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Abstract

According to the principles of embodied cognition, intelli-
gent behavior must arise out of the coupled dynamics of an
agent’s brain, body, and environment. This suggests that the
morphological complexity of a robot should scale in relation
to the complexity of its task environment. This idea is sup-
ported by recent work, which demonstrated that when evolv-
ing robot morphologies in simple and complex task environ-
ments more complex robot morphologies do tend to evolve in
more complex task environments. Here this idea is extended
to examining the mechanical complexity of evolved robots.
Counter to intuition it is found that the mechanical complex-
ity decreases in more complex task environments.

Introduction
Proponents of embodied cognition posit that intelligent be-
havior is a product of the coupled dynamics between an
agent’s brain, body, and environment (Brooks, 1999; Ander-
son, 2003; Pfeifer and Bongard, 2006; Beer, 2008). Accord-
ingly, the complexity of an agent’s brain (control policy) as
well as its physical body (morphology) should vary in pro-
portion to the complexity of its task environment. Study-
ing this hypothesis can be approached in several ways. One
can investigate the relationship between control and mor-
phology, as was done by Paul (Paul, 2006), and one can
also study the relationship between task environment and
morphology which is less well understood. In recent work
(Auerbach and Bongard, 2012) we began to investigate this
latter relationship by studying how the shape complexity of
robot body parts varied when robots were evolved in more or
less complex task environments. Here, that work is extended
by studying a different aspect of morphological complex-
ity: mechanical complexity, a function of the mechanical
degrees of freedom of evolved robots.

The experiments presented in this paper fall within the
domain of evolutionary robotics (ER) (Harvey et al., 1997;
Nolfi and Floreano, 2000). In general ER refers to the prac-
tice of employing evolutionary algorithms for the purpose
of creating robot control policies and/or morphologies. In
the majority of ER studies, control strategies are evolved for
human designed or bio-mimicked robot body plans, but it is

also possible to use evolutionary algorithms to create com-
plete robots: placing not only robot control strategies under
evolutionary control, but the robots’ physical morphologies
as well. Evolving morphology, in addition to control policy,
allows for the discovery of body plans uniquely suited to a
machine’s given task environment and presents a systematic
way to study the relationship between a robot’s morphology
and the task environment in which it evolved.

The idea of placing both the morphologies and controllers
of robots acting in virtual environments under evolutionary
control was first introduced by Sims (Sims, 1994). Sims’
work has been followed by subsequent studies (e.g. Lund
and Lee (1997); Adamatzky et al. (2000); Mautner and
Belew (2000); Lipson and Pollack (2000); Hornby and Pol-
lack (2001a); Komosinski and Rotaru-Varga (2002); Stan-
ley and Miikkulainen (2003); Eggenberger (1997); Bongard
and Pfeifer (2001); Bongard (2002); Auerbach and Bongard
(2010a, 2011)) which also explored evolving the morpholo-
gies and control policies of simulated machines in virtual
environments. These studies each had different methodolo-
gies and focuses, and the current work differs in a number
of important ways.

The most visible ways in which the current study differs
from all of these previous studies are (a) how morphologi-
cal components are modeled and (b) the task environments
within which robots evolve. In the majority of previous
studies morphologies were built out of interconnected ge-
ometric primitives such as cuboids or spheres. These com-
ponents are easy to model, but severely limit how complex
an evolving morphology may become, and therefore restrict
what task environments an evolved robot is able to succeed
in. This was not a problem for the majority of earlier stud-
ies as they commonly restricted themselves to evolving lo-
comotion over flat terrain: maximizing the distance that a
robot can displace itself within a given amount of evaluation
time. Here, however, more complex task environments are
investigated that require the creation of more complex mor-
phologies. Therefore, morphologies should be modeled in
a manner which does not have such a low ceiling of com-
plexity. Specifically, in the current work, morphologies are



Figure 1: The simple flat ground control task environment
(upper left) and three of the experimental task environ-
ments with robots that evolved to locomote in each. The
ground is a high friction surface, while the blue “blocks
of ice” have very low friction. Videos of these robots in
action are available online at http://tinyurl.com/
ALife13-Videos

composed of a number of triangular meshes (trimeshes).
Trimeshes can model arbitrary shapes and thus allow for
the creation of more complex morphologies than is possible
with cuboids or spheres (see Figure 1 for examples).

