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EFFICIENT GREEDY ALGORITHMS FOR HIGH-DIMENSIONAL PARAMETER
SPACES WITH APPLICATIONS TO EMPIRICAL INTERPOLATION

AND REDUCED BASIS METHODS ∗

Jan S. Hesthaven1, Benjamin Stamm2,3 and Shun Zhang4

Abstract. We propose two new algorithms to improve greedy sampling of high-dimensional func-
tions. While the techniques have a substantial degree of generality, we frame the discussion in the
context of methods for empirical interpolation and the development of reduced basis techniques for
high-dimensional parametrized functions. The first algorithm, based on a saturation assumption of the
error in the greedy algorithm, is shown to result in a significant reduction of the workload over the
standard greedy algorithm. In a further improved approach, this is combined with an algorithm in
which the train set for the greedy approach is adaptively sparsified and enriched. A safety check step
is added at the end of the algorithm to certify the quality of the sampling. Both these techniques are
applicable to high-dimensional problems and we shall demonstrate their performance on a number of
numerical examples.
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1. Introduction

Approximation of a function is a generic problem in mathematical and numerical analysis, involving the choice
of some suitable representation of the function and a statement about how this representation should approxi-
mate the function. One traditional approach is polynomial representation where the polynomials’ coefficients are
chosen to ensure that the approximation is exact at certain specific points, recognized as the interpolating poly-
nomial representation. Such representations, known as linear approximations, are independent of the function
being approximated and have been used widely. However, as problems become complex and high-dimensional,
the direct extension of such ideas quickly becomes prohibitive, if even possible.

More recently, there has been an increasing interest in the development of methods where the approximation
is constructed in a problem specific manner to reduce the overall computational complexity of constructing and
evaluating the approximation to a given accuracy. In this setting, the key question becomes how to add an
element to the existing approximation such that the new enriched approximation improves as much as possible,
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measured in some reasonable manner. This approach, known as a greedy approximation, seeks to maximize a
given measure, say the maximum error, and enrich the basis to eliminate this specific error contribution, hence
increasing the accuracy in an optimal manner. Such greedy approaches have proven themselves to be particularly
valuable for the approximation of high-dimensional problems where simple approaches are excluded due to the
curse of dimensionality. For a detailed recent overview of such ideas in a general context, we refer to [27].

We consider greedy algorithms and improvements of particular relevance to high-dimensional problems. While
the ideas are of a general nature, we motivate and frame the discussion in the context of reduced basis methods
(RBM) and empirical interpolation methods (EIM) in which the greedy approximation approach plays a key
role. In the generic greedy approach, one typically needs a fine train set Ξtrain ⊂ D over which a functional is
evaluated to select the next element of the approximation. When the number of parameters is high, the size of
this train set quickly becomes large, rendering the computational cost substantial and perhaps even prohibitive.
Hence, since a fine enough train set is not realistic in practice, one is faced with the problem of ensuring the
quality of the approximation under a coarse train set. It is worth noting that when dealing with certain high
dimensional problems, one may encounter situations where the optimal basis set itself is of large size. This
situation is, however, caused by the general complexity of the problem and we shall not discuss this further.
Strategies for such cases are discussed in see [10, 11, 17, 20].

There are some other discussions on greedy algorithms in the context of reduced basis and model reduction.
The standard greedy algorithm for reduced basis methods is introduced in [28]. The convergence results of the
greedy algorithm in the reduced basis method can be found in [3,4]. Greedy algorithms for parametric parabolic
equations are given in [14]. Reduced basis methods based on adaptive parameter grids can be found in [15,16].
Multi-stage greedy approach for reduced basis methods is suggested in [26]. In [5,6], an optimized search greedy
approach is proposed. The local adaptive greedy algorithm is discussed in [20].

In this paper, we propose two enhanced greedy algorithms related to the search/loop over the large train
set. The first algorithm utilizes a saturation assumption, based on the assumption that the greedy algorithm
converges, i.e., with enough terms, the error will decrease to zero. It is then reasonable to assume that the error
(or the error estimator in the case of the reduced basis method) is likewise decreasing. With this simple and
reasonable saturation assumption on the error or the error estimator, we demonstrate how to modify the greedy
algorithm such that errors are only computed for those points in Ξtrain with a large enough predicted error,
resulting in the total workload of the standard greedy algorithm being significantly reduced.

The second algorithm is an adaptively enriching greedy algorithm. In this approach, the samples in the
train set are adaptively removed and enriched, and a safety check step is added at the end of the algorithm to
ensure the quality of the basis set. On each step of the search for a new parameter, the size of the train set is
maintained at a reasonable number. The saturation assumption technique is naturally included in the algorithm.
This algorithm can be applied to problems with a high number of parameters with substantial savings.

We emphasize that, compared to the saturation assumption greedy algorithm, the adaptively enriching greedy
algorithm is an improved version, and a more general and robust algorithm. The adaptively enriching greedy
algorithm is recommended in the real computation.

What remains of this paper is organized as follows. In Section 2, we discuss the role of greedy sampling in
different computational methods, exemplified by empirical interpolation and reduced basis methods, to highlight
shortcomings of a naive approach and motivate the need for improved methods. This sets the stage for Section 3
where we discuss the details of the two enhanced greedy techniques. This is followed in Sections 4 and 5 by a
number of detailed numerical examples for the empirical interpolation method and reduced basis techniques,
respectively, to illustrate the advantages of these new methods for problems with both low and high-dimensional
parameter spaces. Section 6 contains a few concluding remarks.

2. On the need for improved greedy methods

In the following we provide a brief background on two different computational techniques, both of which
rely on greedy approximation techniques, serving as a motivation for the subsequent discussion of the modified
greedy techniques.
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2.1. Reduced basis methods

Many applications related to computational optimization, control, and design require the ability to rapidly and
accurately solve parameterized problems many times for different parameter values within a given parametric
domain D ⊂ Rp. While there are several suitable methods for this, we focus here on the reduced basis method
(RBM) [21,25] which has proven itself to be a very accurate and efficient method for such scenarios.

For any µ ∈ D, the goal is to evaluate an output functional s(µ) = �(u(µ); µ), where u(µ) ∈ X is the
solution of

a(u(µ), v; µ) = f(v; µ), ∀v ∈ X (2.1)

for some parameter dependent bilinear and linear forms a and f . Here X is a suitable function space.
Let X fe be a finite element discretization subspace of X . Here, finite elements are used for simplicity, and

other types of discretizations can likewise be considered. For a fixed parameter µ ∈ D, let ufe(µ) ∈ X fe be the
numerical solution of the following Galerkin problem,

a(ufe(µ), v; µ) = f(v; µ), ∀v ∈ X fe, (2.2)

and let sfe(µ) = �(ufe(µ); µ) be the corresponding output functional of interest.
Both the variational problem (2.1) and the approximation problem (2.2) are assumed to be well-posed. The

following inf-sup stabilities are assumed to be satisfied for µ-dependent positive constants β(µ) and βfe(µ),
respectively: there exists a β0 > 0,

β(µ) = inf
u∈X

sup
v∈X

a(u, v; µ)
‖u‖X‖v‖X

≥ β0 and βfe(µ) = inf
u∈Xfe

sup
v∈Xfe

a(u, v; µ)
‖u‖Xfe‖v‖Xfe

≥ β0, ∀µ ∈ D. (2.3)

where ‖ · ‖X and ‖ · ‖Xfe are norms of the spaces X and X fe, respectively.
For a collection of N parameters SN = {µ1, . . . , µN} in the parameter domain D ⊂ Rp, let WN =

{ufe(µ1), . . . , ufe(µN )}, where ufe(µi) is the numerical solution of problem (2.2) corresponding to the parameter
values µi, for 1 ≤ i ≤ N . Define the reduced basis space as Xrb

N = span{WN}.
The reduced basis approximation is now defined as: for a µ ∈ D, find urb

