A Pseudo-Spectral Scheme for the Incompressible
Navier-Stokes Equations Using Unstructured Nodal
Elements

Timothy Warburton! and Luca Pavarino? and Jan S. Hesthaven®

A pseudo-spectral scheme is developed for solving the incompressible
Navier-Stokes equations using unstructured nodal triangles. Efficient algo-
rithms are proposed with numerical evidence that indicates optimal rates
of convergence can be achieved. Navier-Stokes simulations of Kovasznay,
shear layer roll up and flow past a cylinder are included to show compar-
isons between the different nodal sets considered and the alternative modal
approach.
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1. INTRODUCTION

There have been a number of recent approaches to develop high-order schemes on
unstructured elements (triangles in two dimensions and tetrahedra/prisms/pyramids
in three-dimensions). The modal approach employs a local approximation that
uses a warped tensor product basis based on Jacobi polynomials of variable weight.
These have been derived independently in [26],[9] and [23], and it is known that
these bases are the solutions to singular Sturm-Liouville problems [19],[23],[32], [33]
analogous to the one-dimensional problem from which the classical orthogonal poly-
nomials can be derived. These methods have been shown to be computationally
efficient and robust for simulating Navier-Stokes in complex domains[27, 18, 33].

The approach we wish to investigate in this paper likewise uses a compact, ele-
ment based, representation of the solutions. In each element however, we choose a
set of nodes and build a basis using Lagrange interpolating polynomials associated
with these nodes. The optimal choice of nodes is almost an open question for the
triangle, as there is no obvious extension comparable to the quadrilateral where a
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tensor product of one dimensional Legendre polynomials is used. A sensible con-
straint that the nodes should satisfy is that they coincide with the one-dimensional
Legendre nodes along the boundary of the triangle. This allows for efficiently in-
terfacing triangles and quadrilaterals together in the same mesh which allows to
introduce thin quadrilaterals to capture short length scales in boundary layers.

We will consider two sets of nodes. Firstly, we consider a set based on the Fekete
principle, i.e. the nodes are chosen to maximize the determinant of the generalized
Vandermonde matrix which we shall define later. The Fekete nodes have been
calculated to high order for the triangle [32], and they show good approximation
properties measured by their Lebesgue constant. Additionally we will examine the
nodes calculated by Hesthaven [15] using an electrostatic principle motivated by a
one dimensional analogy generated between Gauss quadrature points and solutions
to electrostatic problems.

There are alternative nodal sets for the triangle including a set based on a col-
lapsed coordinate system and a filter[12] but these have a Chebyshev distribution
on the boundary. Alternative nodal sets for the triangle and tetrahedron have been
obtained by seeking an approximate minimum to the Lebesgue constant [6, 7].
These solutions, however, do not have a known simple distribution along the edges.

In Section 2 we will demonstrate how these nodal sets can be integrated into a
Galerkin framework, and how they can be used to calculate high-order integrals
and derivatives of functions. Section 3 is devoted to a brief discussion of how an
elliptic problem can be discretized and solved using these nodes, while Section 4
investigates the accuracy of projections using these nodes. In Section 5 we discuss
a possible preconditioner for the discrete elliptic operator, and in Section 6 it is
demonstrated how this method can be integrated into a general scheme to solve the
incompressible Navier-Stokes equations. Section 7 concludes with a few remarks.

In many instances we will use the terminology of h-refinement to imply that
we are modifying the number and size of elements, while p-refinement refers to
changing the polynomial order used to represent fields within each element.

