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HIGH-ORDER COLLOCATION METHODS FOR DIFFERENTIAL
EQUATIONS WITH RANDOM INPUTS∗

DONGBIN XIU† AND JAN S. HESTHAVEN‡

Abstract. Recently there has been a growing interest in designing efficient methods for the so-
lution of ordinary/partial differential equations with random inputs. To this end, stochastic Galerkin
methods appear to be superior to other nonsampling methods and, in many cases, to several sampling
methods. However, when the governing equations take complicated forms, numerical implementa-
tions of stochastic Galerkin methods can become nontrivial and care is needed to design robust and
efficient solvers for the resulting equations. On the other hand, the traditional sampling methods,
e.g., Monte Carlo methods, are straightforward to implement, but they do not offer convergence as
fast as stochastic Galerkin methods. In this paper, a high-order stochastic collocation approach is
proposed. Similar to stochastic Galerkin methods, the collocation methods take advantage of an
assumption of smoothness of the solution in random space to achieve fast convergence. However,
the numerical implementation of stochastic collocation is trivial, as it requires only repetitive runs
of an existing deterministic solver, similar to Monte Carlo methods. The computational cost of the
collocation methods depends on the choice of the collocation points, and we present several feasible
constructions. One particular choice, based on sparse grids, depends weakly on the dimensionality of
the random space and is more suitable for highly accurate computations of practical applications with
large dimensional random inputs. Numerical examples are presented to demonstrate the accuracy
and efficiency of the stochastic collocation methods.
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1. Introduction. This paper is devoted to numerical solutions of differential
equations with random inputs. The source of random inputs includes uncertainty in
system parameters, boundary/initial conditions, etc. Such kinds of uncertainty are
ubiquitous in engineering applications and are often modeled as random processes.
The classical approach is to model the random inputs as some idealized processes
which typically are white noises, e.g., Wiener processes, Poisson processes, etc., and
has led to elegant mathematical analysis and numerical methods by using stochastic
calculus, e.g., Ito or Strantonovich calculus. The resulting differential equations are
termed “stochastic ordinary/partial differential equations” (SODE/SPDE) (see, for
example, [18, 25, 28, 43]). Recently, there has been a growing interest in studying
problems with more correlated random inputs (“colored noises”) and, in case of ran-
dom parameters, fully correlated random processes, i.e., random variables. In this
context, the classical stochastic calculus does not readily apply and other approaches
are required.
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COLLOCATION METHODS FOR STOCHASTIC EQUATIONS 1119

The traditional approach for differential equations with random inputs is the
Monte Carlo method, which generates ensembles of random realizations for the pre-
scribed random inputs and utilizes repetitive deterministic solvers for each realization.
Monte Carlo methods have been applied to many applications and their implemen-
tations are straightforward. Although the convergence rate—the ensemble mean of
a brute-force Monte Carlo method with K realizations converges asymptotically at
a rate 1/

√
K—is relatively slow, it is (formally) independent of the dimensionality

of the random space, i.e., independent of the number of random variables used to
characterize the random inputs (e.g., [13]). To accelerate convergence, several tech-
niques have been developed, for example, Latin hypercube sampling, [34, 48], the
quasi-Monte Carlo (QMC) method, [14, 39, 40], and the Markov chain Monte Carlo
method (MCMC) [16, 22, 36]. These methods can improve the efficiency of the brute-
force Monte Carlo method. However, additional restrictions are imposed based on
their specific designs and their applicability is limited.

Another class of methods is the nonsampling methods, where no repetitive de-
terministic solvers are employed. Methods along this line of approach include per-
turbation methods [27] and second-moment analysis [31, 32]. These methods do not
result in convergent series of expansion and their applicability is restricted to systems
with relatively small random inputs and outputs. Such a condition is difficult to sat-
isfy, especially for nonlinear problems where small random inputs may induce large
random outputs (e.g., [56]). Stochastic Galerkin methods, whose convergence can be
established for problems with relatively large magnitude of random inputs/outputs,
have been developed. The stochastic Galerkin methods are generalizations of the
Wiener–Hermite polynomial chaos expansion, which was developed in [51] and has
been applied to various problems in mechanics [21]. The generalizations, also called
generalized polynomial chaos, employ non-Hermite polynomials to improve efficiency
for a wider class of problems and include global polynomial expansions based on hy-
pergeometrical polynomials [53, 52, 54], piecewise polynomial expansions [2, 12], and
wavelet basis expansions [29, 30]. In general, these methods exhibit fast convergence
rates with increasing order of the expansions, provided that solutions are sufficiently
smooth in the random space. However, the resulting set of deterministic equations is
often coupled and care is needed to design efficient and robust solver. (See [52, 55]
for examples of diffusion equations.) The form of the resulting equations can become
very complicated if the underlying differential equations have nontrivial and nonlinear
forms. (See [7, 37, 57] for examples of hyperbolic systems.)

In this paper, we propose a class of stochastic collocation methods that combines
the strength of Monte Carlo methods and stochastic Galerkin methods. By taking ad-
vantage of the existing theory on multivariate polynomial interpolations (e.g., [5, 6]),
the stochastic collocation methods achieve fast convergence when the solutions possess
sufficient smoothness in random space, similar to stochastic Galerkin methods. On
the other hand, the implementations of stochastic collocation methods are straight-
forward as they only require solutions of the corresponding deterministic problems
at each interpolation point, similar to Monte Carlo methods at each sampling point.
Such properties make stochastic collocation methods good alternatives to Monte Carlo
methods and stochastic Galerkin methods. The core issue is the construction of the
set of interpolation points, and it is nontrivial in multidimensional random spaces.
For such a cases, point sets based on tensor products of one-dimensional quadrature
points [37, 53] are not suitable, as the number of points grows too fast with increasing
dimensions. Therefore, we investigate and propose two other choices. One is based
on Stroud’s cubature points [49] and the other on sparse grids from the Smolyak
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1120 DONGBIN XIU AND JAN S. HESTHAVEN

algorithm [46]. The former approach is of relatively low-order accuracy but results
in highly efficient algorithms, especially for problems with large dimensional random
inputs. The latter offers true high-order accuracy with convergence rate depending
weakly on dimensionality. Both methods are more efficient than brute-force Monte
Carlo methods in a large range of random dimensionality. Compared to stochas-
tic Galerkin methods, the collocation methods generally result in a larger number of
equations than a typical Galerkin method; however, these equations are easier to solve
as they are completely decoupled and require only repetitive runs of a deterministic
solver. Such a property makes the collocation methods more attractive for problems
with complicated governing equations.

This paper is organized as follows. In section 2 we present the mathematical
framework of stochastic differential equations—the functional spaces and the strong
and weak forms are formulated in section 2.1 and we briefly review the Monte Carlo
methods and stochastic Galerkin methods in section 2.2. The stochastic collocation
methods are discussed in section 3, where the construction of collocation points is
discussed in detail. More technical details and numerical examples are presented in
sections 4 and 5, and we conclude the paper in section 6.