N (µ) ∈ Xrb
N such that

a(urb
N (µ), v; µ) = f(v; µ), ∀v ∈ Xrb

N , (2.4)

with the corresponding value of the output functional

srb
N (µ) = �(urb

N (µ); µ). (2.5)

The inf-sup constant for reduced basis method is defined as:

βrb
N (µ) = inf

Xrb
N

sup
Xrb

N

a(u, v; µ)
‖u‖Xfe‖v‖Xfe

·

For coercive problems, βrb(µ) ≥ β0 > 0. For non-coercive problems, the positivity of βrb
N (µ) is not ensured. A

modified test space Y rb
N can be introduced by the co-called supremizer operator to ensure

βrb
N (µ) = inf

Xrb
N

sup
Y rb

N

a(u, v; µ)
‖u‖Xfe‖v‖Xfe

≥ βfe(µ) > β0 > 0, ∀µ ∈ D,

see the discussion in Section 7.2.2 of [22] and [24,29].
The modified Petrov−Galerkin reduced basis approximation is now defined as: for a µ ∈ D, find urb

N (µ) ∈ Xrb
N

such that
a(urb

N (µ), v; µ) = f(v; µ), ∀v ∈ Y rb
N . (2.6)
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Define the error function e(µ) = urb
N (µ) − ufe(µ) ∈ X fe as the difference between the reduced basis (RB)

solution urb
N (µ) and the highly accurate finite element solution ufe(µ). The residual r(v; µ) ∈ (X fe)′ is given as:

r(v; µ) := f(v; µ) − a(urb
N , v; µ), ∀v ∈ X fe, (2.7)

and its dual norm as:

‖r(·; µ)‖(Xfe)′ := sup
v∈Xfe

r(v; µ)
‖v‖Xfe

· (2.8)

We define the relative error estimator for the output as:

η(µ, WN ) :=
‖r(·; µ)‖(Xfe)′‖�fe(·; µ)‖(Xfe)′

βfe(µ)|srb
N (µ)| · (2.9)

Other types of error estimators can also be used, see e.g., [25].
To build the parameter set SN , the corresponding basis set WN and the reduced basis space Xrb

N , a greedy
algorithm is used. Introducing a train set Ξtrain ⊂ D, consisting of a finely sampled subset of D of finite
cardinality, we first pick a µ1 ∈ Ξtrain, and compute the corresponding basis function ufe(µ1). Let S1 = {µ1},
W1 = {ufe(µ1)}, and Xrb

1 = span{ufe(µ1)}. Now, suppose that we already have N points in Ξtrain to form SN ,
the corresponding WN and Xrb

N , for some integer N ≥ 1. Then, choose

µN+1 := argmaxµ∈Ξtrain
η(µ; WN ), (2.10)

to select the next sample point and let SN+1 := SN ∪ {µN+1}. We then build the corresponding spaces WN+1

and Xrb
N+1. The above procedure is repeated until N is large enough that maxµ∈Ξtrain η(µ; WN ) is bounded by

a prescribed tolerance.
For this approach to be accurate, it is essential that the training set is sufficiently fine, i.e., for problems with

many parameters, the size of the train set Ξtrain becomes very large. Even with a rapid approach for evaluating
η(µ; WN ) for all µ ∈ Ξtrain the cost of this quickly becomes a bottleneck in the construction of the reduced
basis.

2.2. Empirical interpolation method

A main quality of the reduced basis method becomes apparent if we assume that the parameter dependent
problem (2.1) satisfies an affine assumption, that is,

a(u, v; µ) =
Qa∑
i=1

Θa
i (µ)ai(u, v), f(v; µ) =

Qf∑
i=1

Θf
i (µ)fi(v), and �(v; µ) =

Q�∑
i=1

Θ�
i (µ)�i(v), (2.11)

where Θa
i , Θf

i , and Θ�
i are µ-dependent functions, and ai, fi, �i are µ-independent forms. With this assumption,

for a reduced basis space Xrb
N with N basis functions, we can apply an offline/online strategy. In the offline

step, one precomputes matrices and vectors related to forms ai, fi, and �i, for i = 1, . . . , Qa, Qf , Q�. The cost
of this may be substantial but is done only once. In the online step, we now construct matrices and vectors
in the reduced basis formulation (2.4), solve the resulting reduced basis problem, and evaluate the output
functional (2.5). The amount of work of the online step is independent of the degrees of freedom of X fe, and
only depends on the size of reduced basis N and the affine constants Qa, Qf , and Q�. Hence, for a fixed µ ∈ D,
the computation of η(µ; WN ) includes the solution procedure of the reduced basis problem, the evaluation of
the residual (and output functional) in the dual norm, and a possible solution of a linear program to provide
a lower bound of βfe(µ), see [2]. In all cases, the work does not depend on the size of X fe, but only on N and
can, hence, be accomplished at low cost.

However, when the parameter dependent problem does not satisfy the affine assumption (2.11), this key
benefit is lost. To circumvent this, the empirical interpolation method (EIM) [2, 12, 13] has been proposed
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to enable the treatment of the non-affine operators and approximate them in the form (2.11) to maintain
computational efficiency.

To explain the EIM, consider a parameter dependent function F : Ω ×D → R or F : Ω ×D → C. The EIM
is introduced in [2,13,19] and serves to provide parameter values SN = {µ1, . . . , µN} such that the interpolant

IN (F)(x; µ) :=
N∑

j=1

βj(µ)qj(x) (2.12)

is an accurate approximation to F(x; µ) on Ω ×D.
The sample points SN are chosen by a greedy algorithm as discussed in the following. Again, using a train

set Ξtrain ⊂ D, comprising a fine sampling of D of finite cardinality, we first pick µ1 ∈ Ξtrain, compute
x1 = argmaxx∈Ω |F(x; µ1)| and the corresponding basis q1(·) = F(·; µ1)/F(x1; µ1). Then, let S1 = {µ1} and
W1 = {q1}.

Now, suppose we already found N points in Ξtrain to form SN and WN = {q1, . . . , qN} such that
span{q1, . . . , qN} = span{F(·; µ1), . . . ,F(·; µN )}, for some integer N ≥ 1. We further assume that a set of
N points TN = {x1, . . . ,xN} is given such that

qi(xi) = 1, and qj(xi) = 0 for all j > i, (2.13)

for all i = 1, . . . , N . Denote the lower triangular interpolation matrix BN
ij = qj(xi), i, j = 1, . . . , N , to define

the coefficients {βj(µ)}N
j=1, for a given µ ∈ D, as the solution of the linear system

N∑
j=1

BN
ij βj(µ) = F(xi; µ), ∀i = 1, . . . , N.

The approximation of level N of F(·; µ) is given by the interpolant defined by (2.12). Set

η(µ; WN ) := ‖F( · ; µ) − IN (F)( · ; µ)‖L∞(Ω)

and choose
µN+1 := argmaxµ∈Ξtrain

η(µ; WN ), (2.14)

to fix the next sample point and let SN+1 := SN ∪ {µN+1}. The interpolation point xN+1 is defined by:

xN+1 = argmaxx∈Ω

∣∣F(x; µ) − IN (F)(x; µ)
∣∣

and the next basis function by:

qN+1 =
F( · ; µ) − IN (F)( · ; µ)

F(xN+1; µ) − IN (F)(xN+1; µ)
·

By construction, (2.13) is satisfied since the interpolation is exact for all previous sample points in SN . The
algorithm is terminated once the error maxµ∈Ξtrain η(µ; WN ) is below a prescribed tolerance. One observes that
the EIM also uses a greedy algorithm to choose the sample points with only slight differences to the approach
of the reduced basis method. Hence, in the case of a high dimensional parameter space, the computational cost
of constructing the empirical interpolation can likewise be substantial.