2. ELEMENTAL OPERATIONS
2.1. Coordinate Systems
In the following sections, we will discuss the operators necessary to build a hybrid
spectral element code. In order to form these operators we define a master element
for the triangle and one for the quadrilateral. The triangle is defined as the set

T={(rs)|-1<rsr+s<0}
and the quadrilateral as
Q={(rs)|-1<rs<1}

We map a point in the master triangle, 7', to a point x in the physical straight-sided
triangle with the following mapping

1 1
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where v!,v2,v3 are the spatial coordinates of the vertices of the physical triangle.
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Similarly the master quadrilateral, ), is mapped to a straight-sided physical
quadrilateral with the following mapping
I-r)@=s) ,, A+r)(1d=5) , (A+r)(d+s) 3 (@L-r)(1+s) 4

*X= 7 5 vV T 5 VT 5 VT3 2 v

We return to the general case of curvilinear elements in Section 4.1.

2.2. Collocation Projection

We will be using the collocation properties of the Lagrange interpolating functions
associated with a given nodal set. We expand the Lagrange polynomials in terms
of the orthogonal Koornwinder/Dubiner polynomials [19],[9]. In order to calculate
the coefficients in the expansion we use the interpolating property of the Lagrange
polynomial, i.e. it is unity at a specific node and zero at all other nodes.

First we define the Jacobi polynomials (P2*?) as the solutions of the following
differential equation

o,
di (1—a) 21+ x)HBdedi(x) = (1 -2)*(1+2)° P (z)
X X

We can expand any polynomial f € PP = {2y/|0 < i+ j < p} as a linear combi-
nation

Flaoy) = > (@) fn

0<j+k<p

of the Koornwinder/Dubiner polynomials defined as

et )05 = [ CEDEET T po (209 (12 pavsna

Subsequently we will use the notation ¢, = 1;; for a member of this basis, where
k represents a unique pair (i, j).
We now define the Vandermonde matrix as

Vij = &5 (i, y:).

If this matrix is sufficiently well conditioned so that it is not numerically singular
then we can find a unique polynomial representation for a function whose values
are known at the nodal positions, as

fi =Vii f(wj,u5)

The conditioning of the Vandermonde matrix, V, is determined by the choice of
basis it is formed with, and the set of nodes this basis is evaluated at. The or-
thonormal basis is used because it is designed to maintain linear independence.
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This slightly increases the complexity of constructing V but dramatically improves
the conditioning compared to the less stable monomials.

Recently there have been a number of efforts directed towards finding numerically
stable sets of collocation points for the triangle [6],[1, 2], [15], [32]. We will focus
on two sets of nodes. The first is the set of Fekete collocation points calculated
by Taylor and Wingate [32]. These nodes are defined as the set of nodes which
maximise the determinant of the Vandermonde matrix. The second set was derived
by Hesthaven [15] using an analogy between the zeros of Jacobi polynomials and
the solution of an electrostatics problem. In Figures 5 and 6, we show a Delaunay
triangulation [30] of these nodes on the master triangle for polynomial orders up to
p=12.

2.3. Differentiation
Given a set of values of a function at the nodal positions, we evaluate the deriva-
tives of the interpolating polynomial at the nodes. Hence the x-derivative of a
function f is obtained by first calculating its polynomial coefficients and then dif-
ferentiating the polynomial series as

0. f oifi

xr; — Z 6I¢J

0<j<N,

= Z (rz0p + $205)0;

0<j<N,

= Z (rx(a:l)DfJ + Sm(mz)Df])fJ

0<j<N,
= Y (re(@i)Dj; + s (x:) D)V ()
0<j<N,
N, = (p+1)(p+2)/2

ﬂvifj

where Dj; is the evaluation of the derivative with respect to r of the j’th basis
function at the i’th node, and r,,s, are the derivatives of the master element
coordinates with respect to the physical coordinate z. This is exact for all f € PP
by the uniqueness of the projection.

In practice we pre-calculate the matrices D"V ! and D*V ~! which can be used
for all straight-sided triangles of the same polynomial order. Using these it is
straight-forward to calculate the x and y derivatives of the function. The matrices
D" and D? can be calculated using the relationship

d PO(,O

1 a+1,1
—PP@) = S(a+n+ D (@) (1)

2.4. Inner-Products
In the following sections it will be necessary to evaluate inner-products of the
form
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o) = [ 11 | 15990 0yards

where f,g € PP.