2. Random differential equations. Let (Ω,A,P) be a complete probability
space, where Ω is the event space, A ⊂ 2Ω the σ-algebra, and P the probability
measure. Consider a d-dimensional bounded domain D ⊂ Rd (d = 1, 2, 3) with
boundary ∂D, and we study the following problem: find a stochastic function, u ≡
u(ω, x) : Ω×D̄ → R, such that for P-almost everywhere ω ∈ Ω, the following equation
holds:

L (ω, x;u) = f(ω, x), x ∈ D,(2.1)

subject to the boundary condition

B(ω, x;u) = g(ω, x), x ∈ ∂D,(2.2)

where x = (x1, . . . , xd) are the coordinates in Rd, L is a (linear/nonlinear) differential
operator, and B is a boundary operator. The operator B can take various forms
on different boundary segments, e.g., B ≡ I on Dirichlet segments (where I is the
identity operator) and B ≡ n ·∇ on Neumann segments (where n is the outward unit
normal vector). In the most general settings, the operators L and B, as well as the
driving terms f and g, can all have random components. Finally, we assume that the
boundary ∂D is sufficiently regular and the driving terms f and g are properly posed,
such that (2.1)–(2.2) is well-posed P-a.e. ω ∈ Ω. (With a slight abuse of notation,
(2.1)–(2.2) can incorporate time-dependent problems, if we consider D to be in an
(Rd+1)-dimensional space, with the extra dimension designated to time.)

2.1. Strong and weak forms. To solve (2.1)–(2.2) numerically, we need to re-
duce the infinite-dimensional probability space to a finite-dimensional space. This can
be accomplished by characterizing the probability space by a finite number of random
variables. Such a procedure, termed the “finite-dimensional noise assumption” in [2],
is often achieved via a certain type of decomposition which can approximate the tar-
get random process with desired accuracy. One of the choices is the Karhunen–Loève
type expansion [33], which is based on the spectral decomposition of the covariance
function of the input random process. Following a decomposition and assuming that
the random inputs can be characterized by N random variables, we can rewrite the
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COLLOCATION METHODS FOR STOCHASTIC EQUATIONS 1121

random inputs in abstract form, e.g.,

L(ω, x;u) = L(Y 1(ω), . . . , Y N (ω), x;u), f(ω, x) = f(Y 1(ω), . . . , Y N (ω), x),

(2.3)

where {Y i}Ni=1 are real random variables with zero mean value and unit variance.
Hence, following the Doob–Dynkin lemma [43], the solution of (2.1)–(2.2) can be
described by the same set of random variables {Y i(ω)}Ni=1, i.e.,

u(ω, x) = u(Y 1(ω), . . . , Y N (ω), x).(2.4)

By characterizing the probability space with N random variables, we have effectively
reduced the infinite-dimensional probability space to a N -dimensional space.

From a mathematical and computational point of view, it is most convenient to
further assume that these random variables are mutually independent, and subse-
quently, we can define the corresponding Hilbert functional spaces via simple tensor
product rules. However, such an assumption could potentially introduce more errors
in approximating the input random processes (in addition to the errors induced by
truncating the infinite series during a decomposition procedure such as the Karhunen–
Loève expansion). For example, for non-Gaussian processes, the Karhunen–Loève ex-
pansion yields a set of uncorrelated random variables that are not necessarily mutually
independent. To transform them into independent random variables, a (nonlinear)
transformation is needed and its numerical construction can be nontrivial. In fact, a
mathematically rigorous transformation exists by using merely the definition of joint
cumulative density function (CDF) [44]. However, such a transformation is of little
practical use as it requires the knowledge of all the joint CDFs of the underlying
random process.

In this paper, we take the customary approach (see, for example, [2, 30, 52])
of assuming that the random inputs are already characterized by a set of mutually
independent random variables with satisfactory accuracy. We emphasize that how to
(numerically) achieve this, i.e., to represent continuous non-Gaussian random inputs
via the Karhunen–Loève decomposition or any other representation and to ensure
that the random variables involved are independent, falls into the topic of numerical
representation of non-Gaussian processes. It remains an active research area (e.g.,
[23, 45, 58]) and is beyond the scope of this paper. We also remark that it is possible
to construct multidimensional functional spaces based on finite number of dependent
random variables [47]. However, such a construction does not, in its current form,
allow straightforward numerical implementations.

Let us now assume that {Y i}Ni=1 are independent random variables with probabil-
ity density functions ρi : Γi → R+ and their images Γi ≡ Y i(Ω) are bounded intervals
in R for i = 1, . . . , N . Then

ρ(y) =
N∏

i=1

ρi(Y
i) ∀y ∈ Γ(2.5)

is the joint probability density of y = (Y 1, . . . , Y N ) with the support

Γ ≡
N∏

i=1

Γi ⊂ RN .(2.6)
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1122 DONGBIN XIU AND JAN S. HESTHAVEN

This allows us to rewrite (2.1)–(2.2) as an (N + d)-dimensional differential equation
in the strong form

L (y, x;u) = f(y, x), (y, x) ∈ Γ ×D,(2.7)

subject to the boundary condition

B(y, x;u) = g(y, x), (y, x) ∈ Γ × ∂D,(2.8)

where N is the dimensionality of the random space Γ and d is the dimensionality of
the physical space D.

Similar to the weak formulations in deterministic problems, we often seek to
solve (2.7)–(2.8) in a weak form. For example, we can define a (finite-dimensional)
subspace VΓ ⊂ L2

ρ(Γ), the space of all square integrable function in Γ with respect to
the measure ρ(y)dy, and seek uV (y, x) ∈ VΓ(y), such that

∫

Γ
ρ(y)L (y, x;uV ) v(y)dy =

∫

Γ
ρ(y)f(y, x)v(y)dy ∀v(y) ∈ VΓ, x ∈ D,(2.9)

∫

Γ
ρ(y)B(y, x, uV )v(y)dy =

∫

Γ
ρ(y)g(y, x)v(y)dy ∀v(y) ∈ VΓ, x ∈ ∂D.(2.10)

The resulting problem (2.9)–(2.10) thus becomes a deterministic problem in the phys-
ical domain D and can be solved by a standard discretization technique, e.g., finite
elements, finite volume.

2.2. Existing numerical methods. Several numerical methods can be applied
to problem (2.7)–(2.8), or (2.9)–(2.10). Here we briefly review two of the more popular
methods—Monte Carlo methods and stochastic Galerkin methods—whose strengths
complement each other.

