have very different coefficients, even in the simplest case of periodic coefficients case, as
a result, the resulting reduced basis set will be large and the method will loses its efficiency. A
natural way to control the size of the reduced basis set is by working on meshes with uniform
rectangular elements. This ensures that all elements have similar distributions of coefficients and
we can expect the size of the reduced basis set to be reasonable.

However, purely rectangular meshes are clearly insufficient for many applications, presenting a
contrast to the desirable geometrical flexibility of finite element methods. To extend RB-MsFEM
to arbitrary triangular meshes, we shall explore the idea of oversampling. It is indeed well known
that computing the local oscillating test functions in a larger domain results in an improved
approximation to the globally defined oscillating test functions (harmonic coordinates) ([10, 17]
for discussions about oversampling technique and [22] for a discussion of the globally defined
oscillating test functions (harmonic coordinates)). In this work, we first build the reduced basis
set on uniform rectangular domains containing the original triangular elements and then restrict the
oscillating test function to the triangular elements. This approach is not completely independent
of the DOFs on the local finite elements, but the most time-consuming part of the computation,
solving the local finite element problem for the oscillating test functions, is done efficiently by a
reduced basis method. We will generalize this approach to problems with coefficients depending
on other independent parameters. It is also worth emphasizing that the ideas introduced in this
paper can be generalized to other constructions of multiscale finite element methods.

The rest of the paper is organized as follows. The formulations of the model elliptic problem
and some general theory of homogenization are discussed in Sec. 2. Multiscale finite element
methods, based on local oscillating test functions are introduced in Sec 3. In Sec. 4, we introduce
the RB-MsFEM for uniform rectangular meshes and generalizations to RB-MsFEM for triangular
meshes are discussed in Sec. 5. In Sec. 6, RB-MsFEM for more general parameter dependent
PDEs is discussed,and supporting numerical experiments are provided in Secs 4-6. We conclude
with a few final remarks in Sec. 7.

2. Model Problem. In the following we shall define the problem of interest and offer a few
general results that will be useful later.

2.1. Elliptic PDEs with multiple scales. Let Ω ∈ IRd, d = 1, 2, 3 be an open polygo-
nal/polyhedral domain. We consider the elliptic problem

−∇ · (Aε(x)∇uε) = f in Ω,
uε = 0 on ∂Ω. (2.1)

Here, the matrix Aε ∈ L∞(Ω,Mα,β), andMα,γ is a set of uniformly positive definite matrices with
uniformly positive definite inverse, i.e., for any ξ ∈ IRd, ‖ξ‖`2 = 1, 0 < α ≤ ξTAεξ ≤ β−1. While
the general homogenization theory is true for non-symmetric matrices, we restrict the discussion
to the symmetric version for simplicity of the presentation. Aε is allowed to vary on a fine scale ε.

The variational formulation of the problem is to seek uε ∈ H1
0 (Ω) such that

a(uε, v) = f(v) ∀v ∈ H1
0 (Ω), (2.2)
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where

a(u, v) = (Aε(x)∇u,∇v), f(v) = (f, v).

2.2. General homogenization results. In the following, we summarize a few important
results from homogenization theory for our model problem (2.1). These results are standard and
can be found in [6, 18, 8, 3, 27]. We borrow the following definition from Definition 1.2.15 of [3].

Definition 2.1 (H-convergence). A sequence of matrices Aε ∈ L∞(Ω;Mα,β) is said to H-
converge to an H-limit, matrix A∗(x) ∈ L∞(Ω;Mα,β) if, for any right-hand side f ∈ H−1(Ω), the
sequence uε of the solutions of

−∇ · (Aε(x)∇uε) = f in Ω,
uε = 0 on ∂Ω. (2.3)

satisfies

uε ⇀ u∗ weakly in H1
0 (Ω); (2.4)

Aε∇uε ⇀ A∗∇u∗ weakly in L2(Ω)d, (2.5)

where u∗ is the solution of the homogenized equation

−∇ · (A∗(x)∇u∗) = f in Ω,
u∗ = 0 on ∂Ω. (2.6)

Under such a condition, we have the following result (Theorem 1.2.16 of [3]).
Theorem 2.2. Any sequence Aε ∈ L∞(Ω;Mα,β) has a subsequence, still denoted by Aε, and

a homogenized matrix A∗ ∈ L∞(Ω;Mα,β) such that Aε H-converges to A∗.
Define d sequences of oscillating test functions wεi , 1 ≤ i ≤ d, satisfying

wεi ⇀ xi weakly in H1(Ω);
gεu = −∇ · (Aεwεi ) → gi = −∇ · (A∗ei) strongly in H−1(Ω). (2.7)

where ei is the i’th canonical basis of IRn. Let W ε = ∇wε with w = (wε1, w
ε
2, · · · , wεd) be the so

called corrector matrix (Section 1.3.6 of [3]). Then we have

∇uε = W ε∇u∗ + rε, with rε → 0 strongly in L1
loc(Ω)d. (2.8)

For a smoother u∗ ∈ H2(Ω), we have (Remark 1.3.40 of [3]),

uε = u∗ +
d∑
i=1

(wεi − xi)
∂u∗

∂xi
+ rε (2.9)

with

rε → 0 strongly in W 1,1
loc (Ω).

The above homogenization theory with oscillating test functions is the basis for many numerical
methods, e.g., in [22], a globally solved oscillating test function is used to define the numerical
method. In this paper, we will use local versions of oscillating test functions to build multiscale
finite element elements, following the ideas of [4] and [14].

In the periodic case we have

Aε(x) = A(
x

ε
),
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where y 7→ A(y) is a Y -periodic function with Y = (0, 1)d.
Let χi, i = 1, · · · , d, be the solution to the cell problem{

−divy(A(y)∇yχi) = divy(A(y)ei) in Y,

y 7→ xi(y) Y − periodic.
(2.10)

The notation 〈·〉Y is used to denote the mean of a function in domain Y :

〈f〉Y =
1
|Y |

∫
Y

f(x)dx.