For the moment we will consider the case where the Jacobian (J) is independent of
r and s. This will be true for all straight sided triangles. For quadrilateral elements,
integrals of this type are usually calculated using a quadrature rule based on a
tensor product of Gauss-Lobatto-Legendre quadrature points and weights. Using
a (p+1)’th order quadrature exactly integrates the product f.g € P??~!. However
there is no obvious, analogous, set of weights for the Fekete or electrostatic nodes,
which will achieve the same level of accuracy. Taylor and Wingate [32] proposed a
set of weights which will integrate functions up to total polynomial order p. This is
useful under certain circumstances but is not sufficiently accurate to evaluate the
above integral.

We propose to replace the usual set of weights with a semi-analytical approach to
calculate the inner-products. We first use the collocation projection described previ-
ously to project both the functions f and g to the orthogonal Koornwinder/Dubiner
polynomials. The orthogonality of the basis functions allows us to simply take the
dot product of the two coefficient vectors to calculate the inner-product of the two
polynomials

(f,9) = Jf:Vii' Vit on

where V is the Vandermonde matrix evaluated with respect to the orthonormal
Koornwinder /Dubiner basis. The inner-product is exact for all f,g € PP if the
triangle is straight sided.

3. CONTINUOUS AND DISCRETE ELLIPTIC PROBLEMS

We consider the following model elliptic problem on a bounded Lipschitz region
Q C R? with boundary 0Q = T'p [J 'y,

(=VZ2+XNu = f (A>0) in Q,
U = U onlp,
g—z =g OIlFN.

Dirichlet boundary conditions are imposed on I'p , a closed subset of 90 with
positive measure, and Neumann conditions on I';y. More general linear, self adjoint,
second order elliptic problems and boundary conditions could be considered as well.
The standard variational formulation of this problem is:

FindueV =HL(Q) ={ve H(Q) :v=00nTp} such that
a(u,v) = F(v), Yve V, (2)

where

a(u,v) = /Q(Vu - Vo + Auv) dx and F(v) = /vada: + /F guds .
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We assume the domain 2 is a union of the spectral elements described previously
K
Q = Uk:lgka

where each ) is the affine image of the reference triangle or square. Let 75 be
the mesh defined by the spectral elements €)j,, and the spectral element space being
defined as

VeE = (v eV g, € PPk=1,---,K}.
For quadrilaterals:
PP = {z'y’|0 <i,j < p}
and for triangles:
PP ={a'y|0<i+j <p}
The standard Galerkin formulation of (2) is:

Find u € VPX such that
ap,k (u,v) = Fp i (v) Voe Vi, (3)

where a, i (+,-) and F) g (-) are obtained from a(-,-) and F(-) by using the pseudo-
analytic integration described in Section 2.4.

The stiffness matrix A and load vector f of this discrete system are assembled
from their elemental contributions on each Q by means of the Z operator, described
in detail in [13], which assembles the local coefficients into the global coefficients
and ensures C° continuity.

There are numerous approaches to solving the resulting discrete system Azr =
f. Besides direct methods, which can be very expensive and far from optimal
for large scale problems, common approaches are based on the iterative solution
of this system by a preconditioned Krylov subspace method such as PCG. The
preconditioners range from simple diagonal scaling or incomplete factorizations of A
to more efficient domain decomposition methods, based on overlapping or iterative
substructuring techniques. This latter class of algorithms is based on condensing
out the nodes on the boundary of the element, solving a Schur complement system
for the boundary nodes and then solving local problems for the interior degrees of
freedom [28]. In other words, ordering the boundary nodes zp and then the interior
nodes zr, v = (rp,xr), the system Az = f is rewritten as

Ap —A%;IAI_IABI 0 :| |:1'B:| _ |:fB—A£IAI_1fI
Apr Ag xr fr

The Schur complement system
Swp = (Ap — AL Al Apn)re = fB = fB — Ap AL fr (4)

is solved iteratively by a preconditioned conjugate gradient method. Again, the
preconditioners range from diagonal scaling to domain decomposition methods; see
[28] and [25].
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4. ACCURACY OF PROJECTION OPERATOR