3. Improved greedy algorithms

Having realized the key role the greedy approach plays in the two methods discussed above, it is clear that
even if the greedy approach is used only in the offline phase, it can result in a very considerable computational
cost, in particular in the case of a high-dimensional parameter space. Let us in the following discuss two ideas
aimed to help reduce the computational cost of the greedy approach in such cases.
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3.1. A typical greedy algorithm

First, we introduce the following abstract framework to generalize the greedy algorithm. For each parameter µ
in the parameter domain D ⊂ Rp, a µ-dependent basis function v(µ) can be computed. Let

SN = {µ1, . . . , µN}

be a collection of N parameters in D and

WN = {v(µ1), . . . , v(µN )}

be the collection of N basis functions based on the parameter set SN . For each parameter µ ∈ D, suppose that
we can compute an error estimator η(µ; WN ) of the approximation based on WN .

The following scheme represents a typical greedy algorithm.

Input: A train set Ξtrain ⊂ D, a tolerance tol > 0
Output: SN and WN

1: Initialization: Choose an initial parameter value µ1 ∈ Ξtrain, set S1 = {µ1},
compute v(µ1), set W1 = {v(µ1)}, and N = 1 ;

2: while maxµ∈Ξ η(μ; WN) > tol do
3: For all µ ∈ Ξtrain, compute η(µ; WN) ;
4: Choose µN+1 = argmaxµ∈Ξtrain

η(µ; WN);

5: Set SN+1 = SN ∪ {µN+1};
6: Compute v(µN+1), and set WN+1 = WN ∪ {v(µN+1)};
7: N ← N + 1;
8: end while

Algorithm 1: A typical greedy algorithm.

Note that as a result of the above greedy algorithm, we ensure that the sets SN and WN are hierarchical:

SN ⊂ SM , WN ⊂ WM if 1 ≤ N ≤ M.

Remark 3.1. The above algorithm is an abstraction of the greedy algorithm. For particular methods, different
necessary modules, inputs, and outputs, should be added, e.g., the selection of interpolation points in EIM, and
the orthogonalization process in RBM.

Now, we discuss the robustness of the standard greedy algorithm.

Definition 3.2. The basis function set W is tol-robust for a sampling set Ξ of D if for all µ ∈ Ξ,

η(µ, WN ) ≤ tol.

Clearly, WN generated by Algorithm 1 is tol-robust for Ξtrain.

3.2. An improved greedy algorithm based on a saturation assumption

In step 3 of the greedy algorithm 1, we have to compute η(µ; WN ) for every µ ∈ Ξtrain. When the size
of Ξtrain is large, the computational cost of this task is potentially very high. Fortunately, in many cases, the
following saturation assumption holds:

Definition 3.3 (Saturation assumption).
Assume that η(µ; WN ) > 0 is an error estimator depending on a parameter µ and a hierarchical basis

space WN . If the following property

η(µ; WM ) ≤ Csa η(µ; WN ) for some Csa > 0 for all M > N > 0 (3.15)

holds, we say that the saturation assumption is satisfied.
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In special cases, this assumption can be proved with an exact Csa, otherwise, it remains as an assumption. In
the following Csa is a free parameter that can be chosen in the algorithm rather than being a sound theoretical
upper bound constant.

Remark 3.4. When Csa = 1, it implies that η(µ; WN ) is not increasing for a fixed µ and increasing N . Choose
Csa < 1 is a more aggressive assumption, ensuring that η(µ; WN ) is strictly decreasing. This assumption with
Csa < 1 is very common in the adaptive finite element method community, see [1]. The assumption Csa > 1 is a
more relaxed assumption, allowing that η(µ; WN ) might not be monotonically decreasing, but can be oscillating.
Since the underlying assumption of the greedy algorithm is that η(µ, WN ) will converge to zero as N approaches
infinity, we can safely assume that even if η(µ, WN ) might exhibit intermitted non-monotonic behavior as N is
increasing, overall it is decreasing.

Utilizing this assumption, we can design an improved greedy algorithm. First, for each parameter value
µ ∈ Ξtrain, we create an error value profile ηsaved(µ) that can be accessed at any time and that will be updated
when more accurate data is available. Initially, we can set ηsaved(µ) = η(µ; W0) = ∞. Now suppose that SN and
WN are determined and that we aim to find the next sample point µN+1 = argmaxµ∈Ξtrain

η(µ; WN ). When µ
runs through the train set Ξtrain, we update a temporary maximum (over Ξtrain), until we have searched the
whole set Ξtrain. In this loop, we require that, for each µ, ηsaved(µ) = η(µ; WL) for some L < N . Now, since
the saturation assumption ensures η(µ; WN ) ≤ Csa η(µ; WL) for L < N and provided Csa ηsaved(µ) is less than
the current temporary maximum, η(µ, WN ) cannot be greater than the current temporary maximum. Hence,
we may skip the computation of η(µ, WN ), and leave ηsaved(µ) untouched. On the other hand, if Csa ηsaved(µ)
exceeds the current temporary maximum, it is potentially the maximizer. And, we compute η(µ, WN ), update
ηsaved(µ), and compare it with the current maximum to see if the current temporary maximum must be updated.
We notice that if we proceed in this manner, the requirement that for each µ, ηsaved(µ) = η(µ; WL) for some
L < N holds.

The saturation assumption based algorithm is given in the following Algorithm 2.

Input: A train set Ξtrain ⊂ D, Csa, and a tolerance tol
Output: SN and WN

1: Choose an initial parameter value µ1 ∈ Ξtrain, set S1 = {µ1}; compute v(µ1), set W1 = {v(µ1)}, and N = 1;
2: Set a vector ηsaved with ηsaved(µ) =∞ for all µ ∈ Ξtrain;
3: while maxµ∈Ξtrain ηsaved(µ) ≥ tol do
4: errortmpmax = 0;
5: for all µ ∈ Ξtrain do
6: if Csaηsaved(µ) > errortmpmax then
7: Compute η(µ; WN), and let ηsaved(µ) = η(µ, WN);
8: if ηsaved(µ) > errortmpmax then
9: errortmpmax = ηsaved(µ), and let µmax = µ;

10: end if
11: end if
12: end for
13: Choose µN+1 = µmax, set SN+1 = SN ∪ {µN+1};
14: Compute v(µN+1), set WN+1 = WN ∪ {v(µN+1)};
15: N ← N + 1;
16: end while

Algorithm 2: A greedy algorithm based on a saturation assumption.

Further we discuss several aspects on the proposed algorithm in the following remarks:

(1) Initially, we set ηsaved(µ) = ∞ for any µ ∈ Ξtrain to ensure every η(µ, W1) will be computed.
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(2) Due to round-off errors, the error estimator may stagnate even if we add more basis functions, or the greedy
algorithm will select some point already in SN . In this case, the greedy algorithm should be terminated.

(3) The choice of the saturation assumption constant Csa depends on the application of the greedy algorithm.
In some particular cases, the constant can be proven to be one as in the case of the successive constraint
method for the lower bounds of inf-sup constants, see [7,30]. For the general case, if the underlying method
is projection based, Csa = 1 is a reasonably good choice. If the underlying method is interpolation based,
a larger Csa should be used. We will discuss the choice of Csa in more detail for the RBM and EIM in the
upcoming sections.
It is also worth mentioning that in the early pre-asymptotic stage, we might not have to pick the parameter
corresponding to the worst approximation error, since a parameter value with a bad but not worst approx-
imation error is likewise a good choice. If a certain parameter value is truly critical, it will be chosen later.
This indicates that we may not need to choose a very conservative Csa.
In general, if Csa ≥ 1 the saturation assumption does not need to strictly hold in order to ensure that
the algorithm works. It is more a guide to decide whether it is worth checking the accuracy for a certain
parameter value or not.

(4) If the ratio between two levels are known or can be estimated, we can modify or refine the saturation
assumption to be

η(µ; WN+1) ≤ Csa,N η(µ; WN ) for some Csa,N > 0 for all N > 0 (3.16)

The Csa in (3.15) will be M and N dependent, and is multiplications of Csa,i, N ≤ i < M .

We now discuss the robustness of Algorithm 2. The following theorem holds.

Theorem 3.5. If the saturation assumption is satisfied, the basis function set WN generated by Algorithm 2 is
tol-robust for Ξtrain.

