
Fast continuous Fourier and Haar
transforms of rectilinear polygons
from very-large-scale integration
layouts

Robin Scheibler
Paul Hurley
Amina Chebira

Fast continuous Fourier and Haar transforms of rectilinear
polygons from very-large-scale integration layouts

Robin Scheibler,a,* Paul Hurley,b and Amina Chebiraa

aEcole Polytechnique Fédérale de Lausanne, School of Computer and Communication Sciences, Audiovisual Communications Laboratory,
BC Building, Station 14, Lausanne, Switzerland
bIBM Research Zürich, Systems Department, Rüschlikon, Switzerland

Abstract. We propose two new fast algorithms for the computation of the continuous Fourier series and the
continuous Haar transform of rectilinear polygons such as those of mask layouts in optical lithography.
These algorithms outperform their discrete counterparts traditionally used. Not only are continuous transforms
closer to the underlying continuous physical reality, but they also avoid the inherent inaccuracies introduced by
the sampling or rasterization of the polygons in the discrete case. Moreover, massive amounts of data and
the intense processing methods used in lithography require efficient algorithms at every step of the process.
We derive the complexity of each algorithm and compare it to that of the corresponding discrete transform.
For the practical very-large-scale integration (VLSI) layouts, we find significant reduction in the complexity
because the number of polygon vertices is substantially smaller than the corresponding discrete image.
This analysis is completed by an implementation and a benchmark of the continuous algorithms and their dis-
crete counterparts. We run extensive experiments and show that on tested VLSI layouts the pruned continuous
Haar transform is 5 to 25 times faster, while the fast continuous Fourier series is 1.5 to 3 times faster than their
discrete counterparts. © 2013 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMM.12.4.043008]

Keywords: continuous transform; fast Haar and Fourier algorithms; two-dimensional rectilinear polygons; very-large-scale integration;
lithography.

Paper 12075 received Sep. 7, 2012; revised manuscript received Oct. 18, 2013; accepted for publication Nov. 21, 2013; published
online Dec. 20, 2013.

1 Introduction
In optical lithography,1 patterns of the integrated circuits are
transferred to silicon by shining a light through a mask and
subsequently using a lens to concentrate the light onto a pho-
tosensitive layer. This is followed by an etching step, which
transfers the pattern to the silicon.

In recent years, the upgrade of manufacturing tools nec-
essary to keep up with the fast-paced reduction in transistor
size has not happened. As a consequence, ever more burden
is placed onto the computationally intensive techniques to
circumvent the optical degradation and thus ensure sufficient
manufacturing yield. These techniques, collectively known
as computational lithography, include traditional resolution
enhancement,2 source-mask optimization,3 and inverse
lithography.4 They strive to exploit all the degrees of freedom
in the lithography process, including illumination amplitude,
direction, and phase.5 All of these techniques rely on the
computationally intensive simulation of the underlying
physical processes. In parallel, very-large-scale integration
(VLSI) layout file sizes are expanding rapidly, as ever
more transistors are packed into a single design.6 This
coincides unfortunately with the increasing complexity of
the aforementioned computational lithography algorithms.
Taking these factors into account, having highly efficient
and accurate algorithms at various steps of the lithography
process become crucial.

As the lithography process is a continuous physical proc-
ess, continuous transforms inherently offer a better represen-
tation than a discrete transform, as illustrated by the heavy
use of the continuous Fourier transform in Fourier optics,7 the
physical foundation of the optical lithography. In particular,

the sampling or rasterization of mask layouts prior to their
transformation using the discrete Fourier transform (DFT)
may introduce inaccuracies that might lead later to simula-
tion errors.8

The Haar transform attempts to represent a target function
as a linear combination of square-shaped basis functions.
When applied to rectilinear polygons, this representation
is remarkably efficient due to the similarity of the target func-
tion, the mask layout in our case, and the basis functions.

We believe the application of the Haar transform can lead
to innovative techniques in lithography. One such application
and our prime motivation for developing a fast Haar trans-
form dedicated to rectilinear polygons is described by
Kryszczuk et al.9 Using the coefficients from orthogonal
transforms, they borrow techniques from machine learning
and train a classifier capable of predicting the outcome
of the printing process without having to go through the
costly physical simulation of the process. One such orthogo-
nal transform that can be used in this context is the Haar
transform.

To the best of our knowledge, uses of the discrete Haar
transform in lithography have been very limited. In one case,
a discrete Haar transform is used to compress the Fourier
precompensation filters for electron-beam lithography.10 In
another case, the Haar transform is used in inverse lithogra-
phy to regularize the obtained mask.11 In a previous paper,12

we introduced the pruned continuous Haar transform (PCHT),
a fast algorithm to compute the continuous Haar transform
coefficients. We extend12 this with the complexity analysis of
PCHT in this paper.

*Address all correspondence to: Robin Scheibler, E-mail: robin.scheibler@epfl.ch 0091-3286/2013/$25.00 © 2013 SPIE

J. Micro/Nanolith. MEMS MOEMS 043008-1 Oct–Dec 2013 • Vol. 12(4)

J. Micro/Nanolith. MEMS MOEMS 12(4), 043008 (Oct–Dec 2013)

http://dx.doi.org/10.1117/1.JMM.12.4.043008
http://dx.doi.org/10.1117/1.JMM.12.4.043008
http://dx.doi.org/10.1117/1.JMM.12.4.043008
http://dx.doi.org/10.1117/1.JMM.12.4.043008
http://dx.doi.org/10.1117/1.JMM.12.4.043008
http://dx.doi.org/10.1117/1.JMM.12.4.043008

The Fourier transform of the mask is a crucial step in the
simulation of the lithography process owing to the Fourier
transforming properties of lenses.7 The underlying physical
process is continuous, thus using the continuous Fourier
series (CFS) is natural and should yield the closest result
to the continuous Fourier transform used in the theoretical
Fourier optics.

One popular technique for estimating the resultant aerial
image from a mask is through photolithography simulation
using the Hopkins method.13 Fundamentally a continuous
convolution underpins the analysis, yet this is currently per-
formed using the fast Fourier transforms (FFT) of samples of
the naturally continuous description of the mask and the
Hopkins eigenfunctions. This situation may then be further
exacerbated by the introduced sampling in the photoresist
modeling convolution step. Optical proximity correction
(OPC) typically involves many of these simulation iterations
before possible convergence on an appropriately altered
mask function, and accuracy in estimation is thus crucial.
Using the CFS outlined here has inherently better accuracy
and low complexity.

In addition, uses of the FFT include the computation of
a precompensation filter to reduce the proximity effects,14

and approximating the diffraction orders of the mask.3 The
importance of the two-dimensional (2-D) FFT in the compu-
tational lithography is underlined by a road map for its effi-
cient use.15 The idea of computing the CFS of polygons, not
limited to those from VLSI layouts, in itself is not new and
diverse derivations of closed form expressions exist.16–19

The inherently continuous nature of polygons—due to
their physical nature when printed on the mask—makes a
continuous transform a natural tool for VLSI layouts. To
the best of our knowledge, algorithms making efficient use
of this type of representation to quickly compute continuous
transform coefficients do not exist. In this paper, we first
extend our previous work on the PCHT algorithm.12 We
follow by presenting the first fast Fourier series algorithms
applied to rectilinear polygons from VLSI layouts. Both
algorithms are based on a closed-form formula that we derive
for 2-D continuous separable transforms using a decompo-
sition of rectilinear polygons into rectangles. This formu-
lation leads to the derivation of two fast algorithms to
compute the transform coefficients: PCHT and the fast con-
tinuous Fourier series (FCFS) algorithms. PCHT has a fast
orthogonal wavelet transform (FWT) structure that is pruned
using the computational geometry techniques. FCFS results
from reducing the CFS computation problem to a few sparse
DFTs computed using pruned FFT algorithms. We evaluate
the computational complexity of both algorithms.

To validate the practical performance of our implementa-
tion, we run extensive and rigorous runtime measurements
on real VLSI layouts and compare the outcome to the perfor-
mance of their discrete counterparts. We use these results to
compute the speed-up provided by the continuous transforms
and find PCHT and FCFS to be up to 25 and 3 times, respec-
tively, faster than the discrete Haar transform and the FFT,
respectively. The runtimes are also found to be consistent
with the computational complexity derived for all algorithms.
In addition, we show an example of aerial image simulation
using both FCFS and conventional FFT methods.

This paper is organized as follows. Section 2 introduces
the necessary background in VLSI layouts, the continuous
Haar transform (CHT), and the CFS. Section 3 presents
a framework for taking continuous transforms of rectilinear
polygons as well as the proposed PCHTand FCFS. In Sec. 4,
the performance of the both algorithms is evaluated and
compared to that of their discrete counterparts. Finally,
Sec. 5 concludes by discussing the superiority of PCHT
and FCFS over their discrete equivalents, and sketches the
possible future directions.