Notice that χi here is wεi − xi and defined for general cases. We then have the following approxi-
mation results

uε(x) ≈ u∗(x) + ε

n∑
i=1

χi

(x
ε

) ∂u∗
∂xi

(x), (2.11)

and

∇uε(x) ≈ ∇u∗(x) + ε

n∑
i=1

(∇yχi)
(x
ε

) ∂u∗
∂xi

(x). (2.12)

Here u∗ is the solution of the homogenization problem:{
−∇ · (A∗∇u∗) = f in Ω,

u∗ = 0 on ∂Ω,
(2.13)

where A∗ is a constant homogenized matrix given by the explicit formula

A∗ei =
∫
Y

A(y)(ei +∇yχi)dy.

3. Multiscale finite element methods based on local oscillating test functions. In
this section, we define MsFEM in the spirit of [4, 14]. We first solve to obtain oscillating test func-
tions on the local elements or on larger patches if oversampling technique is used. The multiscale
finite element then is defined by a composite rule [4] or by a more direct approach [14]. Over-
sampling and Petrov-Galerkin formulations can be used to improve the accuracy of the methods.
Compared with the approach originally introduced in [16], this approach is natural for the exten-
sion to high-order multiscale finite element methods [4, 14] and easier to adapt to take advantage
of reduced basis acceleration of multiscale finite element method on general meshes.

Let Th be a regular finite element mesh of Ω. We first introduce the local problem to solve for
the local oscillating test functions: For each K ∈ Th, define ŵε,Ki , i = 1, · · · , d, as the solution of{

−∇ · (Aε∇ŵε,Ki ) = 0 in K,

ŵε,Ki = xi on ∂K.
(3.1)

For each K ∈ Th, a quasi-uniform fine mesh Th′(K) with element size h′ is used and we always
assume that the following inequality holds

0 < h′ < ε < h < 1 (3.2)

relating the coarse mesh size h, the period ε, and the local mesh size h′, where ε is the characteristic
size of the fine scale.
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Define

Wh′(K) = {w ∈ C0(K) : w|T ∈ Pk′(T ),∀T ∈ Th′(K)},

and let wε,Ki be the Pk′ finite element approximation of ŵε,Ki in (3.1) using mesh T Kh′ . Then
the local finite element approximation for the oscillating test function is: Find wε,Ki ∈ Wh′(K),
wε,Ki = xi on ∂K, such that

(Aε∇ŵε,Ki ,∇v) = 0, v ∈Wh′(K) ∩H1
0 (K). (3.3)

Define wε,h = (wε,h1 , · · · , wε,hd ) ∈ H1(Ω)d, where wε,hi ∈ H1(Ω) with wε,hi = wε,Ki for each K ∈ Th.
To remove the resonance effect [9] associated with the lack of correct boundary conditions

for the local problem, we use an oversampling method on a larger domain S ⊃ K. Define ŵε,Si ,
i = 1, · · · d, as the solution of{

−∇ · (Aε∇ŵε,Si ) = 0 in S,

ŵε,Si = xi on ∂S.
(3.4)

We define ŵε,Ki = ŵε,Si |K , i = 1, · · · , d, and ŵε accordingly. In general, ŵε, obtained from the
restriction of the oversampling method, is not in H1(Ω)n.

For a polygonal domain S ⊃ K, define a quasi-uniform fine mesh Th′(S) with element size h′.
The edges of the mesh are aligned with the sides of K. Define

Wh′(S) = {w ∈ C0(S) : w|T ∈ Pk′(T ),∀T ∈ Th′(S)},

and let wε,Si be the Pk′ finite element approximation of ŵε,Si of (3.4) using mesh Th′(S). Find
wε,Si ∈Wh′(S), wε,Si = xi on ∂S, such that

(Aε∇ŵε,Si ,∇v) = 0, ∀v ∈Wh′(S) ∩H1
0 (S). (3.5)

With wε,K = wε,S |K , we can define wε,h accordingly. Like ŵε, wε,h is generally not an H1 vector
function.

3.1. MsFEM introduced in [4]. Denote the Pk conforming finite element space associated
with the triangulation T by

Vh = {v ∈ H1
0 (Ω) : v|K ∈ Pk : ∀K ∈ Th}.

When a quadrilateral mesh is used,

Vh = {v ∈ H1
0 (Ω) : v|K ∈ Qk : ∀K ∈ Th}.

Let (Φh` )`=1,··· ,Nh denote a finite element basis of Vh, where Nh = dimVh. Define the conforming
multiscale finite element basis introduced in [4],

Φε,hc,` (x) = Φh` (wε,h(x)), ` = 1, · · · , Nh,

and associated conforming multiscale finite element space [4] as

V εc,h = span{Φε,hc,` }`=1,··· ,Nh .

The Galerkin multiscale finite element method is to seek uεh ∈ V εc,h, such that

a(uεh, v
ε
h) = f(vεh), ∀vεh ∈ V εc,h. (3.6)
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Convergence for the periodic case ([4], Theorem 4.1) is ensured by
Theorem 3.1. Assume that the coefficient tensor is periodic, i.e., Aε = a(

x

ε
). Let uε be

the exact solution of the original problem (2.2) and uεh be the solution of (3.6). Assume that
u∗ ∈W k+1,∞(Ω) and χi ∈W 1,∞(Y ). Then there exists a constant C independent of ε and h such
that

‖∇(uε − uεh)‖0 ≤ C

(
hk‖f‖0 +

√
ε

h
+
(
h′

ε

)k′)
. (3.7)

The Petrov-Galerkin multiscale finite element method for the problem is obtained by seeking
uεh ∈ V εc,h, such that

a(uεh, vh) = f(vh), ∀vh ∈ Vh. (3.8)

Convergence for the periodic case stated by
Theorem 3.2. Assume that the coefficient tensor is periodic, i.e., Aε = a(

x

ε
), and assume

that the size of over-sampling domain is large enough such that Assumption 2.1 of [17] is true.
Then (3.8) is well-posed. Let uε be the exact solution of the original problem (2.2) and uεh be the
solution of (3.8). Assume that u∗ ∈ W k+1,∞(Ω) and χi ∈ W 1,∞(Y ). There exists a constant C
independent of ε and h such that

‖∇(uε − uεh)‖0 ≤ C

(
hk‖f‖0 +

√
ε+

(
h′

ε

)k′)
. (3.9)

This theorem can be proved in a fashion similar to the convergence theorem in [14].