Proof. The algorithm ensures ηsaved(µ) < tol for all µ ∈ Ξtrain. For all µ that Csaηsaved(µ) > errortmpmax in
the last searching for new basis function, ηsaved(µ) = η(µ, WN ). For other points, Csaηsaved(µ) < tol. By the
saturation assumption, ηµ,WN ≤ Csaηsaved(µ) < tol. Thus the theorem. �

For the case that the saturation assumption is only a rudimentary guess, we do face the possibility that
some points will have an error bigger than tol. But even in this case, if we assume the underlying method is
convergent, that more basis functions will lead to a smaller error in general, the saturation assumption is valid
in general. If the user is more cautious, it is easy to add a final validation step to test all points by the basis
function set to ensure the basis function set is tol-robust.

3.3. An adaptively enriching greedy algorithm (AEGA)

Even though the above saturation assumption based algorithm has the potential to reduce the overall compu-
tational cost, it may still be too costly for problems with a high number of parameters. Notice that, in the above
algorithms, the assumption that the train set Ξtrain is a fine enough discrete subset of D is essential; otherwise,
we might miss some phenomena that are not represented by Ξtrain. The consequence of this is that for the final
sets of SN and WN , there may be some parameter µ̃ in D but not in Ξtrain such that η(µ̃, WN ) is greater (or
even much greater) than the prescribed tolerance. Thus, for high dimensional parametrized problems, we will
likely have to face the problem that the train set is not rich enough, and it is in practice hard to construct a
fine enough train set. Observe that it is almost impossible to construct a tensor product based train set for
p > 10. Even if we only put 5 points for each parameter, a large train set of 511 = 48 828 125 points results. For
a larger p, the curse of dimensionality is inevitable.

To address this problem, we first build the set of basis functions WN based on a train set with a relatively
small number of points. To ensure that the set of basis functions corresponding to this train set is good enough,
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we add a “safety check” step at the end, i.e., we test the approximation by a larger number of test parameters,
to ensure that the resulting errors are less than the prescribed tolerance on this refined parameter set too. If,
for all validation points, the estimated errors are less than the tolerance, we conclude that the basis set is good
enough. Otherwise, we add the first failed test point (whose error is larger than the tolerance) to SN , and redo
the “safety check” step until the set of basis WN passes the “safety check”.

Instead of starting from a tensor product train set, we consider a (quasi-)random train set. However, the
random train set faces the same problem: it is far from “rich enough” for a high dimensional parametrized
problem. Fortunately, we can adaptively change the train set by removing useless points and enriching by adding
new points. Notice that after we have determined a set of basis functions, the estimated errors corresponding
to some points in the train set are already smaller than the prescribed tolerance. The gain of retaining these
points in ΞN is very small, since for a problem with a monotonically decreasing error, these points will never
be selected, and even for a non-monotonically decreasing error problem, these points have little chance to be
selected. Thus we can remove these points from the train set. In the latter case, in principle, we should re-test
these removed points to ensure their errors are less the tolerance with the final set of basis functions. But since
these points are randomly generated, perhaps they are no better than other random validation points, we may
just use new random points in to validate the basis set. If we want to be more cautious, we can add these points
back to the “safety check”/validation points, to ensure the basis set is good enough for these early discarded
points. If we have a pre-scribed validation set, we can expand the set by adding these early discarded points.
With these points discarded, we can add some new random points to the train set to make the size of the train
set of constant cardinality.

Notice that for the unchanged part of the train set, we can still apply the saturation assumption based
algorithm to save work, thus combining the two ideas.

The Algorithm 3 is the pseudo-code of the adaptively enriching greedy algorithm.

Remark 3.6. The algorithm can further be modified in the way that any new parameter point in Ξtrain is
subject to some optimization procedure. For instance, one can apply a random walk with decreasing step
size and only accept a new state if the error estimator is increased. Or, a more complex procedure such as the
simulated annealing algorithm can be applied. Such a procedure will additionally (at some cost though) increase
the quality of each added parameter point and go along with the spirit of [5, 6].

We now discuss the robustness of Algorithm 3. The following theorem is obvious.

Theorem 3.7. The basis function set WN generated by Algorithm 3 is tol-robust for Nsc validation points.

As discussed before, if the user has a specific validation point set, or the user is cautious about those points
discarded in the earlier stage, it is easy to make the output tol-robust for these points by modifing line 23 or
28 from generating random points to form a new Ξtrain by these user-specific points.

4. Application to the empirical interpolation method

In the following we study how the previous ideas can be used to improve the greedy algorithm incorporated
in the empirical interpolation method (EIM).

4.1. Saturation assumption

First, we present some very pessimistic estimation of the saturation assumption constant Csa by some a priori
results in EIM.

Lemma 4.1. [13] Let Y be a Banach space of continuous functions defined on part of Rd. For any F ∈ Y , the
interpolation error satisfies

‖F − IN (F)‖L∞(Ω) ≤ (1 + ΛN ) inf
vN∈WN

‖F − vN‖L∞(Ω) (4.17)
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Input: M : the number of sample points in each round of searching,
Nsc: the number of sample points to pass the safety check,
Csa, and a tolerance tol.

Output: SN and WN

1: Set Nsafe = ceil(Nsc/M);
2: Generate an initial train set Ξtrain with M parameter samples (randomly, or do your best);
3: Choose an initial parameter value µ1 ∈ Ξtrain and set S1 = {µ1} and N = 1;
4: Set a vector ηsaved with ηsaved(µ) =∞ for all µ ∈ Ξtrain;
5: Compute v(µ1), set W1 = {v(µ1)}, set safe = 0, errortmpmax = 2 ∗ tol;
6: while (errortmpmax ≥ tol or safe ≤ Nsafe) do
7: errortmpmax = 0;
8: for all µ ∈ Ξtrain do
9: if Csaηsaved(µ) > errortmpmax then

10: Compute η(µ; WN), and let ηsaved(µ) = η(µ, WN);
11: if ηsaved(µ) > errortmpmax then
12: errortmpmax = ηsaved(µ), and let µmax = µ;
13: end if
14: if ηsaved(µ) < tol then
15: flag µ; // all flagged parameters will be removed later

16: end if
17: end if
18: end for
19: if errortmpmax > tol then
20: Choose µN+1 = µmax, set SN+1 = SN ∪ {µN+1};
21: Compute v(μN+1), set WN+1 = WN ∪ {v(µN+1)};
22: Discard all flagged parameters from Ξtrain and their corresponding saved error estimation in ηsaved;
23: Generate M − sizeof(Ξtrain) new samples, add them into Ξtrain such that sizeof(Ξtrain) = M ; set ηsaved

of all new points to ∞;
24: N ← N + 1;
25: safe =0;
26: else
27: safe = safe +1;
28: Discard Ξtrain, generate M new parameters to form Ξtrain and set ηsaved to be

equal to ∞ for all µ ∈ Ξtrain;
29: end if
30: end while

Algorithm 3: An adaptively enriching greedy algorithm (AEGA).

An upper bound of the Lebesgue constant ΛN is 2N − 1. In the asymptotic region, we have the conservative
estimate

‖F − IN+1(F)‖L∞(Ω) ≈ 2 ‖F − IN (F)‖L∞(Ω).

Thus, a conservative bound of Csa,N in (3.16) is 2, and Csa is 2M−N as discussed in remark [4] in Section 3.2.
Of course, as is mentioned in [13], this estimation is the worst case scenario and not observed in practice.

After all, the saturation assumption is a guideline to improve the computational efficiency and does not interfere
with the final accuracy of the algorithm.

We test the saturation assumption based algorithm for two test problems with low dimensional parameter
spaces. The generalization to complex-valued (instead of real-valued) functions is straightforward.

Test 4.1. Consider the complex-valued function

F1(x; k) =
eikx − 1

x
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Figure 1. Discrete surface for the unit sphere.

where x ∈ Ω = (0, 2] and k ∈ D = [1, 25]. The interval Ω is divided into an equidistant point set with
15 000 points to build Ωh where the error ‖F1(x; μ) − IN (F1)(x; μ)‖L∞(Ωh) is computed. For the standard
greedy algorithm, the train set Ξtrain consists of 5000 equidistant points in D.