2 Background
In this section, we first briefly describe VLSI layouts and
how they are produced. We consider only layouts composed
exclusively of rectilinear polygons since they are predomi-
nent in technology nodes under 45 nm. These rectilinear pol-
ygons are described mathematically, laying the groundwork
for the algorithms to come. We then describe the 2-D con-
tinuous Haar transform and the fast wavelet transform algo-
rithm used to implement it. Finally, a short refresher on the
CFS is given.

2.1 VLSI Layouts

2.1.1 Layouts

VLSI layouts are composed of several layers, each contain-
ing many billions of rectangles, or more generally, rectilinear
polygons. Figure 1 shows the fragments of three different
types of layers. These are taken from metal 1 (M1), which
is mostly random logic, metal 2 (M2), containing some logic
and wires, and contact array (CA), providing contacts
between the different layers. In addition, there are several
other types of layers, omitted here, similar to those of M1,
M2, or CA.

2.1.2 Rectilinear polygons

We now give a formal definition of the polygons in VLSI
layouts. They are rectilinear (only right angles), simple

Fig. 1 From left to right: Illustrative examples of 1024 nm × 1024 nm tiles from metal 1 (M1), metal 2
(M2), and contact array (CA) layers, respectively. Note that they exclusively contain rectilinear polygons.

J. Micro/Nanolith. MEMS MOEMS 043008-2 Oct–Dec 2013 • Vol. 12(4)

Scheibler, Hurley, and Chebira: Fast continuous Fourier and Haar transforms of rectilinear polygons. . .

(edges do not intersect, no holes), lattice (vertices are on the
integer lattice) polygons. An example of such a polygon is
shown in the left panel of Fig. 2. A standard layout descrip-
tion consists of polygons defined by the set of ordered coor-
dinates of their K vertices. This set separates the plane in
two: inside and outside of the polygon. A sequence order
is necessary, and we arbitrarily choose it to be clockwise.
A disjoint partition of the plane is achieved when we exclude
edges if the interior of the polygon is on their left or bottom
and include them if the interior is on the right or top (see
Fig. 2). Rectangles are rectilinear polygons with four verti-
ces, and as they are simpler to handle, we treat them as
a special case.

2.2 Continuous Haar Transform

Much like the CFS decomposes a function into a sum of the
sines and cosines, the continuous Haar transform decom-
poses a function into a sum of the rectangular functions
called the Haar basis. The 2-D Haar basis over T ¼ ½0; NxÞ ×
½0; NyÞ isn
φ0;0;0;ψ

ðhgÞ
j;kx;ky

;ψ ðghÞ
j;kx;ky

;ψ ðhhÞ
j;kx;ky

o
;

where j ∈ N and kx, ky ∈ f0; : : : ; 2j − 1g. In practice, j is
limited to some maximum level of decomposition J. The
scaling function is φj;kx;kyðx; yÞ ¼ ð2j∕ ffiffiffiffiffiffiffiffiffiffiffiffi

NxNy
p Þ if ðx; yÞ ∈

Tj;kx;ky ¼ ½kxNx
2j

; ðkxþ1ÞNx

2j
Þ × ½kyNy

2j
; ðkyþ1ÞNy

2j
Þ and 0 otherwise.

The three other basis functions can be defined using a
recursive relationship. For example

ψ ðhgÞ
j;kx;ky

ðx; yÞ ¼
X
n

X
m

hngmφjþ1;2kxþn;2kyþmðx; yÞ; (1)

where gn ¼ ½2−1∕2; 2−1∕2� and hn ¼ ½2−1∕2;−2−1∕2� are the
Haar filters. By replacing hngm in the sum by gngm, gnhm,
and hnhm, we obtain φj;kx;ky , ψ

ðghÞ
j;kx;ky

, and ψ ðhhÞ
j;kx;ky

, respec-
tively. The dyadic CHT of a function f is given by its
inner product with the basis functions. The discrete counter-
part of the CHT is the discrete Haar transform (DHT).
A more thorough introduction to the CHT and DHT is
given in Vetterli et al.20 The CHT and DHT coefficients are
identical for the 2-D rectilinear polygonal patterns. Both can
be computed using the FWT.21 This algorithm has a Cooley–
Tukey butterfly structure,22 where only the inner products
with the scaling function at the lowest level need to be

computed. The full flow diagram for a length-8 one-dimen-
sional (1-D) FWT is shown in light gray in Fig. 3.

2.3 Continuous Fourier Series

The 2-D Fourier basis over T ¼ ½0; NxÞ × ½0; NyÞ is

fðNxNyÞ−1∕2ejðwxkxþwylyÞgðk;lÞ∈Z2 ; (2)

where wx ¼ ð2π∕NxÞ and wy ¼ ð2π∕NyÞ. The Fourier basis
assumes that the function f under transformation is periodic
with the periods Nx and Ny along the x-axis and y-axis,
respectively. The CFS coefficients F̂k;l are then given by
the inner product between f and the Fourier basis functions.

This differs from the DFT in that the functions are con-
tinuous in the spatial domain, and thus not periodic in the
frequency domain. This means that for the perfect recon-
struction of the image, an infinite number of coefficients is
needed. But in reality, we only care about reconstructing
the output of the lithographic system which is limited to
a fairly small number of low frequency coefficients.1 On
the other hand, the use of the DFT requires sampling,
which introduces aliasing due to the infinite bandwidth of
rectilinear polygons, and in turn yields an inaccurate spectral
representation of the continuous image. In contrast, the CFS
yields the true spectrum of the continuous image.

3 Continuous Transforms of Rectilinear Polygons
In this section, we derive the algorithms to compute the con-
tinuous Haar transform and Fourier series coefficients of

5 101

1

5

10

y

x 5 101

1

5

10

y

x 5 101

1

5

10

y

x

Fig. 2 On the left, a rectilinear simple lattice polygon. The interior of the polygon is shaded. The full-lined
edges are included in the polygon, while the dashed edges are not. Arrows indicate vertex ordering. On
the right, illustration of the construction of the left polygon from disjoint rectangles. The minus here stands
for the set difference operator.

X0,0C0,0

C2,1 C2,0

C1,0

C2,2C2,3

C1,0

X3,7 X3,5 X3,1 X3,6 X3,4 X3,0X3,2X3,3

X1,1

X2,0

+ + + +
+

+
+

+
++

+

+
+

+
++ +

+
+

+

−

−

−−−−

+

−

0 0 0

0

Fig. 3 A pruned signal flow of the one-dimensional (1-D) Haar
fast orthogonal wavelet transform. The full flow diagram is shown
in light gray. The transformed signal is f ðtÞ ¼ uðt − 3Þ, defined on
½0;8Þ, where uðtÞ is the Heaviside function. X j;k ¼ hf ;φð8Þ

j ;k i and Cj;k ¼
hf ;ψ ð8Þ

j ;k i where φð8Þ
j ;k and ψ ð8Þ

j ;k are the 1-D Haar basis functions on ½0; 8Þ.
For simplicity, the scaling of the transform coefficients has been
omitted.

J. Micro/Nanolith. MEMS MOEMS 043008-3 Oct–Dec 2013 • Vol. 12(4)

Scheibler, Hurley, and Chebira: Fast continuous Fourier and Haar transforms of rectilinear polygons. . .

rectilinear polygons. Their theoretical computational com-
plexity is evaluated and compared with that of the equivalent
discrete transforms.

The main reason continuous transforms can be faster than
their discrete counterparts for rectilinear polygons is that
the continuous inner product of a basis function is an explicit
function of the vertices of the polygon, and the vertex
description is very sparse compared to the size of the
image. Moreover, no memory is needed to form or store a
discrete image. In addition, the sampling of the polygons
to create a discrete image can itself be considered a projec-
tion on a Dirac basis. Sampling followed by a discrete trans-
form, as illustrated in Fig. 4, effectively is two transforms,
whereas a continuous transform can completely omit the
sampling operation. Moreover, as discussed in Sec. 1, the
CFS circumvents inaccuracies stemming from the sampling
required by the FFT.

3.1 Inner Product over Rectilinear Polygons

In practice, to cope with very large layouts, a divide-and-con-
quer strategy is adopted. Layouts are divided into smaller
disjoint or overlapping rectangular tiles before applying a
transform to each individual tile. Therefore, we consider con-
tinuous transforms over a subset T ¼ ½0; NxÞ × ½0; NyÞ ⊂ R2

that we call a tile. This poses no restrictions as the size of this
subset can be increased sufficiently to cover the entire layout.
The size of the tile is chosen with respect to the maximum
radius of influence.1 In practice, Nx and Ny are always
chosen to be positive integers.