3.2. MsFEM introduced in [14]. For a function v ∈ H1(Ω), introduce a map Jε,h such
that

Jε,hv|K = (v + (wε,h − x) · ∇v)|K on each K ∈ Th. (3.10)

If we define

Φε,hnc,` = Jε,hΦh` , ` = 1, · · · , Nh,

then the multiscale finite element space, introduced in [14] is defined as

V εnc,h = span{Φε,hnc,`}`=1,··· ,Nh .

Note that V εnc,h 6⊂ H1
0 (Ω) if oversampling is used. We introduce the following bilinear form:

ah(u, v) =
∑
K∈T

(Aε∇u,∇v)K . (3.11)

Note that if u and v are both in H1
0 (Ω), then ah(u, v) = a(u, v). The Galerkin multiscale finite

element method seeks uεh ∈ V εnc,h, such that

ah(uεh, v
ε
h) = f(vεh), ∀vεh ∈ V εnc,h. (3.12)

As some functions to be considered are not in H1
0 (Ω), but only in H1(K) for K ∈ Th, let us define

an equivalent broken H1-norm as

‖v‖h,Ω =

( ∑
K∈Th

‖∇v‖20,K

)1/2

. (3.13)
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In the spirit of [4, 10, 14], we can prove the following convergence theorem
Theorem 3.3. Assume that the coefficient tensor is periodic, i.e., Aε = a(

x

ε
). Let uε be

the exact solution of the original problem (2.2) and uεh be the solution of (3.12). Assume that
u∗ ∈W k+1,∞(Ω) and χi ∈W 1,∞(Y ). Then there exists a constant C independent of ε and h such
that

‖uε − uεh‖h ≤ C

(
hk‖f‖0 +

√
ε

h
+
(
h′

ε

)k′)
. (3.14)

As in the previous case, we can also define a Petrov-Galkerin multiscale finite element method:
Find uεh ∈ V εnc,h, such that

ah(uεh, vh) = f(vh), ∀vh ∈ Vh. (3.15)

The following convergence result can be found in [14].
Theorem 3.4. Assume that the coefficient tensor is periodic, i.e., Aε = a(

x

ε
) and assume

that the size of the over-sampling domain is large enough such that Assumption 2.1 of [17] holds.
Then the discrete problem (3.15) is well-posed. Let uε be the exact solution of the original problem
(2.2) and uεh be the solution of (3.8). Assume that u∗ ∈ W k+1,∞(Ω) and χi ∈ W 1,∞(Y ). Then
there exists a constant C independent of ε and h such that

‖uε − uεh‖h ≤ C

(
hk‖f‖0 +

√
ε+

(
h′

ε

)k′)
. (3.16)

4. RB-MsFEM for uniform rectangular meshes. In this section, we discuss the use of
the reduced basis method for MsFEM on uniform rectangular meshes. With a uniform rectangular
finite element mesh, each element is a rectangle of the same size and the coefficient matrix in each
element is similar. In this case, it is expected that the oscillating test functions across these elements
have similar patterns and can be approximated by a compact reduced basis. For a rectangular
element K with the center xK and the size h1 × · · · × hd, we denote h = diag(h1, · · · , hd).

4.1. Parameterization of the Oscillating functions. The local problem for the oscillating
test functions is: Find w = (w1, · · · , wd) ∈ H1(K)d, such that

−∇ · (Aε(x)∇wi) = 0 in K and wi = xi, i = 1, · · · , d. (4.1)

Let qi = wi − xi, i = 1, · · · , d. Then qi satisfies

−∇ · (Aε(x)∇qi) = ∇ · (Aε(x)ei) in K i = 1, · · · , d, (4.2)

where ei, i = 1, · · · , d is the canonical basis of IRd.
The variational problem is: Seek qi ∈ H1

0 (K), i = 1, · · · , d, such that

(Aε(x)∇qi,∇v)K = −(Aε(x)ei,∇v)K ∀v ∈ H1
0 (K). (4.3)

A key step of the reduced basis method is to parameterize the problem to be solved. We
introduce the parameterization of the element K centered at xK by x = xK + hz, with z ∈ Z =
(−1/2, 1/2)d. Let A(xK , z) = Aε(x) = Aε(xK + hz), and let q̂i(xK , z) = qi(x) = qi(xK + hz), then
q̂i(xK , z) ∈ H1

0 (Z) satisfies

(A(xK , z)∇q̂i(xK , z),∇v(z))Y = −(A(xK , z)ei,∇v(z))Y ∀ v ∈ H1
0 (Z). (4.4)
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We can recover the original function qi as qi(x) = q̂i(xK , h−1(x− xK)).
For coefficient matrices without explicit periodicity, we have to use Dirichlet boundary con-

ditions for the local problems and use the method described above. A simple example of such a
coefficient matrix is

Aε(x) =
1

4 + sin(x1/ε1) + sin(
√

2x1/ε1)
.I

However, for coefficient matrices with explicit periodicity, we should take advantage of it and
use more accurate periodic boundary conditions. Note that periodic boundary conditions can be
viewed as having the equation defined in the whole space. In this case, the solution is accurate
and does not suffer from the resonance error.