Test 4.2. As a second and slightly more complicated example, consider the complex-valued function

F2(x; µ) = eikk̂·x

where the directional unit vector k̂ is given by:

k̂ = −(sin θ cosϕ, sin θ sin ϕ, cos θ)T

and µ = (k, θ, ϕ) ∈ D = [1, 5] × [0, π] × [0, 2π]. In computational electromagnetics, this function is widely used
since pF2(x; µ) represents a plane wave with wave direction k̂ and polarization p ⊥ k̂ impinging onto the sphere.
See [12]. As domain Ω we take a unit sphere. For practical purposes, we take a polyhedral approximation to
the sphere, as illustrated in Figure 1, and the discrete number of points Ωh (where again the error ‖F2(x; µ)−
IN (F2)(x; µ)‖L∞(Ωh) is computed) consists of three Gauss points on each triangle. For the standard greedy
algorithm, the train set Ξtrain consists of a rectangular grid of 50 × 50 × 50 points.

In Figure 2 we show the evolution of the average and the standard deviation of

C(N, n) =
η(µ, WN )

η(µ, WN−n)
, n = 1, 2, 3, (4.18)

over Ξtrain along with the standard greedy sampling process Algorithm 1. This quantity is an indication of
Csa,N . We observe that Csa,N ≤ 2, in agreement with the a priori result. But we also observe that choosing
Csa = 2M−N is too pessimistic as anticipated. Csa = 2 seems to be a reasonable choice. For this particular
choice of Csa, we illustrate in Figure 3 the savings in the loop over Ξtrain at each iteration of the standard
greedy sampling. Indeed, the result indicates, that at each step N , the percentage of work that needs to be done
by using the saturation assumption compared to that using the standard greedy algorithm, thus comparing
the different workloads, at each loop over Ξtrain of Algorithms 1 and 2. One observes that, while for the first
example the improvement is already significant, one achieves an average (over the different values of N) saving
of workload of about 50% (dotted red line) for the second example.

4.2. Adaptively enriching greedy algorithm

Let us also test the adaptively enriching greedy algorithm (for convenience denoted by AEGA) first for the
previously introduced function F2, and then for two test problems with high dimensional parameter spaces.
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Figure 2. Evolution of the average and standard deviation of C(N, n) over Ξtrain along a
standard greedy sampling for F1 (left column) and F2 (right column). For illustration purposes,
the accuracy with respect to N is also provided.

ConsideringF2, we set M = 1000, 5000, 25 000,Nsc = 125 000 and Csc = 2. In Figure 4 we plot the convergence
of the new algorithm (in red solid lines) and the corresponding error over the large control set Ξtrain (in dotted
lines and only for academic/illustrative purpose) consisting of 125 000 equidistant points. For comparison, we
illustrate the convergence of the standard greedy algorithm using the train set Ξtrain (in dashed lines).

We observe that as we increase the value of M , i.e., the number of samples in the randomly sampled train
set, the convergence error provided by the AEGA and the error of the AEGA over the larger control set become
(not surprisingly) closer and converge to the error provided by the standard EIM using training set Ξtrain.

Figure 5 shows the evolution of the number of points which were part of the train set during the AEGA for
all values of M . We observe that in all three cases the error was also tested on at least 125 000 different points
over the iterations of the algorithm, but of low number M at each iteration.
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Figure 3. Percentage of work at each step N , using the saturation assumption based greedy
algorithm, compared to the workload using the standard greedy algorithm, for F1 (left) and
F2 (right) for the choice of Csa = 2.
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Figure 4. Convergence behavior of the adaptively enriching greedy algorithm for F2 with
M = 1000 (left), M = 5000 (middle) and M = 25 000 (right).

In Figure 6, we present, for all three values of M , two quantities. The first one consists of the percentage
of work (w.r.t. M), at each step N , that needs to be effected and cannot be skipped by using the saturation
assumption. The second one consists of the percentage of points (w.r.t. M) that remain in the train set after
each step N . One observes that at the end, almost all points in the train set are withdrawn (and thus the
corresponding errors need to be computed). However, during a long time, the algorithm works with the initial
train set until the error tolerance is satisfied on those points before they are withdrawn. As a consequence,
the accuracy need only to be checked for a low percentage of points of the trial set using the saturation
assumption. Towards the end, the number of points that remain in the train set after each iteration decreases
and consequently the saturation assumption for each new sample point in the train set cannot be utilized.

Remark 4.2. Algorithm 3 is subject to randomness. However, we plot only one realization of the adaptively
enriching greedy algorithm. We observe in the numerical tests that different realizations do not differ from each
other significantly. This can be explained by the fact that the algorithm depends on a large enough number of
realizations of random points. Therefore these illustrations are still meaningful.

Test 4.3. Introduce the following real-valued function

F3(x; µ) = sin(2πμ1(x1 − μ2)) sin(2πμ3(x2 − μ4)) sin(4πμ5(x1 − μ6)) sin(4πμ7(x2 − μ8))
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Figure 5. Evolution of the number of points where the accuracy is checked of the adaptively
enriching greedy algorithm for different values of M (Safety check not included).
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Figure 6. Percentage of work (effected at each step N) w.r.t. the total number of points M and
of the number of points remained in the train set (at each step N) of the adaptively enriching
greedy algorithm for F2 and different values of M = 1000, 5000, 25 000 (from top to bottom).

with x = (x1, x2) ∈ Ω = [0, 1]2 and μ1, μ3 ∈ [0, 2], μ2, μ4, μ6, μ8 ∈ [0, 1], μ5, μ7 ∈ [1, 2]. The domain Ω is divided
into a grid of 100×100 equidistant points to build Ωh. Recall that in the implementation, Ωh is used to compute
the norm ‖ · ‖L∞(Ω).

In Figures 7 and 8 we plot the convergence behaviour of the adaptive enriching greedy algorithm for F3 and
tol = 10−4. The value of Nsc for all different choices of M = 100, M = 1000 and M = 10 000 is set equal
to Nsc = 100 000. Figure 8 is a zoom of Figure 7 towards the end of the convergence to highlight the action
of the safety check. We observe that in the case of M = 10 000 the safety check is passed after only a few
attempts whereas for M = 100 the safety check fails 34 times until finally successful. This means that during
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Figure 7. Convergence behavior of
the adaptive enriching greedy algorithm
for F3.
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Figure 8. Convergence behavior of the
adaptive enriching greedy algorithm for
F3 zoomed in towards the end where the
safety check is active.
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Figure 9. Evolution of the number of points where the accuracy is checked of the adaptively
enriching greedy algorithm for different values of M (Safety check included).

each safety check there is at least one parameter value where the interpolation error was above the tolerance.
Finally, passing the safety check means that the interpolation error on 100 000 random sample points is below
the prescribed tolerance.

In Figure 9, the accumulated number of points belonging to the train set Ξtrain is illustrated. We observe
an increase of this quantity towards the end where the safety check is active. During this period all parameter
points are withdrawn at each iteration, leading to the increase.

Test 4.4. Finally we consider the following real-valued function

F4(x; µ) =
(

1 + exp
(
− (x1 − μ1)2

μ9
− (x2 − μ2)2

μ10

)) (
1 + exp

(
− (x1 − μ3)2

μ11
− (x2 − μ4)2

μ12

))

×
(

1 + exp
(
− (x1 − μ5)2

μ13
− (x2 − μ6)2

μ14

)) (
1 + exp

(
− (x1 − μ7)2

μ15
− (x2 − μ8)2

μ16

))
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Figure 10. Convergence behavior of
the adaptive enriching greedy algo-
rithm for F4.
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Figure 11. Convergence behavior of
the adaptive enriching greedy algo-
rithm for F4 zoomed in towards the
end where the safety check is active.

with x = (x1, x2) ∈ Ω = [0, 1]2 and μ1, . . . , μ8 ∈ [0.3, 0.7], μ9, . . . , μ16 ∈ [0.01, 0.05]. The domain Ω = [0, 1]2 is
divided into a grid of 100× 100 equidistant points to build Ωh.