The current study also differs from much previous work
in this domain in the manner by which the robots’ genomes
are encoded and evolved. Morphologies in the current work
are encoded with Compositional Pattern Producing Network
(CPPN) genomes (Stanley, 2007) which are evolved using
CPPN-NEAT: an extension of the widely used NeuroEvo-
lution of Augmenting Topologies (NEAT) algorithm (Stan-
ley and Miikkulainen, 2001). CPPNs are a form of indi-
rect encoding inspired by developmental biology possessing
many advantages over other encodings (for more details see
(Stanley, 2007; Stanley et al., 2009; Clune et al., 2009a,b;
Auerbach and Bongard, 2010b,a, 2011)). This is particu-
larly true for robot morphologies as it has been shown previ-
ously (Hornby and Pollack, 2001b; Komosinski and Rotaru-
Varga, 2002) that generative and developmental encodings
have demonstrable benefits over direct encodings in this do-
main.

Following the methods introduced in (Auerbach and Bon-
gard, 2012), here robots are evolved not only to locomote
over flat terrain, but to locomote in a number of more com-
plex, icy task environments as well. However, while in that
study robots were restricted to having two mechanical de-
grees of freedom, here robots are allowed more flexibility
in their construction including the ability to utilize a greater
number of degrees of freedom. How the robots evolve to

use (or not use) these additional degrees of freedom in dif-
ferent task environments is the main object of study. Here
we define mechanical complexity to be the number of me-
chanical degrees of freedom in an evolved robot. This form
of complexity can be considered an aspect of morphologi-
cal complexity, but as will be shown, mechanical complex-
ity is an orthogonal direction of complexity to the type of
morphological complexity discussed in (Auerbach and Bon-
gard, 2012), and provides additional insight into the rela-
tionship between task environments and the robots evolved
inside them.

The rest of this paper is laid out as follows: first the CPPN
encodings are described in more detail including how they
evolve and how actuated robots are produced from them.
Following this the simulated task environments in which
robots are evolved are described including a brief discus-
sion of previous experiments in these task environments
and why the particular task environments employed here
were chosen. Next, results are presented demonstrating how
the mechanical complexity of evolved robots varies across
these different task environments with counterintuitive re-
sults. This is followed by a discussion of these results and
what conclusions may be drawn from them.

Methods
CPPNs

As mentioned in the introduction this study employs Com-
positional Pattern Producing Networks (CPPNs) for the pur-
pose of encoding populations of evolving robots. CPPNs
may be considered a form of artificial neural network
(ANN). However, while traditional ANNs are often used as
control policies for evolved robots, CPPNs are more often
used as genomes for producing some other object of inter-
est. Past work has employed CPPN genomes to evolve pic-
tures (Stanley, 2007), 3D structures (Auerbach and Bongard,
2010b; Clune and Lipson, 2011), robot morphologies (Auer-
bach and Bongard, 2010a, 2011) or traditional ANNs them-
selves (Stanley et al., 2009; Clune et al., 2009a; Verbancsics
and Stanley, 2011). Here CPPNs are similarly employed to
produce actuated robot morphologies.

CPPNs differ from traditional ANNs in several other im-
portant ways. While traditional ANNs typically use the
same activation function (such as a sigmoid or a step func-
tion) at every node, CPPN nodes can take on one of several
activation functions from a predefined set. This set typically
contains functions that are symmetric such as Gaussian as
well as repetitive functions such as sine or cosine. Using
functions with these properties allows CPPNs to produced
outputs with properties commonly seen in natural systems:
symmetry, repetition, and repetition with variation. A more
thorough discussion of CPPNs and their properties is beyond
the scope of this paper. More details are available elsewhere
in the literature (Stanley (2007) for example).