We use Hilbert space formalism to describe the orthogonal
transforms.20 Given an orthogonal basis of functions ϕk;l over
T, fϕk;l: T → Cg∞;∞

k¼0;l¼0, the transform coefficients of a func-
tion f ∈ L2ðTÞ are the inner products with the basis functions

hf;φk;li ¼
ZZ

T
fðx; yÞϕ�

k;lðx; yÞdxdy: (3)

Applying this definition to the Haar and Fourier basis, as
described in Eqs. (1) and (2) respectively, yields the Haar and
Fourier transforms, respectively. As all polygons in a layout
are disjoint, the image fT of a tile containing polygons
P0; : : : ;PM−1 ⊆ T is the sum of the indicator functions of
the polygons

fTðx; yÞ ¼
XM−1

m¼0

1Pm
ðx; yÞ: (4)

The indicator function is defined as 1Pðx; yÞ ¼ 1 if ðx; yÞ
is inside the polygon P and 0 otherwise. Now, for functions
such as Eq. (4), and separable basis functions, the inner prod-
uct of Eq. (3) can be computed as a sum of the functions over
the polygon vertices.

Lemma 3.1 Consider a rectilinear polygon P with K
vertices fxi; yigK−1

i¼0 , and a separable basis function, namely
ϕk;lðx; yÞ ¼ ϕkðxÞϕlðyÞ. Let the function Ω ¼ ∫ϕ be a
primitive of ϕ. Then

hfP ;ϕk;li ¼
XK∕2−1

i¼0

Ω�
l ðy2iÞ½Ω�

kðx2iþ1Þ − Ω�
kðx2iÞ�; (5)

where indices are taken modulo K.

The proof of this result is given in Appendix A. This
result can be extended to multiple disjoint polygons by
the linearity of the inner product.

3.2 Pruned Continuous Haar Transform

We briefly describe the previously introduced PCHT algo-
rithm12 for rectilinear polygons. Then, we advance this
previous work with the derivation of the complexity of
the PCHT.

3.2.1 Algorithm derivation

Consider the FWT as described in Sec. 2.2 and whose full
1-D flow diagram is shown in light gray in Fig. 3. First, note
that the linear complexity of the FWT and Eq. (13) mean
that we can use the FWT on individual polygons and sum
up the transform coefficients to obtain the transform of
a tile, as illustrated in Fig. 4. Thus, from now on, we consider
only the transform of a single polygon. Second, we use the
computational geometry techniques to compute the inner
product. The continuous inner product between the indicator
of a polygon and the support of the scaling function as
defined in Sec. 2.2, as given by Lemma 3.1, is the area of
the geometrical intersection of the polygon and the scaling
function multiplied by 2j∕

ffiffiffiffiffiffiffiffiffiffiffiffi
NxNy

p
. A method to compute

the intersection area for the rectilinear polygons is described
in Algorithm 1.

The Haar transform acts as a discontinuity detector, and
all transform coefficients will be zero except when basis
functions intersect the boundary of the polygon. Therefore,
the basis functions completely inside or outside the polygon
can be ignored. In addition, all coefficients positioned below
such basis functions in the transform tree are also zero.

Tiled layout

PCHT

Discrete transforms

FCFS

CHT coefficients

CFS coefficients

z−1

Area

PCHT

α 0,

α ,0

α 0,0

α ,

DHT

2D
FFT

TD−FFT
1-D

1-D
TD−FFT

TD−FFT
2-D

k

l

DFT coefficients

DHT coefficients

Vertical edge lengths

Horizontal edge lengths

Vertex positions

l

k l

k

Fig. 4 Flow diagram of all the transforms. From top to bottom: fast
Fourier transform (FFT), discrete Haar transform (DHT), pruned con-
tinuous Haar transform (PCHT), and fast continuous Fourier series
(FCFS).

J. Micro/Nanolith. MEMS MOEMS 043008-4 Oct–Dec 2013 • Vol. 12(4)

Scheibler, Hurley, and Chebira: Fast continuous Fourier and Haar transforms of rectilinear polygons. . .

Figure 5 shows in gray the support of the basis functions at
a given scale that yield nonzero inner products. As with the
original FWT, PCHT can be written as a divide-and-conquer
algorithm: divide the tile into four rectangular parts recur-
sively until the part under consideration is completely inside
or outside the polygon. This happen ultimately when we
reach the granularity of the grid and the basis functions
are 1 × 1. Pseudocode for the PCHT can be found in the pre-
vious work.12 An example of the pruned transform flow dia-
gram for the 1-D case is shown in Fig. 3 in black.

3.2.2 Complexity

We will now estimate the complexity of the PCHT. As it is
highly dependent on the geometry of the polygon, we make
the worst case assumption and describe the complexity as a
function of a few general properties of the polygon, namely
its number of vertices K and its perimeters P. The complex-
ity is also a function of the computational complexity ΛiaðKÞ
of the intersection area algorithm. The exact value depends
on the assumptions made regarding the type of polygons, but
isOðKÞ.23 In particular, for the rectilinear polygons, we have

ΛiaðKÞ ¼
�
11 if K ¼ 4

6K − 1 if K > 4
; (6)

additions, multiplications, and comparisons.
We begin by estimating the number of nonterminating

recursive calls. A call is nonterminating if the support of the
waveform intersects the boundary of the polygon. Assume
here that Nx ¼ Ny ¼ N. Then, at a given scale j, there
are roughly d2jP∕Ne such basis functions. Each of these

calls makes four calls to itself and thus to the intersection
area routine and also uses three comparisons. The intersec-
tion area routine uses in turn 11 additions and three multi-
plications per nonterminating call. Finally, a total of M − 1
additions are needed to sum up the scaling coefficients of the
polygons, and a single multiplication is needed for the final
scaling factor. We thus formulate our estimate of the com-
plexity of the PCHT as

ΛPCHT ≈
�XM−1

m¼0

XJ−1
j¼0

�
2jPm

N

�
½ΛiaðKmÞ þ 26�

�
þM (7)

operations (additions, multiplications, and comparisons),
where Pm and Km are the perimeter and number of vertices
of the m’th polygon, respectively, M is the number of poly-
gons in a given tile, and J is the maximum level of decom-
position. For a DHT with Nx ¼ Ny ¼ N ¼ 2J, the total
number of operations is ΛDHT ¼ ð8∕3ÞðN2 − 1Þ. The rela-
tionship between the complexity and the actual runtime is
discussed in Sec. 4.

3.3 Fast Continuous Fourier Series

We now develop the FCFS algorithm for computing the CFS
coefficients of rectilinear polygons. The computational com-
plexity of the FCFS will be evaluated and compared with that
of the FFT.

3.3.1 Algorithm derivation

Recall the definitions of wx, wy, Nx, and Ny in Sec. 2.3. We
begin by a closed-form formula for the CFS coefficients of
rectilinear polygons. Applying Lemma 3.1 to the Fourier
basis equation (2) results in the following proposition:

Proposition 1. Given a polygon P with K vertices, its
CFS F̂k;l, k, l ∈ Z2, is given by

F̂0;0 ¼ α0;0
XK∕2−1
i¼0

y2iðx2iþ1 − x2iÞ; (8)

F̂k;0 ¼ αk;0
XK∕2−1
i¼0

ðy2i−1 − y2iÞe−jwxkx2i ; (9)

Algorithm 1 Intersection area ðP;T j ;kx ;ky
Þ.

Require: A rectilinear polygon P. The support T j;kx ;ky of the basis
function φj;kx ;ky .

Ensure: I is the intersection area of P and T j;kx ;ky .

1: I←0

2: a1←kxNx∕2j, b1←kyNy∕2j

3: a2←ðkx þ 1ÞNx∕2j, b2←ðky þ 1ÞNy∕2j

4: for every horizontal edge ðxi; yiÞ → ðxiþ1; y iÞ of P do

5: u←minðxi; xiþ1Þ, υ←maxðxi; xiþ1Þ

6: if a2 ≤ u or υ ≤ a1 or yi ≤ b1 then

7: continue

8: end if

9: s←signðxiþ1 − xiÞ

10: I←I þ s½minðυ; a2Þ −maxðu; a1Þ�½minðyi; b2Þ − b1�

11: end for

(where ← denotes assignment)

N

Fig. 5 The Haar basis functions yield zero inner product except when
they intersect the edge of a polygon. The big thick square is the tile
with Nx ¼ Ny ¼ N. The dashed squares are the supports of the basis
functions at a given scale. The thick polygonal border marks the con-
tour of the polygon. Basis functions yielding nonzero inner product are
shown in gray.

J. Micro/Nanolith. MEMS MOEMS 043008-5 Oct–Dec 2013 • Vol. 12(4)

Scheibler, Hurley, and Chebira: Fast continuous Fourier and Haar transforms of rectilinear polygons. . .