In Figure 10, the convergence behavior of the adaptively enriching greedy algorithm for the function F4 and
tol = 10−4 is plotted. The value of Nsc for all different choices of M = 10 000, M = 100 000 and M = 1 000 000
is set equal to Nsc = 10 000 000. Figure 11 is again a zoom of Figure 10 towards the end of the convergence. We
observe a similar behavior as in the previous case. Note that in all three cases, the safety check is passed and the
tolerance is satisfied for 10 000 000 subsequent parameter points. A bit surprisingly, both cases of M = 10 000
and M = 100 000 results in the same number of added modes N .

5. Application to the reduced basis method

In this section we apply the improved greedy algorithms in the context of the Reduced Basis Method (RBM).
As in the last section, we first test the benefit of the saturation assumption for some low dimensional para-
metric problems, and then proceed to test a problem with 15 parameters using the adaptively enriching greedy
algorithm.

5.1. Saturation Assumption

Before performing the numerical test, we discuss that for some class of problems, the saturation assumption
is satisfied with Csa = 1 if the error is measured in the intrinsic energy norm. Then, we show that even for
non-coercive problems, Csa = 1 is the most reasonable choice. The distinction of error in some norms and its
error estimators will also be discussed.

First, suppose that the variational problem is based on a minimization principle,

u = argminv∈XJ(v), (5.19)

where J(v) is an energy functional. Then the finite element solution ufe on X fe ⊂ X is

ufe = argminv∈XfeJ(v). (5.20)
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Similarly, the reduced basis solution urb
N on Xrb

N ⊂ X fe ⊂ X is

urb
N = argminv∈Xrb

N
J(v). (5.21)

The error between ufe and urb
N can be measured by the nonnegative quantity

J(urb
N ) − J(ufe). (5.22)

Since WN ⊂ WN+1 and thus Xrb
N ⊂ Xrb

N+1, we have J(urb
N+1) ≤ J(urb

N ) and in consequence there holds

J(urb
N+1) − J(ufe) ≤ J(urb

N ) − J(ufe). (5.23)

Observe that if the error is measured exactly as J(urb
N ) − J(ufe), the saturation assumption is satisfied with

Csa = 1.
On the other hand, if the problem is not based on a minimization principle, we will still have the following

generalized Cea’s Lemma, see e.g. [9]:

‖ufe(µ) − urb
N (µ)‖Xfe ≤ C(µ) inf

v∈Xrb
N

‖ufe(µ) − v‖Xfe . (5.24)

With the modification reduced basis approach (2.6), we can ensure that the constant C(µ) is independent of
N . For some cases, when the inf-sup constant βfe(μ) is very small, C(µ) can be very large.

Note, however, that we always discuss the saturation assumption for the same µ, thus, even though C(µ)
may be very large, in the asymptotic region,

‖ufe(µ) − urb
N (µ)‖Xfe ≈ C(µ) inf

v∈Xrb
N

‖ufe(µ) − v‖Xfe . (5.25)

Therefore, in the asymptotic region, we have

‖ufe(µ) − urb
N+1(µ)‖Xfe ≈ C(µ) inf

v∈Xrb
N+1

‖ufe(µ) − v‖Xfe

≤ C(µ) inf
v∈Xrb

N

‖ufe(µ) − v‖Xfe ≈ ‖ufe(µ) − urb
N (µ)‖Xfe .

Thus, Csa = 1 is a good choice even for the case where C(µ) is large (βfe(μ) is very small). For the pre-asymptotic
stage, the above discussion still provides a good guideline, and it can be observed in practice that 1 is a robust
choice.

We also emphasize that in real computations, instead of the exact error, we use an error estimator to guide
the greedy algorithm (referred to as the weak greedy algorithm). Error estimators are upper bounds for the true
error measured in some norm. The upper bounds may be quite pessimistic and thus Csa with respect to the
error estimator may be larger than 1. But what we are really interested in are the true errors, so that Csa = 1
is always reasonable.

The above discussion is for the case where the saturation assumption based greedy algorithm is used alone.
For the adaptively enriching greedy algorithm, the problem is less serious, and we can always use Csa = 1, see
the discussion in Section 5.2 later.

Let us give an example of the minimization principle based problem. Consider the symmetric coercive elliptic
problem, ⎧⎨

⎩
−∇ · (α(µ)∇u) = f in Ω,

u = 0 on ΓD,
α(µ)∇u · n = g on ΓN ,

(5.26)

where ΓD and ΓN are the Dirichlet and Neumann boundaries of ∂Ω, and ΓD ∪ ΓN = ∂Ω. For simplicity, we
assume ΓD �= ∅. The functions f and g are L2-functions on Ω and ΓN , respectively. The parameter dependent
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diffusion coefficients α(µ) are always positive. Let X = H1
D(Ω) := {v ∈ H1(Ω) : v|ΓD = 0}. Then its variational

formulation is
a(u, v; µ) = f(v), ∀v ∈ X, (5.27)

where

a(u, v; µ) =
∫

Ω

α(µ)∇u∇vdx, f(v) =
∫

Ω

fvdx +
∫

ΓN

gvds.

The energy functional is
J(v) = 1

2‖(α(µ))1/2∇v‖2
0,Ω − f(v),

and we have

J(urb
N ) − J(ufe) = 1

2

(
‖α(µ)1/2∇urb

N ‖2
0,Ω − ‖α(µ)1/2∇ufe‖2

0,Ω

)
− f(urb

N − ufe)

= 1
2‖α(µ)1/2∇(urb

N − ufe)‖2
0,Ω +

∫
Ω

α(µ)∇ufe · ∇(urb
N − ufe)dx − f(urb

N − ufe)

= 1
2‖α(µ)1/2∇(urb

N − ufe)‖2
0,Ω.

In the last step, Galerkin orthogonality
∫

Ω

α(µ)∇ufe · ∇wdx = f(w) ∀ w ∈ X fe

is used. The above analysis is standard, see [23].
If we measure the error by this intrinsic energy norm ‖α(µ)1/2∇v‖0,Ω, the error satisfies the saturation

assumption with Csa = 1,

‖α(µ)1/2∇(urb
M − ufe)‖0,Ω ≤ ‖α(µ)1/2∇(urb

N − ufe)‖0,Ω for 0 < N < M. (5.28)

Unfortunately, even for the above model problem, the a posteriori error estimator used in the reduced basis
method is not equivalent to the energy norm of the error.

For (5.26), we choose the underlying norm of X and X fe to be the H1-semi-norm ‖v‖X =
√∫

Ω
(∇v)2dx.

Notice that, due to the need to compute the dual norm of the X fe-norm, involving an inverse of the matrix
associated with the X fe-norm, this X fe-norm cannot be parameter dependent. Otherwise, we must invert a
matrix of a size comparable to the finite element space every time for a new parameter in the computation of
error estimator. This would clearly result in an unacceptable cost.

The functional based error estimator for (5.26) is defined as:

η(µ; WN ) =
‖f‖X′‖r(·; µ)‖X′

β(µ)|f(urb
N (µ))|

· (5.29)

For this simple problem and this specific choice of norm, the stability constant is β(µ) = minx∈Ω{α(µ)}. Note
that

f(v) = a(v, v; µ) = ‖α(µ)1/2∇v‖2
0,Ω, ∀v ∈ X.