2.2.1. Monte Carlo methods. Monte Carlo simulation is one of the most
developed methods for solving stochastic differential equations. Although the con-
vergence rate is relatively slow—a typical Monte Carlo simulation consisting of K
realizations converges asymptotically as 1/

√
K [13]—it is independent of the number

of random variables {Y i(ω)}Ni=1. The procedure of applying a Monte Carlo method
to problem (2.7)–(2.8) takes the following steps:

1. For a prescribed number of realizations K, generate independent and iden-
tically distributed (i.i.d.) random variables {Y i

j }Ni=1 ≡ {Y i(ωj)}Ni=1, for
j = 1, . . . ,K;

2. For each j = 1, . . . ,K, solve a deterministic problem (2.7)–(2.8) with yj =
(Y 1

j , . . . , Y
N
j ) and obtain solution uj ≡ u(yj , x), i.e., solve L(yj , x;uj) =

f(yj , x) in D, subject to B(yj , x;uj) = g(yj , x) on ∂D;
3. Postprocess the results to evaluate the solution statistics, e.g., 〈u〉 ≡ E[u] =

1
M

∑M
j=1 uj .

Here E[u] =
∫
Γ ρ(y)u(y)dy is the expectation. Note that for each realization j =

1, . . . ,K, step 2 is a deterministic problem and can be solved by any suitable scheme.

2.2.2. Stochastic Galerkin methods. Stochastic Galerkin methods deal with
the weak form (2.9)–(2.10), and they offer fast convergence when the solution is
sufficiently smooth in the random space. Forms of stochastic Galerkin methods differ
in the construction of the subspace VΓ in (2.9). Here we briefly review the construction
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COLLOCATION METHODS FOR STOCHASTIC EQUATIONS 1123

based on global orthogonal polynomial expansions. Let us define one-dimensional
subspaces for L2

ρi
(Γi),

W i,pi ≡
{
v : Γi → R : v ∈ span

{
φm(Y i)

}pi

m=0

}
, i = 1, . . . , N,(2.11)

where {φm(Y i)} are a set of orthogonal polynomials satisfying the orthogonality con-
ditions

∫

Γi

ρi(Y
i)φm(Y i)φn(Y i)dY i = h2

mδmn,(2.12)

with normalization factors h2
m =

∫
Γi

ρiφ2
mdY i. The type of the orthogonal polyno-

mials {φm(Y i)} in (2.12) is determined by ρi(Y i), the probability density function of
Y i(ω), for i = 1, . . . , N . For example, uniform distributions are better approximated
by Legendre polynomials, and Hermite polynomials are more appropriate for Gaus-
sian distributions. (See [53, 52] for a detailed list of correspondences.) We remark
that such a correspondence is not mandatory, so long as {φm(Y i)} forms a complete
basis.

The corresponding N -dimensional subspace VΓ for Γ can be defined as

W p
N ≡

⊗

|p|≤p

W i,pi ,(2.13)

where the tensor product is over all possible combinations of the multi-index p =
(p1, . . . , pN ) ∈ NN

0 satisfying |p| =
∑N

i=1 pi ≤ p. Thus, W p
N is the space of N -

variate orthogonal polynomials of total degree at most p, and the number of basis
functions in (2.13) is dim(W p

N ) =
(N+p

N

)
. Hereafter, we will refer to W p

N as a complete
polynomial space. Such spaces are often employed in the (generalized) polynomial
chaos expansions [21, 52, 54].

Another construction of VΓ is based on the tensor products of the one-dimensional
polynomial spaces with fixed highest polynomial orders in all dimensions, i.e.,

Zp
N =

N⊗

i=1

W i,pi , max
i

pi = p.(2.14)

Such a space will be denoted as tensor polynomial space hereafter. They are employed
in [2, 15], and the number of basis functions in Zp

N is dim(Zp
N ) = (p + 1)N .

If the same one-dimensional subspaces (2.11) are employed, then W p
N ⊂ Zp

N . The
numbers of basis functions in both spaces depend on the number of dimensions N and
the polynomial orders p, and they grow fast with increasing N and p. In particular,
the total number of terms can grow exponentially fast with increasing order p when
N , 1 (curse-of-dimensionality). We also remark that when N , 1 and p is moderate
(e.g. p ≤ 10), dim(W p

N ) - dim(Zp
N ).

For low to moderate value of N , stochastic Galerkin methods are preferred because
their high accuracy and fast convergence; for large value of N , 1, the rapidly growing
number of basis functions effectively reduces its efficiency. In this case, the Monte
Carlo method is preferred. However, if a highly accurate stochastic solution is desired,
then stochastic Galerkin methods can be more efficient even for relatively large value
of N (e.g., [2]).

D
ow

nl
oa

de
d 

11
/2

6/
12

 to
 1

28
.1

48
.2

52
.3

5.
 R

ed
ist

rib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls/

oj
sa

.p
hp



1124 DONGBIN XIU AND JAN S. HESTHAVEN

3. Stochastic collocation methods. In this section, we present high-order
collocation methods for (2.1)–(2.2). The objective is to combine the strength of the
two existing approaches: the high resolution of stochastic Galerkin methods resulting
from polynomial approximations in random spaces, and the ease of implementation
of Monte Carlo methods by sampling at discrete points in random spaces.

3.1. Formulation. The construction of high-order stochastic collocation meth-
ods is based on polynomial interpolations in the multidimensional random space. Let
us denote by y = (Y 1, . . . , Y N ) any point in the random space Γ ⊂ RN , by ΠN the
space of all N -variate polynomials with real coefficients, and by Πp

N the subspace of
polynomials of total degree at most p. (Note that the space W p

N defined in (2.13) is
a subset of Πp

N .) When derivatives are not interpolated, the Lagrange interpolation
problem can be stated in the following form.

Definition 3.1 (Lagrange interpolation). Given a finite number of distinct
points y1, . . . , yM , some real constants b1, . . . , bM , and a subspace VI ∈ ΠN , find a
polynomial l ∈ VI such that

l(yj) = bj , j = 1, . . . ,M.(3.1)

The points y1, . . . , yM are called interpolation nodes, and VI is the interpolation space.
Definition 3.2 (poisedness). The Lagrange interpolation problem in Definition

3.1, for the points y1, . . . , yM ∈ RN , is called poised in VI if, for any given data
b1, . . . , bM ∈ R, there exists a function f ∈ VI such that f(yj) = bj, j = 1, . . . ,M .
When the Lagrange interpolation problem for any M distinct points in RN is poised
in VI , then VI is called a Haar space of order M .

There is a well-developed and extensive classical theory of univariate Lagrange
polynomial interpolation. However, the multivariate case is more difficult. In par-
ticular, the Haar spaces exist in abundance for N = 1 but not for N > 1. In fact,
in this case there are no Haar spaces of dimension greater than one—the so-called
loss-of-Haar. (For more details and the refinement of this statement, see [11, 35].)
Thus, research has focused on the selection of points {yi}Mi=1 such that one achieves
a good approximation by a Lagrange interpolation.

Let ΘN = {yi}Mi=1 ∈ Γ be a set of (prescribed) nodes such that the Lagrange
interpolation (3.1) in the N -dimensional random space Γ is poised in a corresponding
interpolation space VI . (For sufficient conditions on the distribution of the nodes
to ensure a unique interpolation, see [8].) Subsequently, Lagrange interpolation of
a smooth function, f : RN → R, can now be viewed as follows: find a polynomial
I(f) ∈ VI such that I(f)(yi) = f(yi), ∀i = 1, . . . ,M .