Evolutionary Algorithm
Similar to most other studies employing CPPN genomes,
the CPPN-NEAT (Stanley, 2007) evolutionary algorithm is
employed to evolve CPPNs in this work. In CPPN-NEAT
the state of the art NeuroEvolution of Augmenting Topolo-
gies (NEAT) (Stanley and Miikkulainen, 2001) algorithm
for neuro-evolution is extended to evolve CPPNs. In this
algorithm the CPPNs in the initial population are created to
be minimally complex. That is, initially the networks do not
have any internal or hidden nodes. Over evolutionary time
the complexity of networks in the population is allowed to
gradually increase through the creation of additional nodes
and links. Often adding additional components to an evolv-
ing network will cause the fitness of its phenotype to de-
crease. NEAT compensates for this by dividing the popu-
lation into “species” thus allowing novel structural innova-
tions time to mature and promoting genotypic diversity to
prevent pre-mature convergence to local optima. For a com-
plete description of how NEAT and CPPN-NEAT work, and
further discussion of their beneficial properties, the reader is
directed to (Stanley and Miikkulainen, 2001; Stanley, 2007).

Building Robots from CPPNs
Recently (Auerbach and Bongard, 2012) we introduced a
system for using CPPNs to create actuated robot morpholo-
gies composed of triangular mesh components, which is
extended here. This method differs from previous studies
(Auerbach and Bongard, 2010a, 2011) where robots were
constructed from evolving CPPNs by attaching spherical
components to each other by means of an iterated growth
procedure. While these earlier studies produced promising
results, the methods they employed have several undesirable
properties. The extra indirection created by the growth pro-
cedure used there prevents many of the desirable features of
CPPNs (discussed above) from being realized in the mor-
phologies they produce. Additionally, while it is easy to
physically simulate spheres as they have single points of
contact, it is possible to create much more complex mor-
phologies using trimeshes.

Trimeshes do require more computational resources to
simulate however, as they do not have such simple contact
models as spheres, and require the use of smaller simulation
step sizes to be stable in the task environments investigated
here. However, all experiments described in this paper were
carried out on a 7.1 teraflop supercomputing cluster1, thus
making these simulations feasible.

As opposed to employing a growth procedure to cre-
ate morphologies from CPPNs the current study employs a
voxel based method to create morphologies out of trimesh
components. This is similar to what is done for the creation
of 3D shapes in (Clune and Lipson, 2011). A regular grid is

1The Vermont Advanced Computing Core (VACC),
http://www.uvm.edu/vacc

placed over a region of 3D-space which defines the presence
of voxel locations. In the current work this region extends
from−1 to 1 (inclusive) in each dimension and grid lines are
placed at intervals of 0.2. This yields a total of 11 grid lines
in each dimension for a total of 1331 voxels, this is the same
discretization that was applied in (Auerbach and Bongard,
2012).

A candidate CPPN is iteratively queried with the (x, y, z)
Cartesian coordinates at every voxel location except for the
extrema in each direction. Voxel locations that exceed a pre-
defined output threshold (0.5 in this case) are considered to
contain matter, while those that do not exceed this threshold
are considered to be devoid of matter. All voxels lying on
one of the extrema (|x| = 1 or |y| = 1 or |z| = 1) are given
output value 0 to ensure that the final triangular meshes have
completely enclosed surfaces. Once the CPPN has been
queried for every voxel location, the Marching Cubes al-
gorithm (Lorensen and Cline, 1987) is employed to create
triangular meshes from the underlying voxel data. Specif-
ically an enclosed triangular mesh is created for each con-
nected voxel component which defines the exterior surface
of a single physical shape. These triangular meshes are sent
to the physics simulator where they define the exterior sur-
faces of solid objects and are imbued with mass. As far as
the authors are aware prior to (Auerbach and Bongard, 2012)
physically simulating evolved, rigid body robots composed
of triangular meshes had not been previously reported in the
literature.