We tested the accuracy of the nodal triangles for solving the elliptic problem by
performing a p- and h-refinement study. The continuous problem is

inQ=[-1,1] x [-1,1],
onl'p =00,

(-V2+1)u = (1+ 2r?)sin(rz)sin(my) (5)

u = sin(rz)sin(ny)
The domain is covered with K = 2M? triangles and the rate of convergence, for
fixed p, is calculated as

l (GTTOTM+1 )

T‘ate — ETTOT N

log(37+7)

Table 1 shows the results using the Fekete points and Table 2 shows the results of
the same study using the electrostatic points. Both sets of points achieve exponen-
tial convergence to the exact solution, with approximately (p+1)’th order accuracy.
Figure 1 shows log-log plots, demonstrating the expected similarity between the er-
rors from both methods. The slight differences for the errors near machine precision
are caused by finite precision effects. The L., norm was calculated using the values
of the fields at the nodes, i.e. the locations of the sampling for this norm depend
on the choice of basis.

4.1. Accuracy of Projection on Curved Elements
In order to represent a curved boundary, it is convenient to use an isoparametric
mapping of the coordinate system. In this work we use standard Hall blending
techniques to curve the triangular elements [11].
We use a tensor-product quadrature, on a collapsed coordinate system for the
triangle [18], in preprocessing to calculate the mass matrices and stiffness matrices

FIG. 1. h and p convergence study for solution of the elliptic problem. (a) Fekete nodes.

(b) electrostatic nodes.
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TABLE 1
Rate of p convergence for the elliptic problem using Fekete nodes
(** indicates that the solution has already converged to
the iterative tolerance at lower resolution)

p | M=3 | M=4 | M=5 | M=6 | M=7 | M=8 | M=9 | M=10 | M=11

2 2.47 3.10 3.72 4.04 3.50 3.77 | 3.99 3.97 3.78
3 4.28 4.25 3.91 3.58 2.93 4.11 3.30 3.85 3.47
4 4.46 5.08 5.24 4.43 4.87 4.95 5.20 4.70 4.93
5 5.62 5.78 5.86 5.90 5.93 5.95 5.96 5.97 5.97
6 6.43 7.04 7.35 6.24 6.80 7.04 7.26 6.60 6.89
7 7.79 7.88 7.92 7.94 7.95 7.96 7.97 7.98 7.98
8 8.38 9.08 9.39 8.21 8.78 9.07 | 9.28 8.57 8.89
9 9.82 9.90 9.93 9.95 9.96 9.98 9.98 9.68 10.19
10 | 10.36 | 11.12 | 11.43 | 10.16 | 10.25 | 10.39 | 9.32 ok ok
11 | 11.84 | 11.91 | 12.01 | 11.67 | 9.75 ok ok ok ok
12 | 12.46 | 12.96 | 11.26 ok ok ok ok ok ok
TABLE 2

Rate of p convergence for the elliptic problem using the electrostatic
nodes (** indicates that the solution has already converged
to the iterative tolerance at lower resolution)

| p | M=3 | M=4 | M=5 | M=6 | M=7 | M=8 | M=9 | M=10 | M=11

2 2.47 3.10 3.72 4.04 3.50 3.77 | 3.99 3.97 3.78
3 4.28 4.25 3.91 3.58 2.93 4.11 3.30 3.85 3.47
4 4.36 4.92 5.24 4.39 4.81 497 | 5.21 4.68 4.89
5 5.68 5.71 5.83 5.86 5.91 5.92 5.95 5.95 5.97
6 6.44 7.06 7.38 6.26 6.82 7.07 | 7.25 6.61 6.90
7 7.79 7.87 7.91 7.94 7.95 7.96 | 7.97 7.97 7.98
8 8.42 9.09 9.41 8.23 8.79 9.08 | 9.29 8.58 8.88
9 9.84 9.90 9.93 9.95 9.97 9.97 | 9.98 9.93 8.99
10 | 10.42 | 11.11 | 11.43 | 10.21 | 10.68 ok ok ok ok
11 | 11.87 | 11.94 | 11.09 ok ok ok ok ok ok
12 | 12.37 | 12.04 * % * % *% * % * % *% * %