The polynomial approximation I(f) can be expressed by using the Lagrange
interpolation polynomials, i.e.,

I(f)(y) =
M∑

k=1

f(yk)Lk(y),(3.2)

where

Li(y) ∈ VI , Li(yj) = δij , 1 ≤ i, j ≤ M,(3.3)

are the Lagrange polynomials.
We equip the space VI with the supremum-norm ‖ · ‖ and introduce

‖I‖ = sup
f $=0

‖If‖∞
‖f‖∞

.(3.4)
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COLLOCATION METHODS FOR STOCHASTIC EQUATIONS 1125

The Lebesgue theorem states that the interpolation error is uniformly bounded as

‖f(y) − f∗(y)‖∞ ≤ ‖f(y) − If(y)‖∞ ≤ (1 + Λ) ‖f(y) − f∗(y)‖∞,(3.5)

where f∗(y) is the best approximating polynomial, and Λ = ‖I‖ = maxy∈Γ
∑K

k=1 |Li(y)|
is the Lebesgue constant. We remark that the determination of f∗(y) is an unsolved
problem for arbitrary (N > 1)-dimensional spaces, and the estimation of the Lebesgue
constant, which depends on the particular choice of nodal sets ΘN , is a nontrivial task
even for N = 1.

By denoting

û(y) ≡ Iu(y) =
M∑

k=1

u(yk)Lk(y),(3.6)

the collocation procedure to solve the stochastic elliptic equation (2.7) is

R (û(y))|yk
= 0 ∀k = 1, . . . ,M,(3.7)

where R(u) = L(u) − f is the residual of (2.7). By using the property of Lagrange
interpolation (3.3), we immediately obtain: for k = 1, . . . ,M ,

L(yk, x;u) = f(yk, x), x ∈ D,(3.8)

with boundary condition

B(yk, x;u) = g(yk, x), x ∈ ∂D.(3.9)

Thus, the stochastic collocation method is equivalent to solving M deterministic prob-
lems (3.8)–(3.9), the deterministic counterpart of problem (2.7)–(2.8), at each nodal
point yk, k = 1, . . . ,M in a given nodal set ΘN . Note that the problem (3.8)–(3.9)
for each k is naturally decoupled, and existing deterministic solvers can be readily
applied. This is in direct contrast to the stochastic Galerkin approaches, where the
resulting expanded equations are, in general, coupled.

Once the numerical solutions of (3.8)–(3.9) are obtained at all collocation points,
the statistics of the random solution can be evaluated, e.g.,

E(û)(x) =
M∑

k=1

u(yk, x)

∫

Γ
Lk(y)ρ(y)dy.(3.10)

The evaluations of such expectations require explicit knowledge of the Lagrange in-
terpolation polynomials {Lk(y)}. For a given nodal set ΘN , the polynomials can be
determined numerically by inverting a Vandermonde-type matrix. (The matrix is in-
vertible under the assumption that the Lagrange interpolation is poised on ΘN .) In
multivariate cases, such a procedure can be cumbersome, but can be accomplished
once and for all at the preprocessing stage.

An alternative is to choose the set ΘN to be a cubature point set. Recall that a
cubature rule approximates an integral by

∫

Γ
f(y)dy 0

M∑

i=1

f(yi)wi,(3.11)
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1126 DONGBIN XIU AND JAN S. HESTHAVEN

where {wi} are the weights. It is called “of order s” if the approximation is exact
for all f ∈ Πr

N , r ≤ s, and not exact for at least one f ∈ Πs+1
N . When we choose the

interpolation point set ΘN to be the same as a cubature point set, the evaluation of
(3.10) is reduced to

E(û)(x) =
M∑

k=1

u(yk, x)wk.(3.12)

It should be noted that the use of cubature formula to evaluate the solution statistics
will introduce extra errors whenever the integrals defining these statistics, e.g., (3.10)
for mean solution, cannot be evaluated exactly by an s-order cubature.

Construction of cubature formulas has long been an active and challenging re-
search area, and we refer interested readers to [10, 9] for extensive reviews.

3.2. Choices of collocation points. The computational complexity of the
stochastic collocation methods (3.8)–(3.9) is M times that of a deterministic problem,
where M is the total number of collocation points. Thus, we need to choose a nodal
set ΘN with fewest possible number of points under a prescribed accuracy require-
ment. In this section, we present several choices of such collocation points. The main
focus here is on multidimensional random spaces, i.e., Γ ⊂ RN with N > 1. Without
loss of generality, we assume that the bounded support of the random variables Y i is
Γi = [−1, 1] for i = 1, . . . , N and subsequently the bounded random space Γ is a N -
hypercube, i.e., Γ = [−1, 1]N . (Note that random variables with bounded support in

[a, b] can always be mapped to [−1, 1], and any domain Γ∗ =
∏N

i=1[a
i, bi] to [−1, 1]N .)

3.2.1. Tensor products of one-dimensional nodal sets. A natural choice of
the nodal set is the tensor product of one-dimensional sets. In interpolating smooth
functions f : [−1, 1]N → R, much is known about good interpolation formulas for
N = 1, i.e., for every direction i = 1, . . . , N , we can construct a good one-dimensional
interpolation

U i(f) =
mi∑

k=1

f(Y i
k ) · aik(3.13)

based on nodal sets

Θi
1 = (Y i

1 , . . . , Y
i
mi

) ⊂ [−1, 1],(3.14)

where aik ≡ ak(Y i) ∈ C([−1, 1]). We assume that a sequence of formulas (3.13) is
given. In the multivariate case N > 1, the tensor product formulas are

I(f) ≡
(
U i1 ⊗ · · ·⊗ U iN

)
(f) =

mi1∑

k1=1

· · ·
miN∑

kN=1

f(Y i1
k1
, . . . , Y iN

kN
) · (ai1k1

⊗ · · ·⊗ aiNkN
).

(3.15)

Clearly, the above product formula needs M = mi1 · · ·miN nodal points. If we choose
to use the same interpolating function (3.13) in each dimension with the same number
of points, i.e., mi1 = · · · = miN ≡ m, the total number of points is M = mN . This
number grows quickly in high dimensions N , 1—even for a poor approximation
with two points (m = 2) in each dimension, M = 2N , 1 for N , 1.
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COLLOCATION METHODS FOR STOCHASTIC EQUATIONS 1127

The tensor product interpolation is easy to construct—the interpolation points
and space are obtained by tensor products of the univariate ones. The Lagrange
formula are easily extended to this case, as can be found in [4, 24]. However, because
of the rapidly growing number of interpolation nodes in high dimensions, we will not
consider this approach extensively in this paper.