Our previous work concerned itself with investigating
how different task environments affect the shapes of evolved
morphologies. To accomplish this goal a single enclosed
trimesh component out of the many possibly produced from
a CPPN was selected and then reflected and copied in or-
der to form a bilaterally symmetric, two mechanical degree
of freedom, actuated robot. Here, however, the primary ob-
ject of study is the mechanical complexity of the evolved
robots, so more components are needed. The current sys-
tem requires that a candidate CPPN produce at least two en-
closed trimesh components. The two largest components A
andB are then selected to produce an actuated robot. This is
done as follows. First the vertices a ∈ V (A) and b ∈ V (B)
are found that minimize

| ~ab| ∀(a, b) ∈ V (A)× V (B)

where V (A), V (B) are the vertices of A,B respectively.
Next, the component with larger minimum z-coordinate of
A,B is translated along ~ab (or ~ba) until it is 0.2 units away
from the other component, and the two components are con-
nected together via an intermediary capsule (capped cylin-
der) of length 0.2 units and radius 0.1 with major axis de-
fined by ~ab. The trimesh components may connect via this
intermediary capsule by means of two joints, each being a
single degree of freedom rotational (hinge) joint. These joint
will have rotation normals determined by ~ab. Specifically



Parameter Name Symbol Range of allowed values Interpretation
Enable Flag f [0.0, 1.0] If f > 0.5, then the corresponding joint is enabled, else disabled.
Amplitude a [0.25, 0.75] If the joint is enabled, then it is actuated by an oscillation between

−aπ and aπ radians, additionally the joints range of motion
is restricted to this range.

Period p [250.0, 1500.0] If the joint is enabled, then its oscillation will have a period
of p simulation time steps

Phase Shift s [−1.0, 1.0] If the joint is enabled, then its oscillation will be offset from the
global oscillation by s periods

Table 1: Description of the four floating point parameters evolved for each of the six potential mechanical degrees of freedom.

two rotation normals that are orthogonal to each other and
orthogonal to ~ab are chosen. Since these two joints effec-
tively define a universal joint, the specific normals are unim-
portant as long as they are orthogonal to each other and to
~ab, so the first ~n1 is chosen arbitrarily (but consistently) to be
orthogonal to ~ab and the second ~n2 is computed as ~ab× ~n1.

Once the two trimesh components are connected together
with their intermediary capsule the whole object including
the connecting joints is reflected across the x-axis as was
done with the single trimesh component in (Auerbach and
Bongard, 2012). These objects are then spread apart by 0.2
units and once again connected by a capsule of this length.
This capsule has its major axis along the y-axis of the co-
ordinate system and connects the two objects at their clos-
est points. These objects each connect to this capsule by
means of hinge joints. These joints have rotation normals of
(1, 0, 0) and (0, 0,−1) such that the joints rotate through the
robot’s coronal and sagitall planes respectively. Reflecting
and copying the object in this manner ensures that the robots
are bilaterally symmetric, which makes locomotion easier,
while using two evolved trimesh components instead of the
one used in prior work allows for a much greater number of
morphologies and locomotion strategies. The two compo-
nents within each half of the robot may connect in any ori-
entation, and the robots may now have up to six mechanical
degrees of freedom.

In addition to the trimesh producing CPPNs, each robot
genome possesses a number of additional parameters that
are directly encoded as was done in (Auerbach and Bon-
gard, 2012). These parameters are stored as floating point
values and are used to determine aspects of the control pol-
icy as well as mechanical properties of the evolving robots.
Principally, there are six parameters, one for each potential
mechanical degree of freedom that act as flags for enabling
or disabling a given joint. If a joint is disabled it is replaced
with a rigid connection and the remainder of the control pa-
rameters relating to that joint are ignored. However, if a
joint is enabled it is actuated by means of a coupled oscil-
lator parameterized by its amplitude, period, and phase shift
from a global sinusoidal pattern generator. This results in
the complete genomes being composed of a CPPN plus a 24-
dimensional floating point array (four parameters for each of

the six potential degrees of freedom). These floating point
values are recombined and mutated in the same manner as
CPPN link weights with mutation magnitudes scaled by the
range of values for that parameter. Additionally, crossover
on these vectors is possible in all instances of sexual re-
production since every individual contains a vector of the
same dimensionality. These parameters, their ranges, and
their meanings are detailed in Table 1. Each parameter has a
mutation probability of 0.1, same as used in (Auerbach and
Bongard, 2012).