F̂0;l ¼ α0;l
XK∕2−1

i¼0

ðx2iþ1 − x2iÞe−jwyly2i ; (10)

F̂k;l ¼ αk;l
XK∕2−1
i¼0

e−jwyly2iðe−jwxkx2iþ1 − e−jwxkx2iÞ; (11)

where the scaling factor αk;l is defined as follows:

αk;l ¼

8>>>>>>><
>>>>>>>:

1ffiffiffiffiffiffiffiffi
NxNy

p if k ¼ l ¼ 0

j
2πk

ffiffiffiffiffi
Nx
Ny

q
if k ≠ 0 and l ¼ 0

j
2πl

ffiffiffiffiffi
Ny

Nx

q
if k ¼ 0 and l ≠ 0

−
ffiffiffiffiffiffiffiffi
NxNy

p
4π2kl if k ≠ 0 and l ≠ 0

It can be observed that except for F̂0;0, all the coefficients are
DFT coefficients of very sparse signals as we restrict the
vertices to lie on the integer lattice. We can decompose
the fast algorithm into four main steps, with each step com-
puting one of Eqs. (8)–(11), steps 2 and 3 using the DFT
formalism. For simplicity, we consider only the transform
of a single polygon here:

Step 1: Directly compute Eq. (8). It is the scaled area of P. F̂0;0 ¼
α0;0AreaðPÞ. This corresponds to lines 11 and 18 in
Algorithm 2.

Step 2: Compute Eq. (9) as a 1-D DFT: F̂k;0 ¼ αk;0DFTk 0 f ~fxg,
where k 0 ≡ kmodNx and

f̃x½n� ¼
X
i∈Xn

ðyi−1 − yiÞ; n ¼ 0; : : : ; Nx − 1

where Xn ¼ fijxi ≡ nmodNxg. The values ðyi−1 − yiÞ are the
lengths of the vertical edges. This corresponds to lines 5 and 16
in Algorithm 2.

Step 3: Compute Eq. (10) as a 1-D DFT: F̂0;l ¼ α0;lDFTl 0 f ~fyg,
where l 0 ≡ lmodNy and

f̃y½n� ¼
X
i∈Yn

ðxiþ1 − xiÞ; n ¼ 0; : : : ; Ny − 1

where Yn ¼ fijyi ≡ nmodNyg. The values ðxiþ1 − xiÞ are the
lengths of the horizontal edges. This corresponds to lines 8 and
17 in Algorithm 2.

Step 4: Compute Eq. (11) as a 2-D DFT: F̂k;l ¼ αk;lDFTk 0;l 0 ff̃xyg,
where k 0 ≡ kmodNx, l 0 ≡ lmodNy and

f̃x;y½m; n� ¼
XK∕2−1

i¼0

½1Zm;n
ðx2iþ1; y2iÞ − 1Zm;n

ðx2i; y2iÞ�;

where Zm;n¼fðx;yÞjðx;yÞ∈Z2;x≡mmodNx;y≡nmodNyg.
This is a sparse Nx × Ny image with 1’s and −1’s placed at
the vertices. This corresponds to lines 9, 10, and 15 in
Algorithm 2.

For multiple polygons, we sum the areas of all
polygons for step 1, and the linearity of the DFT
is used to include all the polygons in ~fx, ~fy, and
~fxy for the three other steps. The four steps are illus-
trated in Fig. 4. Algorithm 2 gives the pseudocode of
the FCFS.

Having reduced the problem of computing the CFS to a
few real DFTs of sparse signals, we can exploit the extensive
collection of available DFT algorithms. The FFT algorithm24

is not the most efficient in our case, as we could also use a
single FFT on a sampled version of fT , albeit with some loss
of precision. If we are only interested in a few CFS coeffi-
cients, we can apply a Goertzel-like algorithm25 to the direct
computation of the CFS coefficients using Proposition 1. The
input pruned FFT, whereas the FFT structure is pruned for a
sparse input, is the most appealing approach for the compu-
tation of a large number of CFS coefficients, and in particu-
lar, the transform decomposition FFT (TD-FFT) as it is the
fastest of all existing pruned FFT algorithms. The implemen-
tation of the 1-D TD-FFT can be found in Refs. 26 and 27.
The implementation of the 2-D TD-FFT is a straightforward
extension of the 1-D TD-FFT to the 2-D case. However, to
the best of our knowledge, it has not been reported in the

Algorithm 2 FCFS ðP; Nx ; Ny ; F Þ.

Require: P contains the lists of the vertices of the M rectilinear
polygons where ðxm;i ; ym;iÞ is the i’th, out of Km, vertex of the m’th
polygonPm. For all m∶xm;0 ≠ xm;1. The tile size isNx ×Ny . TD-FFT 1-D
and TD-FFT 2-D take as input arrays containing the nonzero values (V),
their locations (S), and number, along with the DFT size.

Ensure: F is an Nx ×Ny matrix containing the Nx ×Ny first Fourier
series coefficients of the polygon P.

1: n←0; A←0

2: for m ¼ 0 to M − 1do

3: for i ¼ 0 to Km − 1 do

4: if xm;i ¼ xm;iþ1 then

5: VK ½n�←ym;i − ym;iþ1;S
K ½n�←xm;i

6: n←nþ 1

7: else if ym;i ¼ ym;iþ1 then

8: VL½n�←xm;iþ1 − xm;i; SL½n�←ym;i

9: VKL½2n�←1;SKL½2n�←ðxm;iþ1; ym;iÞ

10: VKL½2nþ 1�← − 1;SKL½2nþ 1�←ðxm;i; ym;iÞ

11: A←Aþ ym;iðxm;iþ1 − xm;iÞ

12: end if

13: end for

14: end for

15: F½k; l�←αk;lTD − FFT − 2 − DðVKL; SKL; K;Nx;Ny Þ

16: F½k;0�←αk;0TD − FFT − 1 − DðVK ; SK ; K∕2;NxÞ

17: F½0; l�←α0;lTD − FFT − 1 − DðVL; SL; K∕2;Ny Þ

18: F½0;0�←α0;0A

J. Micro/Nanolith. MEMS MOEMS 043008-6 Oct–Dec 2013 • Vol. 12(4)

Scheibler, Hurley, and Chebira: Fast continuous Fourier and Haar transforms of rectilinear polygons. . .

literature and we thus give a short derivation as well as pseu-
docode in Appendix B. It is worth noting that neither the 1-D
nor 2-D TD-FFT algorithms assume the nonzero inputs to be
consecutive. Our complexity analysis considers both TD-
FFT and Goertzel, while our implementation focuses solely
on TD-FFT.

3.3.2 Complexity

As in the Haar case, the computational complexity depends
on the polygon geometry. In this case, only the sum of the
number of vertices K of theM polygons present in the tile is
important.

We compare, in terms of complexity, FCFS with the split-
radix FFT (Ref. 28) performed on the discrete image of
a polygon. We choose the split-radix FFT algorithm since
it is one of the fastest and most widely used FFT algorithms.
For FCFS, we consider both Goertzel and TD-FFT algo-
rithms to compute the sparse DFTs.

For the complexity analysis, consider the transform of an
Nx × Ny tile, where Nx and Ny are the composite numbers
(not prime). Table 1 details the complexity of each step of
the FCFS algorithm described in Sec. 3.3.1. We need to
choose the TD-FFT subFFTs lengths PðIÞ

x , PðIÞ
y , PðIIÞ

x , and
PðIIÞ
y such that the overall complexity is minimized with the

constraint that they are dividers of Nx and Ny, respectively.
27

There is, however, no closed-form solution to this problem. In
addition, this optimization requires knowledge of the specific
FFT algorithm used for the subFFTs in TD-FFT, which is
impossible with modern libraries such as FFTW. Therefore,
the lengths of the subFFTs need to be chosen such that the
runtime on a given architecture is minimized. This can be
done offline and the optimal lengths stored in a look-up table.

For the sake of analysis, we assume that the split-radix
FFT algorithm is used for all FFTs. The complexity of the
2-D Nx × Ny complex split-radix FFT is

CFFT2−D ¼ 4NxNy log2 NxNy − 12NxNy þ 8Nx þ 8Ny

real operations. Real-valued data implies the need for
roughly half this number of operations. The Goertzel algo-
rithm requires approximately OðKNxNyÞ real operations for

an Nx × Ny-point real DFTwith K nonzero inputs. Our algo-
rithm requires the computation of the area of the polygons
(step 1), two length-N DFTs with K∕2 inputs each (steps 2
and 3) and one 2-D length-Nx × Ny DFT with K inputs
(step 4). The exact complexity of the FCFS is given in
Table 1. Table 2 provides a summary of the computational
complexity of all the transforms.

4 Performance Evaluation of PCHT and FCFS
In this section, we first describe how PCHT and FCFS are
implemented, and then present results benchmarked on
the real VLSI layouts, comparing the performance to that
of the traditional discrete transform algorithms. This perfor-
mance evaluation has two goals. The first is to validate the
theoretical computational complexity and analyze the behav-
ior of the runtime as a function of the number of verticesK in
a tile. The second goal is to measure the improvement in run-
time provided by the PCHT and FCFS over DHT and FFT,
respectively. Finally, we perform a simple aerial image
simulation using both FCFS and FFT. We compare images
produced using a comparable number of operations for both
the algorithms.