FIG. 2. Curved triangles used for h- and p-refinement tests

K=16 K=64 K=256
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FIG. 3. Convergence of Ly error for the standard elliptic problem on a curved domain using
mass matrices calculated with quadrature. (a) using using Fekete nodes, (b) using electrostatic
nodes.
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specific to each curved element. This allows for the specification of the order of
accuracy of the spatial integration without being bound by the p’th order projection
that causes aliasing for the product of the integrands, the geometric factors and
the Jacobian. With this approach we achieve, as seen in Figure 3, exponential
convergence at a sub-optimal rate of just over p.

5. H-TYPE PRECONDITIONERS

The benefit of efficient, finite element based, preconditioning for quadrilateral
and hexahedral spectral elements [8],[4],[22],[24], is part of the motivation for using
nodal triangles. The original method involves constructing a finite element operator
based on triangulating the GLL nodes of the spectral elements. The resulting
operator is spectrally equivalent to the true spectral element operator and the
preconditioner is hence quasi-optimal. The finite element based preconditioner is
more readily approximately inverted using multi-grid [31], ILU [21] or overlapping
additive Schwarz [10].

In this section we will experimentally determine whether similar results on the
spectral equivalence hold for the nodal triangle. In fact, we will show results that
indicate that the results do not hold for the Fekete or electrostatic choice of nodes.
We have found that the condition number for the discrete elliptic operator a, g,
preconditioned with the h-type preconditioner, scales linearly with the order of
nodes used. This indicates that this preconditioner no longer is spectrally equivalent
to the elliptic operator and will thus not be as efficient as for the quadrilateral case.

Finally, the main application for this kind of preconditioner will be to accelerate
convergence for implicitly treated terms resulting from numerical splitting schemes
for moving domain simulations. In this case it is impractical to use direct methods,
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TABLE 3
Range of angles and edge lengths of the Fekete and electrostatic
based finite element mesh as a function of p for M=3

Min. angle Max. angle Min length Max. length |
p | Fekete | Electro. | Fekete | Electro. | Fekete | Electro. | Fekete | Electro. |
1 45 45 90 90 0.666 0.666 0.942 0.942
2 45 45 90 90 0.333 0.333 0.471 0.471
3 | 32.19 32.19 106.60 | 106.60 0.184 0.184 0.421 0.421
4 | 30.18 26.11 116.56 | 107.66 0.115 0.115 0.330 0.308
5 27.97 27.10 122.29 | 115.78 0.078 0.078 0.268 0.268
6 25.08 26.50 129.82 | 123.31 0.056 0.056 0.235 0.232
7| 2247 17.44 133.79 | 132.13 0.042 0.042 0.200 0.209
8 8.21 14.47 147.93 | 135.75 0.029 0.029 0.228 0.183
9 18.70 12.96 141.31 | 137.61 0.026 0.020 0.161 0.164
10 7.13 11.04 151.75 | 139.85 0.017 0.014 0.185 0.146
11 6.02 9.70 158.75 | 141.45 0.018 0.010 0.197 0.133
12 6.26 6.32 157.98 | 143.76 0.012 0.007 0.166 0.121

like LU factorization, due to the cost of continually factorising the time dependent
linear operators.

5.1. Fekete based h-type preconditioner

To understand the spectral behaviour of a finite element based preconditioner we
consider the solution of the Helmholtz equation in a square of length 2, covered in a
regular array of MxM squares each split into two triangular elements. A Delaunay
triangulation [30] of the nodes is used to form a finite element mesh as shown in
Figure 5. We see that for p=3 to p=7 this mesh is quite regular, while for larger
p we find that the underlying grid can be very irregular. The irregularity can be
seen in the widely varying aspect ratios of the triangulation.