3.2.2. Sparse grids. In this section we propose to solve the stochastic colloca-
tion problem (3.8)–(3.9) on a sparse grid constructed by the Smolyak algorithm. The
Smolyak algorithm is a linear combination of product formulas, and the linear combi-
nation is chosen in such a way that an interpolation property for N = 1 is preserved
for N > 1. Only products with a relatively small number of points are used and
the resulting nodal set has significantly less number of nodes compared to the tensor
product rule (3.15). Much research has been devoted to the Smolyak algorithm since
its introduction in [46]; see, e.g., [3, 41, 42].

Starting with the one-dimensional interpolation formula (3.13), the Smolyak al-
gorithm is given by (see [50])

I(f) ≡ A(q,N) =
∑

q−N+1≤|i|≤q

(−1)q−|i|1 ·
(
N − 1

q − |i|

)
·
(
U i1 ⊗ · · ·⊗ U iN

)
,(3.16)

where i = (i1, . . . , iN ) ∈ NN . To compute A(q,N), we only need to evaluate function
on the “sparse grid”

ΘN ≡ H(q,N) =
⋃

q−N+1≤|i|≤q

(Θi1
1 × · · ·× ΘiN

1 ).(3.17)

In this paper, we choose to use Smolyak formulas that are based on one-dimensional
polynomial interpolation at the extrema of the Chebyshev polynomials. (Other choices,
such as the Gauss quadrature points, can be considered as well.) For any choice of
mi > 1, these nodes are given by

Y i
j = − cos

π · (j − 1)

mi − 1
, j = 1 . . . ,mi.(3.18)

In addition, we define Y i
1 = 0 if mi = 1. The functions aij in (3.13) are characterized

by the requirement that U i reproduce all polynomials of degree less than mi. We also
choose m1 = 1 and mi = 2i−1 for i > 1. By doing so, the one-dimensional nodal sets
Θi

1 are nested, i.e., Θi
1 ⊂ Θi+1

1 , and subsequently H(q,N) ⊂ H(q + 1, N).
It has been shown that if we set q = N + k, then A(N + k,N) is exact for all

polynomials in Πk
N [42], and the total number of nodes for N , 1 is [41]

M ≡ dim(A(N + k,N)) ∼ 2k

k!
Nk, k fixed, N , 1.(3.19)

On the other hand, dim(Πk
N ) =

(N+k
N

)
∼ Nk/k! for N , 1. Thus, A(N + k,N)

uses about 2k times as many points as the degree-of-freedom of Πk
N . Since this

factor is independent of N , the algorithm may be regarded as optimal. Formula
(3.19) also indicates that the number of nodes from the Smolyak sparse grid is larger
than the number of expansion terms of a stochastic Galerkin method in the complete
polynomial space W k

N . Hereafter, we will refer k in A(N + k,N) as the “level” of the
Smolyak construction.
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Fig. 3.1. Two-dimensional (N = 2) interpolation nodes based on the extrema of Chebyshev
polynomials (3.18). Left: sparse grid H(N + k,N) from Smolyak algorithm, k = 5. Total number of
points is 145. Right: tensor product algorithm (3.15) from the same one-dimensional nodes. Total
number of nodes is 1, 089.

Table 3.1
The degrees-of-freedom of the Smolyak sparse grid (H(N + k,N) = dim(A(N + k,N))), the

complete polynomial space Wk
N , and the tensor polynomial space Zk

N , for various dimensions N and
order k.

N k H(N + k,N) dim(Wk
N ) dim(Zk

N )

2 1 5 3 4
2 13 6 9
3 29 10 16
4 65 15 25

10 1 21 11 1, 024
2 221 66 59, 049
3 1, 581 286 1, 048, 576

20 1 41 21 1, 048, 576
2 841 231 ≈ 3.5 × 109

50 1 101 51 ≈ 1.1 × 1016

2 5, 101 1, 326 ≈ 7.2 × 1023

In Figure 3.1, we show the two-dimensional (N = 2) interpolation nodes by the
sparse grid H(N + k,N) described above, with k = 5. For comparison, the two-
dimensional tensor product grid based on the same one-dimensional nodes are shown
on the right of Figure 3.1, and we observe that the sparse grid has significantly fewer
nodes.

In Table 3.1 we list the number of nodes of the Smolyak sparse grid H(N+k,N) =
dim(A(N + k,N)), the degrees-of-freedom of the complete polynomial space W k

N
(2.13), and the tensor polynomial space Zk

N (2.14). (As shown in [42], the inter-
polation by A(N + k,N) is exact in a polynomial space richer than W k

N but not as
rich as Zk

N .) It can be seen that as N grows, the number of nodes from the Smolyak
sparse grid is significantly less than dim(Zk

N ). Also, the relation (3.19) can be ob-
served. This indicates that only at low dimensions, e.g., N < 5, should the tensor
product construction of interpolation nodes be considered.

The interpolation error in a space F l
N = {f : [−1, 1]N → R | ∂|m|f continues,mi ≤

l, ∀i}, where m ∈ NN
0 and ∂|m| is the usual N -variate partial derivative of order |m|,
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COLLOCATION METHODS FOR STOCHASTIC EQUATIONS 1129

is (cf. [3])

‖IN −A(q,N)‖∞ ≤ CN,l ·M−l · (logM)(l+2)(N−1)+1,(3.20)

where IN is the identity operator in a N -dimensional space and M = dim(H(q,N) is
the number of interpolation points.

Another intriguing property of the sparse grid constructed above is that it is
also the nodes of a good cubature formula (3.11). Thus, we can efficiently evaluate
the solution statistics in a similar way of (3.12). For analysis on integration error
estimates of Smolyak sparse grid for multivariate integrals, see [41].

3.2.3. Stroud’s cubature of degrees 2 and 3. For the N -hypercube spaces
[−1, 1]N considered in this paper, Stroud constructed a set of cubature points with
(N + 1)-point that is accurate for multiple integrals of polynomials of degree 2, and
a set of degree 3 with 2N -point [49]. The degree 2 formula, termed the Stroud-2
method hereafter, consists of points {yk}Nk=0 such that

Y 2r−1
k =

√
2

3
cos

2rkπ

N + 1
, Y 2r

k =

√
2

3
sin

2rkπ

N + 1
, r = 1, 2, . . . , [N/2],(3.21)

where [N/2] is the greatest integer not exceeding N/2, and if N is odd Y N
k =

(−1)k/
√

3. The degree 3 formula, which will be called as Stroud-3 method, has
the points {yk}2N

k=1 such that

Y 2r−1
k =

√
2

3
cos

(2r − 1)kπ

N
, Y 2r

k =

√
2

3
sin

(2r − 1)kπ

N
, r = 1, 2, . . . , [N/2],

(3.22)

and if N is odd Y N
k = (−1)k/

√
3.

It was proved in [38] that the Stroud-2 and -3 methods employ the minimal num-
ber of points for their corresponding integration accuracy. However, to the authors’
knowledge, no theory exists on the approximation properties of the Lagrange inter-
polations constructed on these nodes. It is expected that the interpolation errors will
be lower than degree 2 and 3 for the Stroud-2 and -3 method, respectively.