4.1 Implementation and Benchmark Setup

All the algorithms were implemented in the computational
lithography tool and run on a 3 GHz Intel© Xeon 5450 run-
ning Linux© in 64-bit mode. All the code is C++, single
threaded and was compiled using GCC 4.1.2 with option
“-O3.” The tool takes a layout file as input, parses it, breaks
down polygons, and places them in their corresponding tiles.
Each tile is then transformed individually. Figure 4 shows the
flow diagrams of the different steps involved in the process
of transforming a layout using the PCHT, DHT, FCFS, and
FFT. The transform is initially performed twice to get the
machine into a steady state, and then repeated 10 more
times to average out the timing noise. Both PCHT and DHT,
as described in Sec. 3.2.1, were fully custom-implemented.
Contrary to our previous implementation,12 here, we include
the storage of the transform coefficients. We use the FFTW3
to perform the FFT.29 We custom-implemented FCFS using
the TD-FFT algorithm for pruned FFTs, which in turn use

Table 1 Complexity of the FCFS algorithm. K ¼ PM−1
m¼0 Km is the sum of the vertices of the M polygons in the Nx × Ny tile. The parameters, PðIÞ

x ,
P ðIIÞ

x , dividers of Nx and P ðIÞ
y , P ðIIÞ

y , dividers of Ny , are chosen to minimize the overall complexity.

Step Number of operations Operation performed

1 ð3∕2ÞK −M Sum of the polygon areas

2 ½ð5∕2Þ þ ð3∕2ÞQðIÞ
x � × K þ ½ð1∕2ÞQðIÞ

x þ 1� × CFFT1−DðPðIÞ
x Þa One-dimensional (1-D)

K∕2-input pruned FFT

3 ½ð5∕2Þ þ ð3∕2ÞQðIÞ
y � × K þ ½ð1∕2ÞQðIÞ

y þ 1� × CFFT1−DðPðIÞ
y Þa 1-D K∕2-input pruned FFT

4 ½−ð17∕2Þ þ ð19∕2ÞQðIIÞ
x þ ð5∕2ÞQðIIÞ

x QðIIÞ
y � × K þQðIIÞ

x ½ð1∕2ÞQðIIÞ
y þ 1� × CFFT2−DðPðIIÞ

x ; PðIIÞ
y Þb Two-dimensional (2-D)

K -input pruned FFT

Total ½−2þ ð3∕2ÞQðIÞ
x þ ð3∕2ÞQðIÞ

y þ ð19∕2ÞQðIIÞ
x þ ð5∕2ÞQðIIÞ

x QðIIÞ
y �K −Mþ ½ð1∕2ÞQðIÞ

x þ 1� × CFFT1−DðPðIÞ
x Þ

þ½ð1∕2ÞQðIÞ
y þ 1� × CFFT1−DðPðIÞ

y Þ þQðIIÞ
x ½ð1∕2ÞQðIIÞ

y þ 1� × CFFT2−DðPðIIÞ
x ; PðIIÞ

y Þ operations
a1-D Split-Radix: CFFT1−DðNÞ ¼ 4N log2 N − 6N þ 8.
b2-D Split-Radix: CFFT2−DðNx ;Ny Þ ¼ 4NxNy log2 NxNy − 12NxNy þ 8Nx þ 8Ny .

J. Micro/Nanolith. MEMS MOEMS 043008-7 Oct–Dec 2013 • Vol. 12(4)

Scheibler, Hurley, and Chebira: Fast continuous Fourier and Haar transforms of rectilinear polygons. . .

FFTW3 as FFT kernel. For the discrete transforms, we first
created an image of the tile and then fed it to the transform
algorithm. The time needed to create the discrete image is
added to the runtime of the discrete transform.

For the evaluation, the algorithms were run on three layers
from a 22 nm layout of modest size (0.43 mm × 0.33 mm)
containing rectangles and more complex rectilinear poly-
gons. These layers are M1 and M2, which contain both
rectangles and other polygons, and CA, which contains
only rectangles, as shown in Fig. 1. We ran the experiment
on squared tiles, where side lengths were powers of two
from 128 nm × 128 nm to 4096 nm × 4096 nm. The tests
for FCFS and FFT were performed using the sampling at
1 nm on a grid. As part of a tool chain together with a low-
pass filter (from a lens), FCFS and FFT could both be sped
up from sampling at lower rates. To enable exact and fair
comparison of the algorithms, we choose not to add this
layer of approximation.

This experiment has two distinct goals. The first is to
validate the theoretical complexity derived in Sec. 3 as a
predictor of the behavior of the runtime of the transforms.
To that effect, we use the runtime from the M1 tiled in
1024 nm × 1024 nm. We compute the average of the 10
runs for each tile and for all transforms. We then take the
median of this average over all tiles containing a given num-
ber of vertices K. It may happen that the number of tiles with
K vertices is quite small (say four tiles), and that the runtime
for one of those tiles is disproportionate. Taking the median
will mitigate the effect of these specific tiles, considered as
outliers in this case. This is shown in Figs. 6 and 7. We plotK
on the x-axis, the median runtime on the left y-axis, and the
complexity on the right y-axis. The plot also shows in light

gray the empirical distribution of K to indicate which range
of K is the most important one.

The second is to measure the relative difference of run-
time between PCHT and FCFS, and their respective discrete
counterparts. To that effect, we aggregate the results to get
the average of 10 runtimes over a full layer, for all layers and
all transforms. Our metric is the speed-up, computed by
dividing the average runtime of the discrete transform by
the average runtime of the corresponding continuous trans-
form for a given layer and tile size. This is shown in Figs. 8
and 9. We plot the speed-up of the average runtime for all
layers and tile sizes considered.

4.2 Benchmark Results

Figure 6 shows the runtime and the complexity of the PCHT
and the DHTas a function of K for 1024 nm × 1024 nm tiles
from the M1. The left and right y-axis show the runtime and
complexity, respectively. We observe that the complexity
given in Eq. (7) describes the qualitative behavior of the run-
time of the PCHT very well, even for the outliers around
K ¼ 190. When K > 200 and the tiles are composed exclu-
sively of rectangles, Eq. (7) underestimates the complexity.
In this case, the runtime is dominated by memory transfers.

The gap between the runtime of the DHT and its com-
plexity is also explained by the domination of memory
transfers, which are not accounted for in the computational
complexity in Eq. (7). This is in contrast with our previously
published results,12 where storage of the coefficients was
not taken into account. The dependence of the DHT on K
stems from discrete image creation and from the fact that
our implementation uses an if statement to avoid storing
zero transform coefficients whose number decreases with

Table 2 Summary of the computational complexity of the continuous and discrete transforms of a single rectilinear polygon in terms of the total
number of additions and multiplications.

Complexity of the transforms

PCHT ≈ fPM−1
i¼0

PJ−1
j¼0 d2jPi∕Ne½ΛiaðKiÞ þ 26�g þMa DHT 8½ðN2 − 1Þ∕3�

Goertzel TD-FFT

FCFS f½Nx þ ð1∕4Þ�½Ny þ ð5∕4Þ� þ ð19∕16ÞgK −M See Table 1 FFT ð1∕2Þð4NxNy log2NxNy − 12NxNy þ 8Nx þ 8Ny Þb

agiven in Eq. (6).
bRow-column real split-radix FFT complexity (Ref. 28).

4 50 100 150 200 250 268
0
1
2
3
4
5
6

PCHT − runtime

54 0 100 150 200 250 268
0
3.4
6.9
10.3
13.8
17.2
20.7

54 0 100 150 200 250 268
0
1
2
3
4
5
6

DHT − complexity

DHT − runtime

Empirical distribution

PCHT − Complexity

((

Fig. 6 Median runtime (left y -axis, data points) and complexity (right y -axis, lines) of the PCHT (×,
dashed line) and DHT (•, solid line) of 1024 nm × 1024 nm tiles from the M1 layer containing K vertices.
Note the accuracy of our complexity estimate in predicting the qualitative behavior of the PCHT (super-
position of crosses and dashed line). Even the outliers around K ¼ 190 are predicted. Tiles with K > 200
have a lower complexity as they contain only rectangles, which are less complex. However, the complex-
ity is underestimated as it does not take memory transfers into account. The empirical distribution of the
number of vertices is shown in gray.

J. Micro/Nanolith. MEMS MOEMS 043008-8 Oct–Dec 2013 • Vol. 12(4)

Scheibler, Hurley, and Chebira: Fast continuous Fourier and Haar transforms of rectilinear polygons. . .

increasing K. Given the very high number of zero coeffi-
cients, the cost of the if statement is justified by the large
memory transfer savings. Overall, Fig. 6 shows that for
small values of K encountered in VLSI layouts (the number
of vertices in a given tile of VLSI layout is small relative to
the total coordinate space), the PCHT is significantly faster
than the DHT.