Let’s consider a few special cases of Aε(x). Assume Aε(x) = a(x/ε), with ε = (ε1, · · · , εd),
with the entries of the matrix a being periodic functions with period εi in the direction of xi,
i = 1, · · · , d, e.g.,

a(x/ε) =
1

(2 + sin(x1/ε1))(2 + sin(x2/ε2))
I

for d = 2. In this case, we can choose the size of element Hi = εi, i = 1, · · · , d. Obviously, we
can also choose Hi = nεi with n a positive integer, but n = 1 is the simplest and most economical
choice. Since the mesh is aligned with the period the matrix Aε is identical within each element.
Thus, only one local problem needs to be solved for all elements and, instead of the Dirichlet
boundary condition as in the general case, the periodic boundary condition should be used to
improve accuracy. For such a case, a reduced basis method is not needed.

Define Ĥ1
per(K) = {v ∈ H1(K)|v periodic in K,

∫
K
vdx = 0}. The local problem is to find

qi ∈ Ĥ1
per(K) that satisfies

−∇ · (a(x/ε)∇qi) = ∇ · (a(x/ε)ei) in K, i = 1, · · · , d. (4.5)

The variational problem is seeking qi ∈ Ĥ1
per(K), i = 1, · · · , d, such that

(a(x/ε)∇qi,∇v)K = −(a(x/ε)ei,∇v)K , ∀v ∈ Ĥ1
per(K). (4.6)

We can recover the local oscillating test function w by letting w = x+ q.
The second special case is for Aε(x) = a(x, x/ε), where the entries of the matrix a are periodic

functions with period pi in the direction of xi of the second variable, i = 1, · · · , d. An example
could be

a(x, x/ε) =
1

(4 + x1 + sin(x1/ε1))(4 + x2 + sin(x2/ε2))
I

for x ∈ [0, 1]2. We choose the size of element Hi = εi, i = 1, · · · , d. Since we ensure that the
mesh is aligned with the period in each element, the location of the center xK of the element K is
identical in the period of the second variable. As in the first case, the periodic boundary condition
should be used to obtain a solution of optimal accuracy.

The local problem is to find qi ∈ Ĥ1
per(K) that satisfies

−∇ · (a(x, x/ε)∇qi) = ∇ · (a(x, x/ε)ei) in K, i = 1, · · · , d. (4.7)

The variational problem is to seek qi ∈ Ĥ1
per(K), i = 1, · · · , d, such that

(a(x, x/ε)∇qi,∇v)K = −(a(x, x/ε)ei,∇v)K , ∀v ∈ Ĥ1
per(K). (4.8)
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With the parameterization x = xK + hz, z ∈ Z = (−1/2, 1/2)d, let A(xK , z) = a(xK + hz, z), and
let q̂i(xK , z) = qi(x) = qi(xK + hz). Then q̂i(xK , ·) ∈ Ĥ1

per(Z) satisfies

(A(xK , z)∇q̂i(xK , z),∇v(z))Y = −(A(xK , z)ei,∇v(z))Y ∀ v ∈ Ĥ1
per(Z). (4.9)

We can get w in a fashion similar to the general case.
Since the first variable of a(x, x/ε) is a slow variable, we can use xK at the element center

to approximate the function without losing accuracy, provided only that the element size of K is
reasonably small. The local problem now is: Seek q̂i(xK , ·) ∈ Ĥ1

per(Z) such that

(a(xK , z)∇q̂i(xK , z),∇v(z))Y = −(a(xK , z)ei,∇v(z))Y ∀ v ∈ Ĥ1
per(Z). (4.10)

This simplification is useful for the reduced basis method as a more complicated non-affine coeffi-
cient will require more terms in its empirical interpolation and, hence, impact the computational
efficiency of the method.

4.2. Finite element approximation of the local parameterized problem. In this sub-
section, we introduce the finite element approximation of the local parametrized problem (4.4),
i.e., for i = 1, · · · , d, seek q̂i(xK , z) ∈ H1

0 (Z), such that

(A(xK , z)∇q̂i(xK , z),∇v(z))Z = −(A(xK , z)ei,∇v(z))Z ∀ v ∈ H1
0 (Z).

or

aZ(q̂i(xK), v;xK) = `Y (v;xK) ∀ v ∈ H1
0 (Y ). (4.11)

where

aZ(u(xK), v;xK) = (A(xK)∇u(xK),∇v)Z , `Y (v;xK) = −(A(xK)ei,∇v)Z ,

with A(xK) = A(xK , z).
Define a triangulation T (Z) of Z. We assume the mesh is fine enough, i.e, when the mesh is

mapped back to the original domain, the mapped mesh size of finite element space on Z should
be smaller than the characteristic size ε. Define

Xfe(Z) = {v ∈ H1
0 (Z) : v|T ∈ Pk′(T ), ∀T ∈ T (Z)}

For i = 1, · · · , d, let q̂fei (xK , z) ∈ Xfe(Z) be the finite element approximation of q̂i(xK , z), such
that

aZ(q̂ife(xK), v;xK) = `Y (v;xK) ∀ v ∈ Xfe(Z). (4.12)

The local finite element problem (4.12) is well-posed with a coercivity constant α(xK) = minλxK ,
where λxK are the eigenvalues of A(xK , z). We have

aZ(v, v;xK) ≥ αxK‖∇v‖20,Z , v ∈ Xfe(Z).