In this paper, we will employ the Stroud-2 and -3 nodes for stochastic collocation
methods. For relatively low-order accuracy requirement in the solution statistics
(expectations), the Stroud methods are highly efficient especially in high-dimensional
spaces (N , 1) because the numbers of nodal points are minimal. However, the
accuracy cannot be improved any further and no error estimates can be obtained.

4. Applications to stochastic elliptic equations. In this section we use a
stochastic elliptic problem to illustrate the applications of stochastic collocation meth-
ods. In particular, we consider for P-a.e. ω ∈ Ω,

−∇ · (a(ω, x)∇u(ω, x)) = f(ω, x), in D,
u(ω, x) = 0, on ∂D,

(4.1)

where a, f : Ω × D → R are known stochastic functions. Standard assumptions
are made on the regularity of the input functions so that (4.1) is well-posed, e.g.,
a ∈ L∞(Ω, D) is strictly positive.

Again let us assume that the random input functions can be characterized by
N independent random variables {Y i(ω)}Ni=1, whose images are bounded intervals
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1130 DONGBIN XIU AND JAN S. HESTHAVEN

and define an N -dimensional random space Γ ⊂ RN . Without loss of generality, let
Γ = [−1, 1]N . Problem (4.1) can be then expressed in the strong form,

−∇ · (a(y, x)∇u(y, x)) = f(y, x) ∀(y, x) ∈ Γ ×D,
u(y, x) = 0 ∀(y, x) ∈ Γ × ∂D,

(4.2)

and weak variational form: find u ∈ L2
ρ(Γ) ⊗H1

0 (D) such that

Kρ(u, v;κ) = Iρ(f, v) ∀v ∈ L2
ρ(Γ) ⊗H1

0 (D),(4.3)

where

Iρ(v, w) =

∫

Γ
ρ(y)

∫

D
v(y, x)w(y, x)dxdy

and

Kρ(v, w;κ) =

∫

Γ
ρ(y)

∫

D
a(y, x)∇v(y, x) ·∇w(y, x)dxdy.

4.1. Formulations and error estimates. A stochastic collocation method,
combined with a finite element method (FEM) in the physical space D ⊂ Rd, takes
the following form: for a given set of collocation nodes ΘN = {yk}Mk=1 on which the
Lagrange interpolation is poised in an interpolation space VI ⊂ L2

ρ(Γ), and a piecewise

(continuous) FEM mesh Xh
d ∈ H1

0 (D) (where h > 0 is its mesh spacing parameter)
that satisfies all the standard requirements on a FEM mesh, find as follows: for
k = 1, . . . ,M , uh

k(x) ≡ uh(yk, x) ∈ Xh
d , such that

∫

D
a(yk, x)∇uh

k(x) ·∇χ(x)dx =

∫

D
f(yk, x)χ(x)dx ∀χ ∈ Xh

d .(4.4)

The final numerical solution takes the form

ûh(y, x) =
M∑

k=1

uh
k(x)Lk(y).(4.5)

To study error estimates, let us define an error in term of the deterministic energy
error, i.e.,

EG ≡
(

E
∫

D
a(∇(u− ûh))2dx

)1/2

.(4.6)

We can show that

EG =
(∫

Γ ρ(y)
∫
D a(y, x)(∇(u− ûh))2dxdy

)1/2

≤
(
‖ρa‖L∞(Γ×D)

)1/2
minv∈VI⊗Xd

h
‖u− v‖L2

ρ(Γ)⊗H1
0 (D)

≤
(
‖ρa‖L∞(Γ×D)

)1/2
(ED + EΓ),

(4.7)

where ED = minv∈L2
ρ(Γ)⊗Xd

h
‖u− v‖L2

ρ(Γ)⊗H1
0 (D) is the standard H1

0 (D) FEM approxi-

mation error, and EΓ is the L2
ρ(Γ) approximation error in the random space satisfying

EΓ = min
v∈VI⊗H1

0 (D)
‖u− v‖L2

ρ(Γ)⊗H1
0 (D) ≤ ‖u− I(u)‖L2

ρ(Γ)⊗H1
0 (D) ≤ ‖u− I(u)‖∞ = EI .

(4.8)D
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COLLOCATION METHODS FOR STOCHASTIC EQUATIONS 1131

The last term is the interpolation error, which can be bounded by the Lebesgue
theorem (3.5). For the interpolation by Smolyak sparse grid, this error is (3.20). We
hence have the following proposition.

Proposition 4.1 (separation of error estimates). The energy error defined in
(4.6) can be effectively separated into two parts,

EG ≤ C(ED + EI),(4.9)

where ED is the standard H1
0 (D) FEM error in physical space D, EI is the interpolation

error in random space Γ, and C is a constant independent of the discretizations in
both D and Γ.

4.2. Numerical results. Numerical implementations of stochastic Galerkin meth-
ods are not considered here as they have been considered in many earlier publications.
For Galerkin methods in tensor polynomial spaces, see [12, 1, 2, 15]; in complete poly-
nomial spaces, see [19, 20, 21, 52, 54, 55]. Here we focus on numerical examples of
stochastic collocation methods and consider the following problem in one spatial di-
mension (d = 1) and N > 1 random dimensions:

d

dx

[
a(y, x)

du

dx
(y, x)

]
= 0, (y, x) ∈ Γ × (0, 1),(4.10)

with boundary conditions

u(y, 0) = 0, u(y, 1) = 1, y ∈ Γ.

The use of one-dimensional physical space D allows us to focus on the properties of
the stochastic collocation methods associated with the random space Γ. Extensions
to two- and three-dimensional physical spaces are straightforward. We assume that
the random diffusivity has the form

a(y, x) = 1 + σ
N∑

k=1

1

k2π2
cos(2πkx)Y k(ω),(4.11)

where Y k(ω) ∈ [−1, 1], k = 1, . . . , N , are independent uniformly distributed random
variables. The form of (4.11) is similar to those obtained from a Karhunen–Loève
expansion with eigenvalues delaying as 1/k4. Here we employ (4.11) to eliminate the
errors associated with a numerical Karhunen–Loève solver and to keep the random
diffusivity strictly positive as N → ∞. The series in (4.11) converge as N → ∞ and
we have

E(a(y, x)) = 1, 1 − σ

6
< a(y, x) < 1 +

σ

6
.

The spatial discretization is done on a p-type spectral element with high-order modal
expansions. The basis functions ψ(ξ) in a standard interval ξ ∈ (−1, 1) are defined as

ψp(ξ) =






1−ξ
2 , p = 0,

1−ξ
2

1+ξ
2 P 1,1

p−1(ξ), 0 < p < P,
1+ξ
2 , p = P,

(4.12)

where Pα,β
p (ξ) is the Jacobi polynomial of order p with parameters α,β > −1. For

more details of such a basis, see [26]. In all the following computations, the spatial
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Fig. 4.1. Convergence of errors in moments with two-dimensional random input (N = 2).
Left: convergence with respect to level of approximation k of Smolyak formula A(N + k,N); Right:
convergence with respect to number of quadratures of different methods, Smolyak sparse grid (solid
lines), Stroud’s cubature (dotted lines), and Monte Carlo simulation (dashed lines).

discretizations are conducted with sufficiently high-order basis such that the spatial
errors are subdominant.