Allowing each degree of freedom to be enabled or dis-
abled in this manner allows evolution to adjust the number
of mechanical degrees of freedom as necessary and therefore
be able to tune the mechanical complexity of the evolved
robots. Moreover, encoding the control parameters in this
fashion is done to keep the controllers as simple as possi-
ble so that fitness is primarily dictated by the morphologies
of the robots while at the same time allowing for diverse
enough behavior so that the robots can succeed in the differ-
ent task environments investigated.

Selecting desirable robots
A candidate robot, including two enclosed triangular
meshes, joint enable flags, and accompanying control pa-
rameters are sent to a physics simulator2 and allowed to
act for a fixed number of simulation time steps. Similar to
(Auerbach and Bongard, 2012) robots are allowed to move
for T = 12500 time steps. While this is a much greater num-
ber of time steps than has been employed in earlier studies
(e.g. 2500 in (Auerbach and Bongard, 2011)) it is chosen in
order to simulate a comparable amount of real world time.
The reason such a large T is necessary is because a very
small step size of 0.001s is used in this work. This small
step size is necessary to stably simulate the sorts of simu-
lated robots employed here in complex environments.

After the robot has completed its time in the simulator
its fitness is calculated. This fitness calculation is exactly
the same used in (Auerbach and Bongard, 2012). It is de-
signed to prevent evolution from “cheating” as it often does

2Simulations are conducted in the Open Dynamics Engine
(http://www.ode.org), a widely used open source, physi-
cally realistic, simulation environment.



Figure 2: Results from (Auerbach and Bongard, 2012). (Left) Mean distance achieved (in arbitrary ODE units) by best
individual in final generation taken across 100 independent runs in each of 49 experimental task environments investigated
there. For comparison the mean distance achieved from 100 independent runs in a flat ground control task environment was 5.09
units. (Right) The ways in which morphologies from experimental environments were more, less, or equally complex (entropic)
compared to those evolved in the control task environment. The more complex experimental task environments tended to
select for more complex morphologies: there were many experimental task environments where significantly more complex
morphologies evolved, while only one experimental task environment selected for significantly less complex morphologies. All
p-values were calculated using the Mann-Whitney U test. Figure taken from (Auerbach and Bongard, 2012)

with naı̈ve fitness functions. While a detailed explanation
of the ways in which evolution may “cheat” different fit-
ness functions is provided in that paper, here we simply
state that fitness is calculated as min p(T )x − max p(0)x
where min p(T )x is the minimum x-coordinate of any point
on the robot at time T , and max p(0)x is the maximum x-
coordinate of any point on the robot at the start of the evalu-
ation.

Using this method of fitness evaluation robots are evolved
with CPPN-NEAT for 500 generations with a population
size of 150 individuals. The implementation of CPPN-
NEAT including its parameter settings and CPPN activations
functions are the same as employed in (Auerbach and Bon-
gard, 2012).

Choosing task environments
Previously, with the robots composed of a single enclosed
trimesh that was reflected and copied, we explored evolving
robots in a large number of task environments with the goal
of studying how morphological complexity varies in rela-
tion to environmental complexity. These task environments
consisted of a control environment with flat, high friction
ground similar to that used in many other studies, and exper-
imental task environments with an infinite series of low fric-
tions rectangular solids, or “blocks of ice”, fixed in place on
top of the ground. These “ice blocks” were constructed such
that it was impossible for a robot to gain purchase by mov-
ing over their upper surfaces but needed instead to reach into
the gaps between the blocks to propel themselves forward.
This required the evolution of morphologies with appropri-

ate physical forms. A large number of these icy task environ-
ments were explored varying according to two parameters:
the height of the blocks and the spacing between the blocks.
While the relative complexities of different icy environments
were not considered, all the icy environments are consid-
ered to be more complex than flat ground because they have
greater Kolmogorov Complexity (Kolmogorov, 1965).