The fast evaluation of reduced basis method depends critically on the affine representation of the
coefficient matrix A(xK , z) at an element K. That is,

A(xK , z) =
Q∑
q=1

Θq(xK)Aq(z), z ∈ Z. (4.13)

If the above affine representation is not available, we can use the empirical interpolation method
(EIM) [5, 20] to recover an affine approximation of A(xK , z).
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We choose the parameter domain D to be the collection of xK for all K in the uniform rect-
angular mesh T . This discrete parameter domain is the most economical choice of the parameter
domain. For each i = 1, · · · , d, we seek an collection ofNi parameters SNi = {x1

K,i, · · · , x
Ni
K,i} in the

parameter domainD. The corresponding reduced basis space isXrb
i,N = span{q̂fei (x1

K,i), · · · , q̂
fe
i (xNiK,i)},

where q̂fei (xjK,i) is the numerical solution of problem (4.12) for the parameter values xjK,i, for
1 ≤ j ≤ Ni, 1 ≤ i ≤ d.

The reduced basis approximation of problem (4.4) with index i, i = 1, · · · , d is then defined
as: For an xK ∈ D, find q̂rbi (xK) ∈ Xrb

i,N such that

aZ(q̂irb(xK), v;xK) = `Z(v;xK), ∀v ∈ Xrb
i,N , (4.14)

Due to the affine assumption (4.13), an efficient offline-online strategy is immediately possible, see
[23].

In order to build the parameter set SNi and the corresponding reduced basis space Xrb
i,N , a

greedy algorithm based on a posteriori residual-driven error estimator is used during the offline
stage. Let us define the error function

ei(xK) = q̂rbi,N (xK)− q̂fei (xK) ∈ Xfe(Z)

as the difference between the reduced basis solution q̂rbi,N (xK) and the finite element solution
q̂fei (xK).

The residual r(v;xK) ∈ (Xfe(Z))′ is defined as

r(v;xK) := `Z(v;xK)− aZ(q̂rbi (xK), v;xK), ∀v ∈ Xfe(Z), (4.15)

and its norm as

‖r(·;xK)‖(Xfe(Z))′ := sup
v∈Xfe(Z)

r(v;xK)
‖∇v‖0,Z

. (4.16)

We then define the estimator as

η(N ;xK) :=
‖r(·; XK)‖(Xfe(Z))′

α(xK)
. (4.17)

The training set Ξtrain = D is defined since D is discrete. Let us suppose we already have Si,N
and the corresponding Xrb

i,N . We choose

xN+1
K,i := argmaxxK∈Ξtrainη(N ;xK), (4.18)

as the next sample point and let SN+1 := SN ∪ {xN+1
K,i }. This allows building the corresponding

space Xrb
i,N+1 in a progressive fashion, repeated repeated until N is large enough to ensure that

maxµ∈Ξtrain η(N ;xK) is less than a predefined tolerance δ.
When the basis is built, we can use (4.14) to compute the reduced basis solution q̂rbi with a

computational cost of O(N3
i ). This allows for the recovery of the local oscillating test function wrbi

by letting wrbi = qrbi + xi = q̂rbi (xK , z) + xi and define the RB-based conforming multiscale finite
element basis in the spirit of [4] as

Φε,h,rbc,` = Φh` (wε,rb(x)). (4.19)

The conforming reduced basis multiscale finite element space is defined as

V ε,rbc,h = span{Φε,rbc,` }`=1,··· ,Nh .
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The Galerkin RB-MsFEM of the problem is: Seek uε,rbh ∈ V ε,rbc,h , such that

a(uε,rbh , vεh) = f(vεh), ∀vεh ∈ V
ε,rb
c,h . (4.20)

With the affine assumption on Aε and f , we can pre-compute the matrix and vector entries in the
offline stage. During the online stage, the computational cost reduces to building both sides of
(4.20), which is independent of the local DOFs on K. Similar procedures can be found in [23, 21].

Since the domain of parameter D is of finite cardinality, the following error estimation follows

‖∇(wε,h − wε,rb)‖0,K ≤ δ, ∀K ∈ Th. (4.21)

Summing up for all elements K ∈ Th, we have

‖∇(wε,h − wε,rb)‖0,Ω ≤
√
Nhδ. (4.22)

For a sufficiently smooth function v with meaningful nodal values, define Πh to be the Vh-
interpolation operator,

Πhv =
Nh∑
`=1

v(n`)Φh` ∈ Vh.

Also define Πε
c,h to be the V εc,h-interpolation operator,

Πε
c,hv =

Nh∑
`=1

v(n`)Φ
ε,h
c,` =

Nh∑
`=1

v(n`)Φh` (wε,h) ∈ V εc,h,

and Πε,rb
c,h as the V ε,rbc,h -interpolation operator,

Πε,rb
c,h v =

Nh∑
`=1

v(n`)Φ
ε,h,rb
c,` =

Nh∑
`=1

v(n`)Φh` (wε,rb) ∈ V ε,rbc,h .

Theorem 4.1. Let uε be the solution of (2.2) and uε,rbh be the RB-MsFEM solution of (4.20).
There exists a positive constant C independent of ε and h, such that

‖∇(uε − uε,rbh )‖0 ≤ C

(
hk +

√
ε

h
+
(
h′

ε

)k′
+
√
Nhδ

)
. (4.23)

Proof. From Céa’s lemma, there exists a constant C independent of ε and h such that

‖∇(uε − uε,rbh )‖0 ≤ C inf
v∈V ε,rbc,h

‖∇(uε − v)‖0 (4.24)

Choose v = Πε,rb
c,h u

∗. By the triangle inequality, we have

‖∇(uε − v)‖0 ≤ ‖∇(uε −Πε
c,hu

∗)‖0 + ‖∇(Πε
c,hu

∗ −Πε,rb
c,h u

∗)‖0,

where uεh is the solution of (3.6) and u∗ is the homogenized solution. We have the upper bound of
the first term of the right-hand side by the proof of Theorem 4.1 of [4]:

‖∇(uε −Πε
c,hu

∗)‖0 ≤ C

(
hk +

√
ε

h
+
(
h′

ε

)k′)
. (4.25)
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The second term on the right-hand side can be bounded

‖∇(Πε
c,hu

∗ −Πε,rb
c,h u

∗)‖0 = ‖∇(Πhu
∗(wε,h)−Πhu

∗(wε,rb))‖0
= ‖∇(wε,h − wε,rb)∇(Πhu

∗) ◦ (wε,h − wε,rb))‖0
≤ ‖u∗‖W 1,∞‖∇(wε,h − wε,rb)‖0 ≤ C

√
Nhδ.