The exact solution to this problem is

ue(y, x) = c1

∫
1

a(y, x)
dx + c2,

where the two constants c1, c2 are determined by the boundary conditions. However,
the closed form expression for the exact solution is not readily available.

4.2.1. Low-dimensional random inputs: Accuracy. In this section, a low-
dimensional random input is assumed. In particular, we choose N = 2. The “exact”
solution is obtained by using the Smolyak sparse grid with level 8, i.e., A(N +8, N) =
A(10, 2).

In Figure 4.1, the errors in the first four moments of the solution are shown. On
the left, the error of the Smolyak collocation method is shown. We observe that as
the approximation level k of A(N +k,N) increases, the errors converge exponentially
fast before reaching saturate levels.

On the right of Figure 4.1, the error convergence of a few different methods is
shown with respect to the degree-of-freedom, i.e., the total number of interpolation
points. It can be seen that the Smolyak method has the best accuracy; the Stroud-
2 and -3 methods approximate the lower moments (mean and variance) well, with
considerable less degrees-of-freedom (only three and four points for the Stroud-2 and
-3 method, respectively). On the other hand, the standard Monte Carlo method has
the expected O(DOF−1/2) convergence.

4.2.2. Moderate-dimensional random inputs. Here we choose a moderately
high-dimensional random space with N = 8. Figure 4.2 shows the error convergence
with respect to degrees-of-freedom for different methods. Again, the Stroud-3 method
offers solutions with accuracy comparable to the Smolyak method at level one (k = 1
for A(N + k,N)), and with fewer nodes. In this case, both the Stroud method and
Smolyak method are more efficient than Monte Carlo methods. We also observe
that there is no clear sign of accuracy improvement in kurtosis, when comparing the
Stroud-3 and Stroud-2 methods. (See also the results in Figure 4.1.) The reason is
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Fig. 4.2. Convergence of errors in moments with eight-dimensional random input (N = 8).
Smolyak sparse grid A(N + k,N), k ≤ 4 (solid lines), Stroud’s cubature (dotted lines), and Monte
Carlo simulation (dashed lines).
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Fig. 4.3. Stochastic solution of (4.10) with 50-dimensional (N = 50) random input. Left: mean
solution. Right: variance.

Table 4.1
Solutions at high-dimensional random input (N = 50), with Stroud-2 and -3 method, Smolyak

method A(N+k,N), and Monte Carlo method. Degrees-of-freedom for polynomial spaces: for k = 1,
dim(Wk

N ) = 51, dim(Zk
N ) ≈ 1.1 × 1016; for k = 2, dim(Wk

N ) = 1, 326, dim(Zk
N ) ≈ 7.2 × 1023.

Methods DOF maxσ2
u(x)

Stroud 2 51 8.67914(−7)
Stroud 3 100 8.67916(−7)

Smolyak (k = 1) 101 8.67925(−7)
Smolyak (k = 2) 5101 8.67919(−7)

MCS 100 8.16677(−7)
MCS 5000 8.73434(−7)

that kurtosis is the fourth moment of the solution and neither of the Stroud’s methods
is precise beyond third-order polynomials.
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1134 DONGBIN XIU AND JAN S. HESTHAVEN

4.2.3. High-dimensional random inputs: Efficiency. In this section, we
focus on problem (4.10) with high-dimensional random input, N = 50. In Figure 4.3,
the solution profiles of mean and variance are shown. The maximums of variance are
tabulated in Table 4.1. It can be seen that the Stroud-2, -3 method and Smolyak
method with k = 2 agree with each other well. With similar numbers of degrees-of-
freedom, Monte Carlo methods show noticeable differences. In this particular case,
both the Stroud methods (Stroud-2 and Stroud-3) and the Smolyak method (k = 1
and k = 2) are superior to the Monte Carlo method, and the Stroud-2 method is
to be preferred, as it gives sufficiently accurate results (in variance) with only 51
nodes. The collocation points based on tensor products and Galerkin methods in
tensor polynomial spaces Zk

N are clearly not practical, as dim(Zk
N ) ≈ 7.2× 1023. The

Galerkin methods in the complete polynomial spaces have number of expansion terms
of 51 and 1, 326 for k = 1, 2, respectively. The choice between a Galerkin method and
a Smolyak collocation method in this case will depend on users, i.e., whether to use a
deterministic solver more times or to design a solver for a coupled system of equations
with less terms.

5. Time dependent problem: An illustrative example. Although the
stochastic collocation algorithm is discussed in the context of boundary value prob-
lems, it is straightforward to apply it to time-dependent problems. Let us consider a
damped motion of a particle in a bistable potential in the presence of a noisy periodic
forcing. In particular, we consider for ω ∈ Ω

dx

dt
(t,ω) = x− x3 + f(t,ω), x(0,ω) = x0,(5.1)

where f(t,ω) is a 2π-periodic random process with zero mean value and a 2π-periodic
covariance function, i.e., E[f(t,ω)] = 0, and E[f(t1,ω)f(t2,ω)] = σ2

fCf (|t1 − t2|),
where σ2

f is the variance and Cf (t) = Cf (t + 2π). We remark that with proper noisy
input on top of a periodic driving force, the system (5.1) can exhibit complicated
behavior such as stochastic resonance. (See, for example, [17].) However, the purpose
of this example is on computational aspects of the algorithm, and we will restrict
ourselves to cases with relatively simple dynamical behavior.

To model the periodic random process f(t,ω), we use a Fourier-type expansion

f̂(t,ω) =
K∑

n=−K

fn(ω)e−int(5.2)

for its characterization by a finite number of random variables. Here, the coefficients
fn(ω) = fr

n(ω) + if i
n(ω) are complex random variables. It is straightforward to show

that if fr
n and f i

n are statistically independent for all n and have zero mean and

variance of Cn/4, where Cn = 1
π

∫ 2π
0 Cf (t) cos(nt)dt are the coefficients of the Fourier

cosine series of the 2π-periodic covariance function Cf , then the random field f̂(t,ω)
given by (5.2) approximates the prescribed 2π-periodic covariance function Cf̂ → Cf

as K → ∞. Let y(ω) = (fr
0 , f

r
1 , f

i
1, . . . , f

r
K , f i

K), then f̂(t,ω) ≡ f̂(t, y(ω)) has (2K+1)

random dimensions. (Note f i
0 does not take effect in (5.2).) Obviously, f̂(t, y(ω)) is an

approximation of f(t,ω), as (5.2) is a finite-term summation. In practice, we choose
the number of expansion terms so that the contributions from the truncated terms
are sufficiently small.