Figure 2 revisits these results. It shows, for robots evolved
in that work, both how mean fitness varied across task envi-
ronments and how the evolved robot morphologies differed
in complexity when compared to those evolved to locomote
in the flat ground, control, environment3. These results are
employed here to select task environments for investigation
with the current system.

Robots evolved with the current system, employing two
trimesh components and three capped cylinders with up to
six actuated mechanical degrees of freedom, are slower to
simulate than those evolved previously. Due to this slow-
ness, and additional time constraints, it was not possible to
experiment with evolving robots in all 50 task environments
previously investigated. In lieu of that, robots in the current
study are evolved in the flat ground control environment plus
five experimental environments. These five experimental en-
vironments are chosen based on previous results to be those

3The measure used for comparing morphological complexities,
H∆, is a measure of shape complexity based on Shannon Entropy
(Shannon, 1948) that has been previously shown to correlate with
human intuitions of complexity (Page et al., 2003; Sukumar et al.,
2008). The reader is referred to (Auerbach and Bongard, 2012) for
a description of this measure.



within which robots could be successful and which selected
for the most morphologically complex robots (see Figure 2).
Specifically the five environments chosen are: blocks of ice
0.8 units tall spaced by 0.05 units (Environment 1), blocks
of ice 0.05 units tall spaced by 0.025 units (Environment 2),
blocks of ice 1.6 units tall spaced by 0.1 units (Environment
3), blocks of ice 1.6 units tall spaced by 0.05 units (Envi-
ronment 4), and blocks of ice 0.2 units tall spaced by 0.05
units (Environment 5). These five task environments cover a
variety of these parameters and should be a good sampling
of the overall parameter space.

Results
For each of the six task environments investigated: the con-
trol plus five experimental task environments, 50 indepen-
dent experimental runs of CPPN-NEAT were conducted4.
As can be seen in Figure 3, in each environment studied this
system is capable of evolving robots that successfully loco-
mote in the desired direction. Though, due to using the same
number of evaluations in an enlarged search space the robots
produced in the final generations here tend not to locomote
as far as those evolved previously (compare to the left of Fig-
ure 2). However, the absolute performance of these robots is
not of primary interest in this paper.

Of greater concern is how the mechanical complexity of
the evolved robots varies from the simple control environ-
ment to the more complex experimental task environments.
Towards this aim Figure 4 plots the mean number of me-
chanical degrees of freedom that robots evolved to use in
each task environment. Counter to intuition the simple task
environment actually selects for more mechanically com-
plex robots: the robots evolved in the simple task environ-
ment have significantly more mechanical degrees of free-
dom on average, than those evolved in each of the five com-
plex task environments. This is corroborated by Figure 5
which shows that the flat ground task environment not only
selects for a greater number of mechanical degrees of free-
dom but that the degrees of freedom that are selected for
have a significantly greater range of motion on average than
the degrees of freedom in robots evolved in each of the more
complex experimental task environments.

Discussion
Why is it that the same task environments which have been
shown to select for greater complexity of morphological
components select for reduced mechanical complexity? In-
tuitively these two forms of complexity should be correlated,
but this is clearly not the case here. One hypothesis is that
the reduction of mechanical complexity in the icy task en-
vironments is due to them being more difficult than the flat

4While 50 runs were started for each task environment, a small
number of runs failed to complete for each of the experimental task
environments. The results reported here only include those runs
that completed successfully.

Figure 3: Mean distances by generation achieved by robots
evolved in the control environment (red) and each of the five
experimental task environments (env. 1 blue dashes, env. 2
blue dash-dots, env. 3 black dashes, env. 4 black dash-dots,
env. 5 black dots).