Figure 8 shows that the average runtime of the PCHT for a
full M1 layer is about five times shorter than that of the DHT,
for all considered tile sizes. For the CA layer, which contains
only rectangles that have a lower complexity, the speed-up is
25-fold for large tiles. The M2 layer shows higher speed-up
because it contains less and larger polygons than M1.

Figure 7 shows the runtime and the complexity of the
FCFS and the FFT as a function of K for 1024 nm×
1024 nm tiles from the M1. The left and right y-axis show
the runtime and complexity, respectively. The runtime of
FCFS compared with that of the FFT is lower than the
expected given the theoretical complexity. Indeed, as shown
by Franchetti and Püschel,30 the pruned FFT can be imple-
mented more efficiently than the FFT. Here again, the FCFS
is significantly faster than the FFT for small values of K
found in VLSI layouts.

The speed-up achieved by FCFS over the FFT, shown in
Fig. 9, is similar for all considered layers. The M2 layer
shows a slightly higher speed-up because its vertex density
is lower than that of other layers. For all layers, the highest
speed-up found is for 1024 nm × 1024 nm tiles, for which
the FCFS is about three times faster than the FFT. In contrast,
the results for 128 nm × 128 nm and 256 nm × 256 nm
show only a modest speed-up of about 1.5. The peak
speed-up at 1024 nm × 1024 nm is most likely explained

by a more efficient cache usage at that size. However, further
investigation would be required to confirm that.

For all speed-up results, confidence intervals were com-
puted at the 95% level but found to be negligible and have
thus been omitted in this figures. However, they can be found
in Table 3, which contains average runtime values of all con-
sidered transforms, for the M1 layer divided into 1024 nm ×
1024 nm tiles, both per tile and for the whole layer. For the
127,544 tiles of M1, the runtime is found to be on average
about five times lower for the PCHT and three times lower
for the FCFS, respectively, than for their discrete counter-
parts. Although these numbers might at first glance seem
modest, the runtime is reduced from about 9 min for the
DHT to only 2 using the PCHT, whereas the FCFS runs
in 30 min instead of 1 h 40 min for the FFT. These are sig-
nificant time savings.

4 50 100 150 200 250 268
0

10

20

30

40

50

4 50 100 150 200 250 268
0

7.6

15.2

22.8

30.4

38

4 50 100 150 200 250 268
0

10

20

30

40

50

Empirical distribution

FFT − runtime (o), complexity (−)

FCFS − runtime

FCFS − complexity

((

Fig. 7 Median runtime (left y -axis, data points) and complexity (right y -axis, lines) of the FCFS (□,
dashed line) and FFT (°, solid line) of 1024 nm × 1024 nm tiles from the M1 layer containing K vertices.
We observe that the gap between the runtimes of the FCFS and the FFT is larger than that of their
respective complexities. The reason being that the pruned FFT can be implemented more efficiently
than the FFT as shown in Ref. 30.

128x128 256x256 512x512 1024x1024 2048x2048 4096x4096
1x
5x

10x

15x

20x

25x

30x

M1
M2
CA

s

Fig. 8 Speed-up of the average runtime provided by the PCHT on
layers M1 (×), M2 (♦), and CA (•). The higher the better. One
times speed-up means same performance as the DHT. We see
that PCHT is at least five times faster than the DHT. Confidence inter-
vals have been omitted in this figure as in the worst case they were
found to be within �0.06 of the value given, with 95% confidence.

128x128 256x256 512x512 1024x1024 2048x2048 4096x4096
1x

1.5x

2x

2.5x

3x

3.5x

M1
M2
CA

s

Fig. 9 Speed-up of the average runtime provided by the FCFS on
layers M1 (×), M2 (♦), and CA (•). The FFT is sampled on the 1-
nm grid. The higher the better. A speed-up of 1× means the same
performance as the FFT. We see that FCFS is at least 1.4 times faster
than the FFT. Confidence intervals have been omitted in this figure as
in the worst case they were found to be within �0.012 of the value
given with 95% confidence.

Table 3 Average runtime of the transforms of anM1 layer divided into
1024 nm × 1024 nm tiles. There are 127,544 nonempty tiles for a total
of 995,497 rectangles and 428,817 other polygons. Runtime per tile is
in μ-seconds. Total runtime is in seconds.

Average runtime (with 95% confidence intervals)

PCHT DHT FCFS FFT

Per Tile (μs) 919� 0.6 4375� 12.8 15;648� 10 47;341� 8

Total (s) 117.2� 0.2 558� 4.5 1996� 4 6038� 3

J. Micro/Nanolith. MEMS MOEMS 043008-9 Oct–Dec 2013 • Vol. 12(4)

Scheibler, Hurley, and Chebira: Fast continuous Fourier and Haar transforms of rectilinear polygons. . .

Simulation runs on different layouts, whose results we omit
for brevity, returned similar performance improvements.

4.3 Aerial Image Simulations

We simulate aerial image by applying the ideal filter Hðf; gÞ
in the frequency domain. The filter Hðf; gÞ ¼ 1 if f2 þ g2 ≤
ðNA∕λÞ and 0 otherwise. The parameters NA and λ are the
optical aperture and the light source wavelength, respec-
tively. In this simulation, we use NA ¼ 0.85 and λ ¼
193 nm. The light field on the wafer is then reconstructed
and thresholded at 0.7 to simulate the effect of etching. We
consider a 23 × 23 μm tile containing 50 polygons and an
ambient of 1 nm around them. The vertices of the polygons
lie on the 1-nm grid. The output images are sampled at

57 nm, that is, in that case, twice the Nyquist rate of the filter.
The resulting aerial images can be seen in Fig. 10.

For the FCFS, we use Proposition 1 to directly compute
only the frequencies within the pass-band area of the filter
Hðf; gÞ. The output aerial image is reconstructed by an
FFT-based method on a 57-nm grid. This output is thresh-
olded to simulate the effect of etching. Note that there is
no approximation used in this computation. The number
of operations used to compute the image is roughly 21 × 106.

For the FFT technique, we first raster the polygons into
57 × 57 nm pixels. The value of one pixel is the ratio of the
area of the intersection of the polygon and the pixel to the
area of the pixel itself. Note that this is a lossy operation that
decreases accuracy. We apply the FFT to the raster image,
zero out all spectral coefficients outside the pass-band
area of Hðf; gÞ, and finally an iFFT is used to compute
the output image. Again the output image is thresholded
to simulate the effect of etching. Ignoring the rasterization
operation, approximately 28 × 106 operations are necessary.
This contrasts with the approximately 76 × 109 operations
that would be needed if the mask was sampled on the 1-nm
grid to avoid losing accuracy through rasterization.

5 Conclusions and Future Work
We developed a framework for computing continuous trans-
forms of rectilinear polygons. We showed how this frame-
work is applied to PCHT and we developed FCFS, two
new fast algorithms for the computation of the continuous
Haar transform and CFS, respectively, of rectilinear poly-
gons. We showed that the polygon description can be
exploited by continuous transforms, resulting in significant
speed-up of the transform coefficients computation. The
complexity of each of the algorithms was obtained as a func-
tion of the number of polygon vertices. We implemented the
algorithms and performed extensive runtime measurements
on VLSI layouts. The speed-up of PCHT relative to DHT
was found to be at least five times for all considered layers
and tile sizes. A maximum speed-up of 30 times was
achieved in the case of the CA layer divided into 4096 nm ×
4096 nm tiles. FCFS showed least improvement for small
tile sizes where it is only 1.5 times faster than the FFT
sampled on the 1-nm grid. However, it showed a peak per-
formance for 1024 nm × 1024 nm tiles where it is over
three times faster than the FFT sampled on the 1-nm grid.
These speed-ups result in significant time savings due to

5 10 15 20

5

10

15

20

(a) (b)

5 10 15 20

20

15

10

5

(c)

5 10 15 20

20

15

10

5

Fig. 10 Aerial image simulation of the 23 × 23 μm tile shown in (a) using (b) FCFS and (c) FFT methods
(light wavelength λ ¼ 193 nm, numerical aperture NA ¼ 0.85, pixel size 57 × 57 nm, thresholding at 0.7
used to simulate etching). The simulation of (b) uses approximately 21 × 106 operations and does not use
any approximation. The simulation of (c) relies on a rasterized image of the polygons and needs roughly
28 × 106 operations.

Algorithm 3 TD-FFT 2-D ðV;S; L;Nx ; Ny Þ.

Require: Vectors V and S containing the nonzero inputs and their
locations, respectively, such that f ½S½2i�; S½2i þ 1�� ¼ V ½i�. L, the length
of V . Nx and Ny , the FFT lengths. FFT 2-D is an FFT routine.