The error estimator η(µ; WN ) used here is in fact an estimate of the relative error measured by the square of
the intrinsic energy norm. In principle, since we already proved that the error measured in the energy norm
should be monotonically decreasing (or more precisely, non-increasing), the constant Csa can be chosen to
be 1. However, if we examine the error estimator η(µ; WN ) defined in (5.29) carefully, we find that for a fixed
parameter µ, the values of ‖f‖X′ and β(µ) are fixed, and the change of the value of |f(urb

N (µ))| is quite small
if the approximation urb

N (µ) is already in the asymptotical regime. The only problematic term is ‖r(·; µ)‖X′ .
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This term is measured in a dual norm of a parameter independent norm (the H1-semi-norm), not in the dual
norm of the intrinsic energy norm ‖α(µ)1/2∇v‖0,Ω. It is easy to see that

‖α(µ)1/2∇e‖2
0,Ω = f(e) ≤ ‖f‖X′‖e‖X ≤ ‖f‖X′

‖r(·, µ)‖X′

β(µ)
·

Thus, the error estimator η(µ; WN ) is only an upper bound of the relative error measured by the square of
the intrinsic energy norm. When the variation of α(µ) with respect to µ is large, the difference between the
H1–semi-norm and the energy norm ‖α(µ)1/2∇v‖0,Ω may be large and we may find that the error estimator is
not monotonically decreasing as the number of basis functions increases.

In Test 5.1 below, we use a moderate variation of α(µ) ∈ [1/10, 10] and we observe that the saturation
assumption is satisfied with Csa = 1 experimentally. In Tests 5.2 and 5.3, a wider range of α(µ) ∈ [1/00, 100] is
used. For the corresponding error estimator, the saturation assumption is not satisfied with Csa = 1 but requires
a larger Csa.

Test 5.1.
Consider the following thermal block problem, which is a special case of (5.26), see also [25]. Let Ω = (0, 1)2,

and ⎧⎪⎨
⎪⎩

−∇ · (α(µ)∇u) = 0 in Ω,
u = 0 on Γtop = {x ∈ (0, 1), y = 1},

α(µ)∇u · n = 0 on Γside = {x = 0 and x = 1, y ∈ (0, 1)},
α(µ)∇u · n = 1 on Γbase = {x ∈ (0, 1), y = 0},

(5.30)

where α(µ) = 102µ−1 in R1 = (0, 0.5)2 and α = 1 in Rrest = Ω\(0, 0.5)2. We choose the one-dimensional
parameter domain D of µ to be [0, 1], which corresponds to α ∈ [1/10, 10] in R1. Note that in this particular
case the vector of parameters µ is indeed a scalar parameter μ. The variational problem is given in (5.27). The
output functional is chosen to be s(u) = f(u).

Let T be a uniform mesh on Ω with 80 401 of nodes (degrees of freedom), and P1(K) be the space of linear
polynomials on an element K ∈ T . We define our finite approximation space

X fe = {v ∈ C0(Ω) : v|K ∈ P1(K), ∀K ∈ T }.

For a given µ, the finite element problem is seeking ufe(µ) ∈ X fe, such that

a(ufe(µ), v; µ) = f(v) v ∈ X fe. (5.31)

With a set of N reduced basis elements WN and the corresponding Xrb
N , and for a given parameter µ, we solve

the following reduced basis approximation problem: Seeking urb
N (µ) ∈ Xrb

N , such that

a(urb
N (µ), v; µ) = f(v) ∀v ∈ Xrb

N . (5.32)

We choose 101 equidistant sample points in D = [0, 1], i.e., Ξtrain = { i
100 , i = 0, 1, 2, . . . , 100}, and a standard

reduced basis greedy algorithm with the error estimator defined in (5.29). The first parameter µ1 is cho-
sen to be 0.5, that is, S1 = {0.5}. The greedy algorithm chooses the 2nd, 3rd, 4th, and 5th parameters as
{0, 1.0, 0.15, 0.81}, so S5 = {0.5, 0, 1, 0.15, 0.81}. We compute the reduced basis set WN and the reduced basis
spaces Xrb

N corresponding to SN , N = 1, . . . , 5. Then, for all points µ in Ξtrain, η(µ; WN ), N = 1, . . . , 5 is
computed. Figure 12 shows the plots of η for each points in Ξtrain with number of reduced basis = 1, . . . , 5.
Clearly, we see that for each point µ ∈ Ξtrain, η(µ; W5) ≤ η(µ; W4) ≤ η(µ; W3) ≤ η(µ; W2) ≤ η(µ; W1). For
this problem, the saturation assumption is satisfied for Csa = 1 in the first several steps.

Test 5.2. We now test the potential for cost savings when the saturation assumption based algorithm is used
in connection with the reduced basis method.
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Figure 12. A verification of the saturation assumption for a symmetric positive definite prob-
lem with one parameter.

For (5.30), we decompose the domain Ω into 3 subdomains: R1 = (0, 0.5) × (0.5, 1), R2 = (0.5, 1) × (0, 0.5),
and R3 = (0, 1)2\(R1 ∪ R2). The diffusion constant α is set to be

α =
{

αi = 1002μi−1, x ∈ Ri, i = 1, 2,
α3 = 1, x ∈ R3,

where µ = (μ1, μ2) ∈ [0, 1]2. The domain of αi, i = 1, 2 is set to [1/100, 100]. The bilinear form becomes

a(u, v; µ) =
2∑

i=1

1002μi−1

∫
Ri

∇u · ∇vdx +
∫

R3

∇u · ∇vdx. (5.33)

All other forms and spaces are identical to Test 5.1. Further, let N100 = {0, 1, 2, . . . , 100}, the train set is
given by:

Ξtrain = {(x(i), y(j)) : x(i) = i
100 , y(j) = j

100 , for i ∈ N100, j ∈ N100}.

We set the tolerance to be 10−3 and use the error estimator defined in (5.29).
Both the standard greedy algorithm and the saturation assumption based greedy algorithm requires 20

reduced basis functions to reduce the estimated error to less than the tolerance. If the error is measured in the
intrinsic energy norm, we can choose Csa = 1 as indicated above. Due to the inaccuracy of the error estimator,
the saturation assumption based algorithm chooses a slightly different set of SN . If we choose Csa = 1.1, we get
however the same set SN as the standard greedy algorithm.

See Figure 13 for a comparisons of the workloads using the standard algorithm and the new approach based
on the saturation assumption with Csa = 1 and Csa = 1.1, respectively. The mean percentage is computed
as

∑N
i=1(percentage at step i)/N . The mean percentages of Csa = 1 and Csa = 1.1 is about 32% and 34%

respectively. Since the computational cost for each evaluation of η(µ; N) is of O(N3), the average percentages
do not represent the average time saving, and only give a sense of the saving of the workloads at each step.

In Figure 14, we present the selections of the sample points SN by the standard algorithm and the saturation
assumption based greedy algorithm with Csa = 1. Many sample points are identical.

Test 5.3. We continue and test a problem with 3 parameters. For (5.30), we decompose the domain Ω into
4 subdomains: Rk = ( i−1

2 , i
2 ) × ( j−1

2 , j
2 ), for i = 1, 2, j = 1, 2, and k = 2(i − 1) + j. The diffusion constant α is

set to be

α =
{

αk = 1002μk−1 x ∈ Rk, k = 1, 2, 3,
α4 = 1 x ∈ R4,
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Figure 13. Percentage of work at each
step N using the saturation assumption
based greedy algorithm with Csa = 1, com-
pared to the workload using the standard
greedy algorithm for Test 5.2.
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where µ = (μ1, μ2, μ3) ∈ [0, 1]3. The bilinear form is

a(u, v; µ) =
3∑

k=1

1002μk−1

∫
Rk

∇u · ∇vdx +
∫

R4

∇u · ∇vdx. (5.34)

All other forms and spaces are identical to the ones of Test 5.1. We again choose the output functional based
error estimator as Test 4.1 and the tolerance is set to be 10−3. Let N50 = {0, 1, 2, . . . , 50}, the train set is
given by:

Ξtrain = {(x(i), y(j), z(k)) : x(i) = i
50 , y(j) = j

50 , z(k) = k
50 , i ∈ N50, j ∈ N50, k ∈ N50}.