Thus the proof of the theorem.
When δ is small enough, we recover the same convergence result as for the standard method.
For a function v ∈ H1(Ω), introduce a map Jε,rb, such that

Jε,rbv|K = (v + (wε,rb − x) · ∇v)|K = (v + qrb · ∇v)|K on each K ∈ Th. (4.26)

Define

Φε,rbnc,h,` = Jε,rbΦh` , ` = 1, · · · , Nh.

Then the reduced basis multiscale finite element space, defined in the spirit of [14], is

V ε,rbnc,h = span{Φε,rbnc,h,`}`=1,··· ,Nh .

The Galerkin RB-MsFEM formulation of the problem using V ε,rbnc,h is: Seek uε,rbh ∈ V ε,rbnc,h, such that

a(uε,rbh , vεh) = f(vεh), ∀vεh ∈ V
ε,rb
nc,h. (4.27)

We can prove the following convergence theorem in the spirit of (4.1):
Theorem 4.2. Let uε be the solution of (2.2) and uε,rbh be the RB-MsFEM solution of (4.27).

There exists a positive constants C independent of ε and h, such that

‖∇(uε − uε,rbh )‖0 ≤ C

(
hk +

√
ε

h
+
(
h′

ε

)k′
+
√
Nhδ

)
. (4.28)

An over-sampling technique can also be applied. Rather than building a reduced basis on K,
we can build the reduced basis on a larger domain S with K ⊂ S, and satisfying Assumption 2.1
of [17]. We likewise assume S is of a uniform size for all elements. After having computed the
reduced basis function on S with tolerance δ, we can restrict it to K to recover the local oscillating
test function on K. Let us denote this function on K by wε,rbos .

We can now define the oversampling RB-based conforming multiscale finite element basis in
the spirit of [4],

Φε,h,rbc,`,os = Φh` (wε,rbos (x)) (4.29)

The corresponding RB multiscale finite element space is defined as

V ε,rbc,h,os = span{Φε,rbc,`,os}`=1,··· ,Nh .

The Petrov-Galerkin RB-MsFEM of the problem is: Seek uε,rbh,os ∈ V
ε,rb
c,h,os, such that

a(uε,rbh,os, vh) = f(vh), ∀vh ∈ Vh. (4.30)

Since K ⊂ S, the following error estimate holds:

‖∇(wε,h − wε,rb)‖0,K ≤ ‖∇(wε,h − wε,rb)‖0,S ≤ δ, ∀K ∈ Th. (4.31)
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Theorem 4.3. Assume that the coefficient tensor is periodic, i.e., Aε = a(
x

ε
), and assume

that the size of the over-sampling domain is large enough to ensure that Assumption 2.1 of [17]
holds. Then the discrete problem (4.30) is well-posed.

Let uε be the exact solution of the original problem (2.2) and uεh be the solution of (3.8).
Assume that u∗ ∈W k+1,∞(Ω) and χi ∈W 1,∞(Y ). Then exists a constant C independent of ε and
h such that

‖∇(uε − uε,rbh,os)‖0 ≤ C

(
hk +

√
ε+

(
h′

ε

)k′
+
√
Nhδ

)
. (4.32)

The above theorem is proved by combining the proof of convergence theorem in [14] and the proof
of Theorem 4.2.

For a function v ∈ H1(Ω), introduce a map Jε,rbos such that

Jε,rbos v|K = (v + (wε,rbos − x) · ∇v)|K on each K ∈ Th. (4.33)

Define the oversampling RB-based conforming multiscale finite element basis in the spirit of [14],

Φε,h,rbnc,`,os|K = Jε,rbos Φh` |K (4.34)

The corresponding reduced basis multiscale finite element space is defined as

V ε,rbnc,h,os = span{Φε,rbnc,`,os}`=1,··· ,Nh .

The Petrov-Galerkin RB-MsFEM of the problem is: Seek uε,rbh,os ∈ V
ε,rb
nc,h,os, such that

a(uε,rbh,os, vh) = f(vh), ∀vh ∈ Vh. (4.35)

In the same spirit, we can prove the following convergence theorem
Theorem 4.4. Assume that the coefficient tensor is periodic, i.e., Aε = a(

x

ε
), and assume the

size of over-sampling domain is large enough to ensure that Assumption 2.1 of [17] holds. Then
the discrete problem (4.35) is well-posed.

Let uε be the exact solution of the original problem (2.2) and uεh be the solution of (3.15).
Assume that u∗ ∈W k+1,∞(Ω) and χi ∈W 1,∞(Y ). Then there exists a constant C independent of
ε and h such that

‖∇(uε − uε,rbh,os)‖0 ≤ C

(
hk +

√
ε+

(
h′

ε

)k′
+
√
Nhδ

)
. (4.36)

Note that the restriction of function wε,rb|K needs not to be computed explicitly since we are
only interested in the numerical integration on the element K. By the affine assumption and the
fact that the size of K is uniform, all the required coefficients can be computed in the offline stage.
The online assembling of the both sides of (4.35) does not depend on the DOFs on K or S.

Remark 4.5. In principle, instead of choosing the center of the element as parameters and
keeping the element size uniform, we can use both the size and the center of the element as param-
eters. The disadvantage of this approach is that even in the simple periodic case, different sizes
of elements will result in completely different local oscillating test functions. In such a case, a
reduced basis set with a small number of basis functions is impossible, thus adversely impacting the
efficiency of the method.