Ensure: F is an Nx ×Ny matrix containing the Nx ×Ny FFT of the
sequence described by V and S.

1: for k1 ¼ 0 to Qx − 1 and l1 ¼ 0 to Qy − 1 do

2: for i ¼ 0 to L − 1 do

3: m←S½2i�, n←S½2i þ 1�

4: m2←mmod Px , n2←nmod Py

5: f k1;l1 ½m2; n2�←f k1;l1 ½m2; n2� þ V ½i�Wmk1
Nx

Wnl1
Ny

6: end for

7: Fk1;l1←FFT − 2Dðf k1;l1 ; Px ; Py Þ

8: for k2 ¼ 0 to Px − 1 and l2 ¼ 0 to Py − 1 do

9: F½k1 þQxk2; l1 þQy l2� ¼ Fk1;l1 ½k2; l2�

10: end for

11: end for

J. Micro/Nanolith. MEMS MOEMS 043008-10 Oct–Dec 2013 • Vol. 12(4)

Scheibler, Hurley, and Chebira: Fast continuous Fourier and Haar transforms of rectilinear polygons. . .

the magnitude of the problem at hand. We therefore conclude
that the PCHT and FCFS are superior to the DHT and FFT,
respectively, for rectilinear polygons in VLSI layouts.

We tested thus far the two algorithms on preOPC layouts.
Although the accuracy of our algorithms would clearly ben-
efit model-based OPC methods, postOPC layouts typically
have a higher vertex density, which slows down PCHT and
FCFS. Provisional tests have shown that the speed-up from
the continuous methods is significant, albeit slightly reduced.
OPC effects are an interesting topic in their own right, and
an extensive study will be performed as part of the future
work. Also, when using a given optical system which has
a low-pass filter with an effective Nyquist rate, carefully
down-sampling to reduce complexity is possible. Future
work would be to implement and test this combined with
FFT and FCFS.

While the Fourier transform is firmly embedded in the
computational lithography, the Haar transform has yet to
have any major applications. The next step will be to inte-
grate both algorithms in a practical VLSI tool chain and mea-
sure the impact, both in terms of speed-up and accuracy.
Another important work would be to generalize the algo-
rithm to work with more arbitrary polygons, such as those
with 45 deg edges. This can likely be done following a sim-
ilar approach to that of Sec. 3.1.

In a final toolset implementation, the methods described
require careful tuning as one would expect, and, given the
trend toward multicore architectures, a parallel implementa-
tion would be natural. Fortunately, both PCHT and FCFS are
designed with highly suitable structures for parallelization.
In addition to the mere implementation, the integration
into existing tools and tuning to other processes (e.g., resist,
etching) is likely to be a major challenge.

Appendix A: Inner Product with Rectilinear
Polygons
In this appendix, we prove Lemma 3.1. First, we define a
rectangle R by its lower left and upper right vertices

Rðx2;y2Þ
ðx1;y1Þ ¼ ½ðx; yÞjx1 ≤ x < x2; y1 ≤ y < y2�. As illustrated

in Fig. 2, it is possible to construct any rectilinear polygon
as union and difference of rectangles.

Proposition 2. Any rectilinear polygon P with K verti-
ces can be expressed by K∕2 disjoint rectangles, each with
a side lying on the x-axis

P ¼ ∪
fijxiþ1>xig

Rðxiþ1;yiÞ
ðxi;0Þ \ ∩

fijxiþ1g
Rðxi;yiÞ

ðxiþ1;0Þ; (12)

where ðxi; yiÞ is the i’th vertex, the indices are taken modulo
K and \ is the set difference operator. An equivalent result
exists for the case where a side is lying on the y-axis. The
next step is to compute the inner product of Eq. (3) on a tile
containing disjoint rectilinear polygons such as Eq. (4).

Proposition 3. If fTðx; yÞ is given by Eq. (4) and
ϕk;lðx; yÞ is a basis function, their inner product according
to Eq. (3) is

hfT;ϕk;li ¼
XM−1

m¼0

XKm∕2−1

i¼0

Z
ym;2i

0

Z
xm;2iþ1

xm;2i

ϕ�
k;lðx; yÞdxdy;

where ðxm;i; ym;iÞ is the i’th vertex, out of the Km, of them’th
polygon and i is taken modulo Km. Here, it is assumed with-
out loss of generality that for all mxm;0 ≠ xm;1.

Proof. By the linearity of the inner product and since the
polygons are disjoint, we have

hfT;ϕk;li ¼
XM−1

m¼0

hfPm
;ϕk;li ¼

XM−1

m¼0

ZZ
Pm

ϕ�
k;lðx; yÞdxdy:

(13)

Then, using Proposition 2, we split the integral over Pm into
Km∕2 integrals over rectangles. If xm;i < xm;iþ1, the integral
is positive and is added to the final result. If xm;i > xm;iþ1, the
integral is negative and is subtracted from the final result. If
xm;i ¼ xm;iþ1, the i’th term of the sum is zero.

Finally, the proof of Lemma 3.1 follows from
Proposition 3, the separability of ϕk;l and the fact thatPK∕2−1

i¼0 ½Ω�
kðx2iþ1Þ − Ω�

kðx2iÞ� ¼ 0 for rectilinear polygons
since the index i is cyclic and vertical edges cancel. ▯

Appendix B: 2-D Transform Decomposition
Fast Fourier Transform
We present briefly here the 2-D TD-FFT algorithm for a sub-
set of input points. This algorithm is a direct extension of
the 1-D TD-FFT found in the literature26 to the 2-D FFT.

Let f½m; n� ∈ C be a complex 2-D sequence with
m ¼ 0; : : : ; Nx − 1 and n ¼ 0; : : : ; Ny − 1. The 2-D FFT of
this sequence is

F½k; l� ¼
XNx−1

m¼0

XNy−1

n¼0

f½m; n�Wkm
Nx
Wln

Ny
; (14)

where WN ¼ e−j
2π
N , k ¼ 0; : : : ; Nx − 1 and l ¼ 0; : : : ;

Ny − 1. Assume that Nx and Ny are the composite and
there exist Px, Qx, Py, and Qy such that Nx ¼ PxQx and
Ny¼PyQy. Define the following variable substitutions:m ¼
Pxm1 þm2, k ¼ k1 þQxk2 with m1, k1 ¼ 0; : : : ; Qx − 1
and m2, k2 ¼ 0; : : : ; Px − 1, and similarly n ¼ Pyn1 þ n2,
l ¼ l1 þQyl2 with n1, l1 ¼ 0; : : : ; Qy − 1 and n2, l2 ¼
0: : : ; Py − 1. Substituting m, k, n, and l in Eq. (14) and
rearranging the sums we obtain

Fk1;l1 ½k2; l2� ¼
XPx−1

m2¼0

XPy−1

n2¼0

fk1;l1 ½m2; n2�Wk2m2

Px
Wl2n2

Py
; (15)

which is a Px × Py 2-D FFT, where

fk1;l1 ½m2; n2� ¼
XQx−1

m1¼0

XQy−1

n1¼0

f½Pxm1 þm2; Pyn1

þ n2�Wk1ðPxm1þm2Þ
Nx

W
l1ðPyn1þn2Þ
Ny

(16)

J. Micro/Nanolith. MEMS MOEMS 043008-11 Oct–Dec 2013 • Vol. 12(4)

Scheibler, Hurley, and Chebira: Fast continuous Fourier and Haar transforms of rectilinear polygons. . .

and

Fk1;l1 ½k2; l2� ¼ F½k1 þQxk2; l1 þQyl2� ¼ F½k; l�.

When only a small subset of the input is nonzero, a sig-
nificant reduction in complexity can be achieved by comput-
ing Eq. (16) directly, and then using a 2-D FFT for Eq. (15).
The reduction is due to very few terms being nonzero in the
sum in Eq. (16). By carefully choosing Px and Py, the exe-
cution time can be minimized. In the original paper,26 the
number of operations is minimized by optimizing analyti-
cally the computational complexity. This approach does not
work well for minimizing execution time on modern com-
puter architectures due to the cost of memory transfers
not being accounted for in the computational complexity.29

Instead, we experimentally found the optimal Px and Py by
measuring the execution time for a large range of input and
FFT sizes using the different decomposition factors. The
algorithm is described in Algorithm 3. The inputs to the algo-
rithm are a sparse array containing the nonzero coefficients,
not necessarily in order, along with the FFT lengths Nx
and Ny.

If the input is real-valued, the computational complexity
of the algorithm can be roughly halved by performing only
the computations for l1 ¼ 0; : : : ; bQy∕2c þ 1 (or k1 con-
versely) and using the conjugate symmetry to compute
the missing outputs.

Acknowledgments
The authors thank Markus Püschel for providing useful advice
on the FFTand pruned FFTand Paolo Ienne for kindly review-
ing our paper and providing invaluable feedback.