The standard greedy algorithm needs 24 reduced basis functions to reduce the estimated error below the
tolerance. If Csa is chosen to be 1, 25 reduced basis functions are needed to reduce the estimated error below
the tolerance. The set SN obtained by the saturation assumption based algorithm with Csa = 1 is also different
from the standard algorithm. As discussed before, this is mainly caused by the inaccuracy of the error estimator.
If we choose Csa = 3, we obtain the same sample points SN as the standard greedy algorithm. See Figure 15 for
the comparisons of the workloads using the standard algorithm and the saturation assumption based algorithm
with Csa = 1 and Csa = 3, respectively. The mean percentages of workload for Csa = 1 and Csa = 3 are 21.6%
and 33.7%, respectively.

Remark 5.1. For the type of compliant problem discussed in Tests 5.1, 5.2 and 5.3, other types of error
estimator are suggested in [25]:

ηe(µ, WN ) :=
‖r(·; µ)‖(Xfe)′

βfe(µ)1/2‖urb
N (µ)‖Xfe

and ηs(µ, WN ) :=
‖r(·; µ)‖2

(Xfe)′

βfe(µ)|srb
N (µ)|

· (5.35)

The most important term in the error estimator of the saturation assumption is the dual norm of the residual
‖r(·; µ)‖(Xfe)′ . For the error estimator ηe(µ; WN ), the behavior is similar to that of η(µ; WN ). For the error
estimator ηs(µ; WN ), the dual norm of the residual is squared. The dual norm is computed with respect to a
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parameter independent reference norm. The square makes the difference between the dual norm based on the
intrinsic energy norm and on the reference norm larger. Numerical tests show that even if Csa = 20 is set for
Test 5.3, the workload of the saturation assumption based algorithm is still only about 45% (on average) of the
standard greedy algorithm.

Test 5.4 (A non-coercive example). In this example, we show that for a non-coercive problem, the saturation
assumption is satisfied numerically with Csa = 1. Let Ω = (0, 1)2, and −Δu− ku = 0 ∈ Ω with same boundary
conditions as (5.30). We choose k = 1 + 1.4μ and the parameter μ ∈ D = [0, 1]. The finite element space X fe,
the train set Ξtrain is chosen as in Test 5.1. We use the following error estimator

η(μ, WN ) :=
‖r(·; μ)‖(Xfe)′

βfe
lb(μ)

, (5.36)

where βfe
lb(μ) is a lower bound of the inf-sup constant with respect to the corresponding norms. This lower bound

is computed by a successive constraint method ([7–9, 18, 30]). A simple calculation shows that k = 2.4674 is
an eigenvalue of the problem. Thus, when μ is close to 1, the constant βfe(μ) is small. The first parameter μ1

is chosen to be 0, that is, S1 = {0}. The standard greedy algorithm chooses the 2nd, 3rd, and 4th parameters
as 1, 0.88, and 0.5, so S4 = {0, 1, 0.88, 0.5}. as in Test 5.1, for all points μ ∈ Ξtrain, we compute η(μ, WN ),
N = 1, . . . , 4. Figure 17 shows the plots of η for each points with N = 1, . . . , 4. For this non-coercive problem,
the saturation assumption is clearly satisfied with Csa = 1 in the first few steps. This example agrees with our
analysis that Csa should be 1 even for non-coercive problems with an unfavorable stability constants.

5.2. Adaptively enriching greedy algorithm

Before presenting the numerical results, we discuss the choice of Csa in the adaptively enriching greedy
algorithm for reduced basis methods. As discussed earlier, in the asymptotic stage, Csa = 1 is a good choice.
In the pre-asymptotic stage, the error may oscillate, and Csa = 1 may miss points with a relative large error.
For the adaptively enriching greedy algorithm, this will be a lesser serious problem, since we will perform a
“safety check” step using a large number of sample points. If some important parameters are missed in the
earlier stage, it will eventually be captured by the algorithm, otherwise, it will not pass the “safety check”. In
addition, even if we miss the error computation for a particular parameter value, the error will be checked at
a later stage before the algorithm terminated. Thus, for the adaptively enriching greedy algorithm for reduced
basis methods, we can always use Csa = 1 confidently.

Test 5.5. We test the adaptively enriching greedy algorithm for the reduced basis method for a problem with
15 parameters.

For (5.30), we decompose the domain Ω into 16 subdomains: Rk = ( i−1
4 , i

4 ) × ( j−1
4 , j

4 ), for i = 1, 2, 3, 4,
j = 1, 2, 3, 4, and k = 4(i − 1) + j. The diffusion constant α is set to be

α =
{

αk = 52μk−1, x ∈ Rk, k = 1, 2, . . . , 15,
α16 = 1, x ∈ R16.

where µ = (μ1, μ2, . . . , μ15) ∈ [0, 1]15. The domain of αk, k = 1, 2, . . . , 15, is given by [1/5, 5]. The bilinear form
consists of

a(u, v; µ) =
15∑

k=1

52μk−1

∫
Rk

∇u · ∇vdx +
∫

R16

∇u · ∇vdx. (5.37)

All other forms and spaces are identical to Test 5.1. Due to the many jumps of the coefficients along the interfaces
of the subdomains, the solution space of this problem is very rich. We set Csa = 1, tol = 0.05, Nsc = 10 000.
Since there is a “safety check” step to ensure the quality of the reduced basis functions, we do not worry that
the choice of Csa is too aggressive. We test three cases: M = 100, M = 500, and M = 1 000. The convergence
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Figure 17. A verification of saturation assumption for a non-coercive problem with one parameter.

for one realization is plotted in Figure 16. The number of reduced basis for M = 100 is 52, and for the other two
cases is 50. This is in agreement with the intuition that a bigger M will lead to a smaller number of the basis
functions since better sample points can be chosen. However, once M is sufficiently large, we do not observe a
further decrease of the number of required basis functions, similar to what can be observed in the case of the
EIM in Section 4.

The percentage of work (effected at each step N) with respect to the total number of points M and the
number of points remained in the train set (at each step N) of the adaptively enriching greedy algorithm for
different values of M = 100, 500, and 1000 are shown in Figure 18. Initially, the estimated errors are larger than
the tolerance for almost all points in the train set. However, when the RB space is rich enough, more and more
points are removed, and eventually, almost all points in the initial train set are removed in later stages. For the
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Figure 18. Percentage of work (effected at each step N) w.r.t. the total number of points
M and of the number of points remained in the train set (at each step N) of the adaptively
enriching greedy algorithm for Test 5.5 and different values of M = 100, 500, and 1000.

number of the points where the error estimators are computed, i.e., those points cannot be skipped by using the
saturation assumption, it behaves like the Algorithm 2 with a fixed train set since the train set barely changes
in the beginning. In the later stage, since almost all points are new points, the percentage of the number of the
points where the error estimators are computed is close to 100%.

We should emphasize that the saving here is very substantial compared to a standard algorithm. In our
algorithm, an extremely large number of train points are used (if cumulated over the iterations), and it is
impractical to use such a large set in the standard greedy algorithm.

Remark 5.2. For a fixed M and provided the algorithm is performed several times, we observe that even
though the train set is generated randomly each time, the numbers of the reduced basis functions needed to
reduce the estimated error to the prescribed tolerance are very similar. This means that even if we start with a
different and very coarse random train set, the algorithm is robust in the sense of capturing the dimensionality
of the reduced basis space.

6. Conclusions

In this paper, we propose two enhanced greedy algorithms designed to improve sampling approaches for high
dimensional parameters spaces. We have demonstrated the efficiency of these new techniques on the empirical
interpolation method (EIM) and the reduced basis method (RBM). Among key observations, we have docu-
mented the potential for substantial savings over standard greedy algorithm by utilization of a simple saturation
assumption. Combining this with a “safety check” step guaranteed adaptively enriching greedy algorithm, the
EIM and RBM for problems with a high number of parameters are now practical and more robust.

With some possible modifications, the algorithms developed here can be applied to other scenarios where a
greedy algorithm is needed, for example, the successive constraint linear optimization method for lower bounds
of parametric coercivity and inf-sup constants [30].
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