Remark 4.6. In this section, we only discussed the reduced basis method for the non-periodic
case. For the purely periodic case, the local problem only needs to be solved once, and a reduced
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basis is not needed. For the second special case, Aε = a(x, x/ε), and the entries of the matrix
are periodic functions with period pi in the direction of xi of the second variable, i = 1, · · · , d. A
reduced basis can be built in a similar fashion, with the only difference being that we should take
advantage of the periodic boundary conditions for better accuracy during the construction of the
basis.

4.3. Numerical experiments. We consider the numerical test with the following multiscale
conductivity tensor with diagonal entries are

a11 = a22 = (2 + x1 sin(x1/ε))(2 + x2 sin(x2/ε))

the corresponding homogenized tensor is also diagonal can be computed as

a∗11 =
2

1
2π

∫ 2π

0
1

2+x1 sin(x1/ε)
dx1

, a∗22 =
2

1
2π

∫ 2π

0
1

2+x2 sin(x2/ε)
dx2

where we choose ε = 0.001 and u∗ = (1 − x)(1 − y)xy to be the homogenized solution. The
tests are done on the unit square domain [0, 1] × [0, 1]. We use the P1 RB-MsFEM (Galerkin),
h = 1/50, h′ = 1/5000. Figure 4.1 (left) shows the RB error measured in energy norm (the
maximum of error in energy norm over the training set) and a posteriori error estimation through
RB measured in energy norm for the construction of the local oscillating test function w1, w2

and exponential convergence is clearly observed. Figure 4.1 (right) shows the convergence of the
homogenized solution computed by RB-MsFEM (measured in L2, H1 and energy norms), the
convergence (measured in L2 norm) stops around 10−3 (corresponds to 5 RB basis functions),
indicating that the error of the multiscale approximation (‖uε − uε,feh ‖) dominates over the error
induced by the RB approximation (‖uε,feh − uε,rbh ‖) and we can control the online computational
cost with comparable accuracy by choosing an appropriate RB tolerance.
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Figure 4.1. RB error in energy norm and a posteriori estimation of the RBM during the construction of the
set of local oscillating functions w1, w2 (left); the error between the exact homogenized solution and the homogenized
solution computed by RB-MsFEM and with different RB a posteriori tolerance (right)

5. RB-MsFEM for triangular meshes. The use of triangular meshes is essential for the
effective application of finite element methods to handle problems with complex geometry and
enable the use of locally adaptive refinement. Hence, it is desirable to develop a fast reduced basis
method to recover the local oscillating test functions in the case of triangular elements. In principle,
we can use the vertices of the simplex as the parameters. However, as discussed previously, this
approach will result in a basis set with a very large number of basis functions and is not recommend.
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We begin by recalling that the central advantage of using oversampling is that the restriction
of a local oscillating test function, computed in a larger domain S to a smaller domain K ⊂ S, is
always superior to the approach where the local oscillating test function computed on K directly.
The reason for this is the reduction of the impact of the artificial boundary condition imposed on
the local problem. Exploring this observation, we break the computation of local oscillating test
functions on the triangular element K into several steps. The algorithm is given in Algorithm 1.

1: Build (offline) a reduced basis set for the local oscillating test functions on uniform
rectangular domains with element size h = (H1, H2, · · · , Hd). The reduced basis is
parametrized by the center xK of the element.

2: For a given triangular element K, associate it with a larger rectangular element S
with size h.

3: Compute the local oscillating test function wS on S by the reduced basis model
4: Use the restriction of wS on K as the local oscillating test function wK on K

Algorithm 1: Algorithm to build local oscillating test function on a triangular element K

This algorithm is unique as we have two choices when building the reduced basis method for
the uniform rectangular mesh. One is to use a fixed uniform rectangular mesh and assume that
each triangular element will belong to one rectangular element. In such a case, we can choose the
parameter domain D to be the collection of the centers of this fixed uniform rectangular mesh and
build the reduced basis based on this. The advantage of this is that the parameter domain is discrete
and finite. When we seek to restrict the local oscillating test functions to triangles, the process is
well defined since we assume that each triangle is associated with a uniform rectangular element.
However, a possible disadvantage of this approach is that the boundary of the oversampling domain
S may not always be far away enough from the element K, thus violating Assumption 2.1 of [17].
In this case, the Petrov-Galerkin formulation is not inf-sup stable, only the standard Galerkin
formulation is possible and the method will suffer from the resonance error.

As an alternative, we can build a reduced basis set for all rectangular elements with size h and
center x ∈ Ω. In this case, the parameter domain is continuous and covers the whole computational
domain. To compute the local oscillating test functions on a triangular element K, we associate the
element K with a larger rectangular element S with size h through the center of the element. In
this case, we can ensure that K is in the center of S and Assumption 2.1 of [17] can be guaranteed.
Hence, a Petrov-Galerkin formulation is stable and the resonance error can be eliminated.

The a priori error estimations are similar to the results for the uniform rectangular mesh case
discussed in Sec. 4. For the simplicity of presentation, we omit listing the results.

Unlike the method on the uniform rectangular mesh, the operation counts of the RB-MsFEM
on triangular meshes dependent on the local DOFs of the FEM on S since the restriction operation
is performed on triangles of different sizes. However, the most costly step, recovering the local os-
cillating function on S, is achieved by the reduced basis method and is RBM therefore independent
of the DOFs of the FEM on S.

Note that for a general complex domain, it may not possible to extend a triangular element
into a larger uniform rectangular element, i.e., this is generally not possible for elements close to
the boundary. For such cases, we can compute the local oscillating test function of these element
directly by a finite element methods. Since the number of these elements can be expected to
comprise a small fraction of the total number of elements in the mesh, this is generally acceptable.