In this numerical example, we choose a 2π-periodic covariance function Cf by
extending the standard Gaussian covariance function CG(t) = exp(−t2/b2) to the
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Fig. 5.1. Construction of a 2π-periodic covariance function Cf . (a) Decay of Fourier cosine
coefficients Cn, n = 0, 1, . . . ; (b) reconstructed periodic covariance function (solid line) by extending
the regular Gaussian covariance function (dashed line) CG(t) = exp(t2/b2) with correlation length
b = 0.4.

periodic domain (0, 2π), where b is the correlation length. Hereafter we choose a
moderately short correlation length b = 0.4. In Figure 5.1(a), the decay of the Fourier
cosine coefficient of Cf is shown. Due to the relatively fast decay of these coefficients,

we choose to use K = 10 in the truncated series (5.2). Thus, f̂(t, y) has N = 2K+1 =
21 random dimensions. The constructed covariance function Cf̂ (t) is shown in Figure
5.1(b), along with the standard nonperiodic Gaussian covariance function CG, which
we extended to the periodic domain.

Figure 5.2(a) shows four (arbitrarily chosen) realizations of f̂(t, y), constructed
by N = 21(K = 10) dimensions with correlation length b = 0.4 and σ = 0.1. Corre-
sponding to these four realizations of forcing, the four realizations of solution to (5.1),
with initial condition x0 = 0.5, are shown in Figure 5.2(b). In this case, all realiza-
tions are attracted to one of the stable wells (x = 1) and oscillate nonlinearly around
it. Subsequently, E[u(t)] → 1 and E[u2(t)] → σ2

u = const. as t → ∞. The computa-
tional results of the evolution of the standard deviation σu(t) is shown in Figure 5.3.
Stochastic collocation based on the Smolyak grid A(N + k,N) is conducted for k = 1
and k = 2. With N = 21, A(N +1, N) has 43 points and A(N +2, N) has 925 points.
The results of standard deviation with k = 2 shows little visual difference compared
to k = 1, and is regarded as the well-resolved solution. Results by Monte Carlo sim-
ulation are also shown in Figure 5.3. We observe the numerical oscillations resulted
from the statistical errors, and the reduction of such errors from 100 realizations to
1,000 realizations is rather modest.

Problem (5.1) can also be solved via a stochastic Galerkin method. In the stochas-

tic Galerkin method, we expand the solution as u(t, y) =
∑M

i=1 ui(t)Φi(y), where
{Φi(y)} is the multidimensional orthogonal basis defined in (2.13). The resulting
equations for the expansion coefficients take the form

dum

dt
(t) = xm − 1

〈Φ2
m〉

M∑

i=1

M∑

j=1

M∑

k=1

xixjxk〈ΦiΦjΦkΦm〉 + fm(t), m = 1, . . . ,M,

(5.3)

D
ow

nl
oa

de
d 

11
/2

6/
12

 to
 1

28
.1

48
.2

52
.3

5.
 R

ed
ist

rib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls/

oj
sa

.p
hp



1136 DONGBIN XIU AND JAN S. HESTHAVEN

0 1 2 3 4 5 6 7
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

f(
t)

(a)

0 5 10 15 20 25 30 35
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

t

u(
t)

(b)

Fig. 5.2. Realizations of problem (5.1). (a) Four realizations of the periodic random forcing

f̂(t, y(ω)); (b) four realizations of the solution u(t, y(ω)) corresponding to the four realizations of
forcing on the left.
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Fig. 5.3. Numerical results of the evolution of standard deviation (STD) of (5.1), computed by
stochastic collocation (SC) and Monte Carlo simulations (MCS). (a) Solutions to 0 ≤ t ≤ 10π; (b)
close-up view near t ≈ 10π.

where {fi(t)} are the expansion coefficients for the random forcing term. Solution
of each of the M number of equations requires a M3 triple summations and storage
(or on-the-fly evaluations) of the constants 〈ΦiΦjΦkΦm〉 of the size M4. In the case
here, when N = 21, M = 22 for first-order expansion, and M = 252 for second-order
expansion. Neither the storage nor computing of these is negligible.

6. Summary. A class of high-order collocation methods is proposed in this pa-
per. The method is a forge of several known mathematical and numerical components,
e.g., sampling method, cubature formula/sparse grid, and collocational method. Its
formulation is similar to that of a Monte Carlo method, where a deterministic equation
is solved repetitively at each discrete point in the random space. However, in colloca-
tion methods the distribution of collocation points is fixed deterministically a priori
and is determined through the aid of existing theory of multivariate polynomial inter-
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COLLOCATION METHODS FOR STOCHASTIC EQUATIONS 1137

polation (or integration). Furthermore, by constructing the appropriate polynomial
interpolations, stochastic collocation methods can achieve fast convergence (exponen-
tial convergence under sufficient smoothness conditions), similar to stochastic Galerkin
methods. Thus, the stochastic collocation methods can be regarded as high-order
“deterministic sampling methods.” Also, when the interpolation error of certain col-
location nodes is known, as in the case of the Smolyak sparse grid, we can obtain error
estimates in strong form (e.g., the error estimate in (4.7)), whereas in cubature sam-
pling or statistical sampling methods the interpolation errors are usually not known.

Several choices of the collocation nodal sets were investigated. It was found that
the sparse grid based on Smolyak algorithm offers high accuracy and fast convergence,
with a weak dependence on the number of random dimensions. An alternative, based
on the Stroud-2 and -3 cubature, is optimal at lower orders. However, their accuracy
is fixed and cannot be improved. Numerical experiments were conducted on an ellip-
tic equation with random inputs, and we demonstrate that the error estimate can be
effectively separated into two parts: one for the standard spatial discretization error
and one for the interpolation error in random space. It was found that for random
dimensions as high as 50, the stochastic collocation methods (including both Stroud’s
methods and Smolyak methods) are more efficient than brute-force Monte Carlo meth-
ods. With low accuracy, the Stroud-3 method is preferred to the Smolyak method
with degree one (k = 1). On the other hand, the implementation of a collocation
method is “embarrassingly” trivial, when compared to a stochastic Galerkin method
which requires a specialized solver for the resulting coupled set of equations. However,
the high-order collocation method based on Smolyak sparse grid has more degrees-of-
freedom than Galerkin methods in complete polynomial spaces. An example of a time
dependent nonlinear ODE is also presented. The collocation method exhibits good
convergence and accuracy for a 21-dimensional random input. This problem has a cu-
bic nonlinearity, and a stochastic Galerkin approach, albeit with less expansion terms
compared to the sparse grid collocation method, would incur nonnegligible extra com-
putation cost due to the nonlinearity. The choice between a collocation method and
a Galerkin method is problem dependent, and the advantage of collocation methods
will be more noticeable for problems with more complicated forms of governing equa-
tions. A complete comparison between collocation and Galerkin methods depends on
many factors, including detailed error estimates (particularly, in this paper we did
not study the aliasing error by collocation methods) and assessment of the algorithm
efficiency for a Galerkin method (for solving the coupled set of equations). This is
our ongoing research.
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