References

1. C. Mack, Fundamental Principles of Optical Lithography: The Science
of Microfabrication, Wiley, Chichester (2008).

2. A. K. K. Wong, Resolution Enhancement Techniques in Optical
Lithography, SPIE Press, Bellingham, Washington (2001).

3. A. E. Rosenbluth et al., “Optimum mask and source patterns to print a
given shape,” Proc. SPIE 4346, 486–502 (2001).

4. A. Poonawala, P. Milanfar, and D. G. Flagello, “OPC and PSM design
using inverse lithography: a nonlinear optimization approach,” Proc.
SPIE 6154, 61543H (2006).

5. F. M. Schellenberg and B. W. Smith, “Resolution enhancement technol-
ogy: the past, the present, and extensions for the future,” Proc. SPIE
5377, 1–20 (2004).

6. International Technology Roadmap for Semiconductors, “2007 edition,”
http://www.itrs.net/Links/2007ITRS/2007_Chapters/2007_Lithography
.pdf (2007).

7. J. W. Goodman, Introduction to Fourier Optics, 3rd ed., Roberts &
Company, Greenwood Village (2004).

8. R. Nasser and P. Hurley, “On the accuracy of different Fourier trans-
forms of VLSI designs,” Proc. SPIE 8683, 868319 (2013).

9. K. Kryszczuk, P. Hurley, and R. Sayah, “Direct printability prediction in
VLSI using features from orthogonal transforms,” in Proc. of the IAPR
Int. Conf. on Pattern Recognition, pp. 2764–2767, IEEE, Istanbul,
Turkey (2010).

10. M. E. Haslam et al., “Two-dimensional Haar thinning for data base com-
paction in Fourier proximity correction for electron beam lithography,”
J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct.–Process.
Meas. Phenom. 3(1), 165–173 (1985).

11. X. Ma and G. R. Arce, “Generalized inverse lithography methods for
phase-shifting mask design,” Opt. Express 15(23), 15066–15079
(2007).

12. R. Scheibler, P. Hurley, and A. Chebira, “Pruned continuous Haar
transform of 2D polygonal patterns with application to VLSI layouts,”
in Proc. of the 2010 IRAST Int. Cong. on Comp. App. and

Computational Science (CACS 2010) pp. 984–987, IRAST,
Singapore (2010).

13. N. B. Cobb, “Fast optical and process proximity correction algorithms
for integrated circuit manufacturing,” PhD Thesis, University of
California, AAI9902038 (1998).

14. D. G. L. Chow et al., “An image processing approach to fast, efficient
proximity correction for electron beam lithography,” J. Vac. Sci.
Technol. B: Microelectron. Nanometer Struct.–Process. Meas.
Phenom. 1(4), 1383–1390 (1983).

15. J. F. Chen et al., “Development of a computational lithography road-
map,” Proc. SPIE 6924, 69241C (2008).

16. S. W. Lee and R. Mittra, “Fourier transform of a polygonal shape func-
tion and its application in electromagnetics,” IEEE Trans. Antennas
Propag. 31(1), 99–103 (1983).

17. F. L. Chu and C. F. Huang, “On the calculation of the Fourier transform
of a polygonal shape function,” J. Phys. A 22(14), L671–L672 (1989).

18. L. Brandolini, L. Colzani, and G. Travaglini, “Average decay of Fourier
transforms and integer points in polyhedra,” Ark. Mat. 35(2), 253–275
(1997).

19. Y. M. Lu, M. N. Do, and R. S. Laugesen, “A computable Fourier
condition generating alias-free sampling lattices,” IEEE Trans. Signal
Process. 57(5), 1768–1782 (2009).

20. M. Vetterli, J. Kovačević, and V. K. Goyal, “The world of Fourier
and wavelets: theory, algorithms and applications,” http://www
.fourierandwavelets.org/ (2009).

21. S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way, 3rd
ed., Academic Press, Burlington (2008).

22. N. U. Ahmed and K. R. Rao, Orthogonal Transforms for Digital Signal
Processing, Springer-Verlag, New York (1975).

23. F. P. Preparata and M. I. Shamos, Computational Geometry: An
Introduction, Springer-Verlag, New York (1985).

24. J. W. Cooley and J. W. Tukey, “An algorithm for the machine calcula-
tion of complex Fourier series,” Math. Comput. 19(90), 297–301
(1965).

25. G. Goertzel, “An algorithm for the evaluation of finite trigonometric
series,” Am. Math. Mon. 65(1), 34–35 (1958).

26. H. Sorensen and C. Burrus, “Efficient computation of the DFTwith only
a subset of input or output points,” IEEE Trans. Signal Process. 41(3),
1184–1200 (1993).

27. M. Medina-Melendrez, M. Arias-Estrada, and A. Castro, “Input and/or
output pruning of composite length FFTs using a DIF-DIT transform
decomposition,” IEEE Trans. Signal Process. 57(10), 4124–4128
(2009).

28. P. Duhamel and H. Hollmann, “Split radix FFT algorithm,” Electron.
Lett. 20(1), 14–16 (1984).

29. M. Frigo and S. Johnson, “The design and implementation of FFTW3,”
Proc. IEEE 93(2), 216–231 (2005).

30. F. Franchetti and M. Püschel, “Generating high performance pruned
FFT implementations,” in IEEE Int. Conf. on Acoustics, Speech and
Signal Processing, pp. 549–552, IEEE, Taipei (2009).

Robin Scheibler is a PhD student at the Laboratory for Audio-
visual Communications (LCAV), École Polytechnique Fédérale de
Lausanne (EPFL). He holds the BS and MS in communication sys-
tems from EPFL. After graduating in 2009, he worked as a research
engineer at IBM Research Zürich until 2010, and then at NEC
Research Laboratories, Kawasaki, until 2012.

Paul Hurley is a research staff member at IBM Research in Zurich,
Switzerland. He holds a PhD in communication systems from École
Polytechnique Fédérale de Lausanne (EPFL), and BSc in mathemati-
cal and computer science from NUI Galway, Ireland. He has worked
as a design engineer at Videologic and DEC. His research interests
include signal processing in lithographic systems, information and
communications theory, and computer networking.

Amina Chebira is a senior research and development engineer
at the Swiss Center for Electronics and Microtechnology (CSEM),
Switzerland. She holds a BS in mathematics (Paris 7) and the BS
and MS in communication systems from École Polytechnique
Fédérale de Lausanne. In 2008, she obtained the PhD degree and
the research award from the Biomedical Engineering Department,
Carnegie Mellon University. She then held a postdoctoral position
at LCAV, EPFL until 2012. Her research interests include frame
theory and design, biomedical signal and image processing, pattern
recognition, and filterbanks.

J. Micro/Nanolith. MEMS MOEMS 043008-12 Oct–Dec 2013 • Vol. 12(4)

Scheibler, Hurley, and Chebira: Fast continuous Fourier and Haar transforms of rectilinear polygons. . .

http://dx.doi.org/10.1117/12.435748
http://dx.doi.org/10.1117/12.655904
http://dx.doi.org/10.1117/12.655904
http://dx.doi.org/10.1117/12.548923
http://www.itrs.net/Links/2007ITRS/2007_Chapters/2007_Lithography.pdf
http://www.itrs.net/Links/2007ITRS/2007_Chapters/2007_Lithography.pdf
http://www.itrs.net/Links/2007ITRS/2007_Chapters/2007_Lithography.pdf
http://www.itrs.net/Links/2007ITRS/2007_Chapters/2007_Lithography.pdf
http://dx.doi.org/10.1117/12.2011481
http://dx.doi.org/10.1116/1.583202
http://dx.doi.org/10.1116/1.583202
http://dx.doi.org/10.1364/OE.15.015066
http://dx.doi.org/10.1116/1.582705
http://dx.doi.org/10.1116/1.582705
http://dx.doi.org/10.1116/1.582705
http://dx.doi.org/10.1117/12.773060
http://dx.doi.org/10.1109/TAP.1983.1142981
http://dx.doi.org/10.1109/TAP.1983.1142981
http://dx.doi.org/10.1088/0305-4470/22/14/003
http://dx.doi.org/10.1007/BF02559969
http://dx.doi.org/10.1109/TSP.2009.2013904
http://dx.doi.org/10.1109/TSP.2009.2013904
http://www.fourierandwavelets.org/
http://www.fourierandwavelets.org/
http://www.fourierandwavelets.org/
http://dx.doi.org/10.1090/S0025-5718-1965-0178586-1
http://dx.doi.org/10.2307/2310304
http://dx.doi.org/10.1109/78.205723
http://dx.doi.org/10.1109/TSP.2009.2024855
http://dx.doi.org/10.1049/el:19840012
http://dx.doi.org/10.1049/el:19840012
http://dx.doi.org/10.1109/JPROC.2004.840301