5.1. An inexact restriction. Let us also discuss a few implementation issues. The solution
on S is computed on a local finite element mesh T (S). When restricting the function w on S to
K, the mesh T (S) will not generally be aligned with the edges of K. If an exact interpolation is
used, the process is both complicated and time consuming.
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Consider, as an example, a RB-MsFEM Galerkin formulation and denote T ′(K) to be the
collections of local finite elements of T (S) whose center is inside K. Rather than computing∫

K

Aε∇Φh` (wε,rb)∇Φhm(wε,rb)dx, and
∫
K

f∇Φhm(wε,rb)dx

we compute the approximations:∑
T∈T ′(K)

∫
T

Aε∇Φh` (wε,rb)∇Φhm(wε,rb)dx and
∑

T∈T ′(K)

∫
T

fΦhm(wε,rb)dx.

and denote the bilinear and linear forms with the above inexact numerical integration by a∗(u, v)
and f∗(v). Since the size of the local elements is h′, assumed much smaller than h, it’s reasonable
to assume that the bilinear form a∗(u, v) is still coercive. Furthermore, the ratio between the
element area on the boundary of K and the area of K is O(h′/h) . Using the ideas of Lemma 4.1
and Theorem 4.1 of [26], it is reasonable to assume that

‖∇(uε,rbh − ũε,rbh )‖0 ≤ C
h′

h
(5.1)

where ũε,rbh is the solution recovered through inexact numerical integration. Since we assume h > ε

and the term (
h′

ε
)k
′
appears in all error estimates, it is safe to use this inexact restriction when a

linear approximation is used locally.

5.2. Numerical experiments. We consider the similar numerical test in Section.4.3 on a
uniform triangular mesh by the P1 RB-MsFEM (Galerkin) with oversampling, h = 1/100, h′ =
1/5000, hos = 5h. Figure 5.1 (left) shows the RB error measured in energy norm and error
estimation measured in energy norm for the construction of the local oscillating test function
w1, w2 and exponential convergence is clearly observed. Figure 5.1 (right) shows the convergence
of the homogenized solution computed by RB-MsFEM (measured in L2, H1 and energy norms),
the convergence (in L2 norm) stops around 10−3 (corresponds to 4 RB basis functions), indicating
that the error of the multiscale approximation (‖uε − uε,feh ‖) dominates over the error induced by
the RB approximation (‖uε,feh − uε,rbh ‖).

Next, we consider the same multiscale tensor coefficient a(
x

ε
) with ε = 0.02, f = 1 in an L-

shape domain. The nonuniform mesh of coarse elements is illustrated in Figure 5.2. There are
104 elements with hmax = 1/4, h′max = h/100. Figure 5.2 (right) shows the RB error measured in
energy norm and error estimation measured in energy norm for the construction of the local oscil-
lating test function w1, w2 and exponential convergence is clearly observed. Figure 5.3 compares
the corresponding homogenized solution with 20 RB basis functions and the homogenized solution
by solving the homogenized equation through a P1 finite element method under the same coarse
mesh. Both results agree with each other very well.

6. RB-MsFEM for more general parameter dependent PDEs. In the following, we
extend the methods to include more general parameter dependent problems. Consider the elliptic
problems of the form

−∇ · (Aε(x; µ)∇uε) = f ∈ Ω,
uε = 0 on ∂Ω. (6.1)

where Aε(x; µ) is a symmetric positive definite and bounded coefficient matrix. Here µ is a
collection of parameters in some parameter domain D and Aε(x; µ) is permitted to vary on a small
scale ε. The variational formulation of the problem is to seek uε ∈ H1

0 (Ω) such that

a(uε, v; µ) = f(v) ∀v ∈ H1
0 (Ω), (6.2)
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Figure 5.1. RB error in energy norm and a posteriori estimation of the RBM during the construction of the
set of local oscillating functions w1, w2 with a oversampling approach (left); the error between the exact homogenized
solution and the homogenized solution computed by RB-MsFEM with different RB a posteriori tolerance (right)
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Figure 5.2. a nonuniform mesh for the L-shape domain (left); RB error in energy norm and a posteriori
estimation of the RBM during the construction of the set of local oscillating functions w1, w2 with a oversampling
approach (right)

with a(u, v) = (Aε(x; µ)∇u and ∇v), f(v) = (f, v).
This problem can be solved by a standard MsFEM as defined in Sec. 3. Similar to the problem

without µ, the local oscillating test function must be solved for each element. Thus, a reduced
basis MsFEM is desirable. The RB-MsFEM introduced in Sec. 4 and 5 can be applied in a similar
fashion without problems. The main difference is that the parameters are the center of uniform
size rectangular element xK and µ. When the problem has high-dimensional parameters, greedy
algorithms developed in [12] and ANOVA techniques developed in [13] can be applied to improve
the computational efficiency of the reduced basis method for local oscillating test functions.

7. Concluding remarks. In this paper, we developed a new reduced basis multiscale fi-
nite element methods (RB-MsFEM) for elliptic problems with highly oscillating coefficients. The
method is based on MsFEM with local oscillating test functions([4, 14]), and allows for the gener-
alization of RB-MsFEM to high-order methods easily.

For uniform rectangular meshes, the local oscillating test functions are expressed by a reduced
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Figure 5.3. Comparison of the homogenized solution computed by RB-MsFEM with 20 RB basis functions
(left) and the homogenized solution computed by standard FEM (right)

basis method with element centers as the parameter. The uniform mesh is chosen to make sure
that the number of RB functions required is small.

For triangular meshes, we explore the observation that over-sampling oscillating test functions
are better approximations of the global harmonic coordinate map than the oscillating test func-
tion computed on the non-oversampled domain, we first build the reduced basis set on uniform
rectangular elements containing the original triangular elements, then restrict the oscillating test
function on triangular elements. This enables the use of a reduced basis multi-scale finite element
method for general unstructured grids. The methods generalize to the case of problems whose
coefficients also depend on other independent parameters.

The idea of using the restriction of oversampled oscillating test function to smaller elements
opens for the possibility for adaptive mesh refinement of in the context of multi-scale finite elements
methods and we shall explore such developments in a forthcoming paper.
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