Figure 4: Mean number of mechanical degrees of freedom
with standard errors for robots evolved in each task environ-
ment. Robots evolved in each of the icy task environments
have significantly fewer mechanical degrees of freedom than
those evolved in the control environment, p-values < 0.001
in all cases (Mann-Whitney U test).

ground task environment. As can be seen in Figure 3 robots
are not able to evolve to locomote as far in the icy task en-
vironments as they are on flat ground. This suggests there
may be fewer ways to succeed in the icy task environments,
and if it is easier to succeed with less mechanical complexity
than there will be selection pressure in that direction. Mean-
while, if flat ground is an easier task environment regard-
less of mechanical complexity there will be little selection
pressure on the number of degrees of freedom of the robots
evolved there. However, if this is the case, one would expect
each degree of freedom of robots evolved on flat ground to
be enabled or disabled with equal probability. But, from
looking at Figure 4 it can be seen that this is clearly not the
case. Robots evolved in the flat ground task environment



Figure 5: Mean range of motion in radians taken across each
enabled joint (mechanical degree of freedom) with stan-
dard errors. Robots evolved in each of the icy task envi-
ronments have significantly smaller ranges of motion than
those evolved in the control environment. * denotes p-values
< 0.05, ** denotes p-values < 0.01, and *** denotes p-
values < 0.001 (Mann-Whitney U test).

have a significantly greater number of degrees of freedom
than the three that would be expected by equal probability.

Another hypothesis is that there is simply an advantage to
having less mechanical complexity in the icy task environ-
ments investigated. Succeeding in these environments in-
volves reaching into the gaps between blocks in order to gain
purchase, and then coming out of the gaps in order to move
forward. Since the robots evolved in this work are all driven
by open loop controllers, they have no way of sensing when
they are in the gaps or not. It may be that extra mechanical
degrees of freedom make it more difficult for the robot to get
out of its own way as it traverses the environment. In other
words extra mechanical degrees of freedom driven by a si-
nusoidal control signal cause the robot to often catch itself
in the gaps when it could be gliding forward. This seems
likely to be the case. As can be seen in the video available
at http://tinyurl.com/alife13-1DOF it is possi-
ble for robots to succeed in these task environments with
only a single mechanical degree of freedom and the proper
physical shape. This robot only has one actuated joint ro-
tating horizontally but due to its shape it is able to fall into
the gaps, gain purchase and glide out of them. Several such
single degree of freedom robots evolved in the icy task en-
vironments, but only one such robot evolved in the control
task environment and it is has substantially lower fitness.

While it is counter-intuitive that task environments that
select for more complex body components select for less
mechanical complexity it makes sense in this instance. It
is likely, however that other task environments that are com-
plex in different ways will select for robots that have com-
plex body components and are more mechanically complex.
For instance if there existed other obstacles in the environ-

ment that the robot needs to step over one could imagine
how additional degrees of freedom would be useful in or-
der to reach over the obstacles in order to gain purchase
on their far sides in ways that would not be possible with-
out additional degrees of freedom. Likewise if the spacing
between blocks was uneven then most likely the open loop
control policies employed here would be unable to succeed.
If sensors and closed loop control were employed it may be
advantageous to have extra degrees of freedom in order to
actively sense the environment and decide how to move.

Conclusion
This work has investigated the relationship between envi-
ronmental and mechanical complexity in evolved robots.
Results of previous work were used to select task environ-
ments in which successful, morphologically complex, robots
were previously evolved. However, counter to intuition, the
robots evolved here were less mechanically complex than
those evolved in a simpler control task environment. This
demonstrates that these different forms of morphological
complexity do not necessarily correlate with each other, but
are likely orthogonal.

Moving forward it will be interesting to explore evolving
robots in other task environments that are complex in differ-
ent ways. It is likely that while the task environments inves-
tigated here do not select for greater mechanical complex-
ity there exist task environments in which both greater me-
chanical complexity and greater complexity of body shape
will be selected for. Additionally it will be of interest how
control complexity varies in relation to these morphologi-
cal complexity measures. To this aim the current evolution-
ary system will be extended to allow for more sophisticated
closed loop neural network controllers. Are the task envi-
ronments that select for greater morphological complexity
in one way or another also those that select for greater con-
trol complexity? Or are these different forms of complexity–
morphological, mechanical, and control–independent?
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