The results in Table 4 show the dependence of the condition number of the
preconditioned operator on the polynomial order and grid resolution. It is clear
that the preconditioner removes any dependence on the size of elements, but there
remains a linear dependence on the polynomial order.

There is a jump in the condition number for the p=8 cases. We believe that this
can be traced to an irregularity in the Delaunay triangulation. In Table 3 we see
that the minimum angle of the mesh is rather small for this case.

In Figure 4 we show the eigenvalues for the preconditioned operator for a similar
problem in which the reference triangle acts as the total domain. The eigenvalues
are real, and we see that most of the eigenvalues cluster around the interval 1 to 5.
However there are a few isolated eigenvalues which have much larger values. These
are the modes that are directly responsible for the increase of the condition number
of the preconditioned operator with polynomial order.
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FIG. 4. Real eigenvalues of the elliptic operator on a one element triangular domain,
preconditioned with the Fekete based finite element preconditioner.
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TABLE 4
h and p dependence of condition number of Fekete type h-preconditioned
elliptic operator, (h=2/M)

| p | M=3 | M=4 | M=5 | M=6 | M=7 | M=8 | M=9 | M=10 | M=11 | M=12

1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
2 1.79 1.87 1.71 1.93 1.83 1.96 1.89 1.92 1.90 1.90
3 2.61 2.64 2.62 2.61 2.60 2.59 2.59 2.58 2.58 2.58
4 3.39 3.41 3.38 3.36 3.35 3.34 3.34 3.33 3.32 3.32
5 4.45 4.49 4.50 4.52 4.52 4.53 4.53 4.53 4.53 4.53
6 5.88 5.93 5.94 5.92 5.90 5.88 5.88 5.88 5.88 5.88
7 8.13 8.16 8.19 8.20 8.21 8.22 8.22 8.23 8.23 8.23
8 | 23.84 | 2412 | 24.17 | 24.21 | 24.22 | 24.19 | 24.20 | 24.15 24.18 24.16
9 | 19.07 | 19.09 | 19.09 | 19.06 | 19.04 | 19.02 | 18.99 | 18.96 18.84 18.79
10 | 17.25 | 17.35 | 17.39 | 17.41 | 1742 | 17.42 | 17.43 | 1743 17.43 17.43
11 | 29.12 | 29.35 | 29.47 | 29.54 | 29.57 | 29.58 | 29.60 | 29.61 29.63 29.64
12 | 24.77 | 24.80 | 24.78 | 24.80 | 24.79 | 24.79 | 24.79 | 24.79 24.79 24.79
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FIG. 5. Fekete node based finite element mesh
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FIG. 6. Electrostatic node based finite element mesh for a reference element.

5.2. Electrostatic based h-type preconditioner

We have repeated the computation of condition number for the elliptic operator
preconditioned by the h-type preconditioner based on the electrostatic nodes. The
finite element mesh derived from the nodes is shown in Figure 6 and the h- and
p-dependence of the condition number of the preconditioned operator is shown in
Tables 5. For this choice of nodes we see that the condition number grows linearly
up to p=6. For larger polynomial order the condition number is found to grow
rapidly. In Table 3 we see that the minimum edge length in the electrostatic meshes
decreases rather more rapidly than for the Fekete mesh. We conjecture that this is
directly effecting the scaling of the finite element based operator.

In Figure 7 we show the eigenvalues for the preconditioned operator for a problem
in which the reference triangle acts as the total domain. As we saw with the Fekete
version, the eigenvalues are real, and most of the eigenvalues cluster around the
interval 1 to 5. There a few isolated eigenvalues however which have much larger
values than the Fekete case, hence causing the less favorable behaviour seen in
Table 5.
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Real eigenvalues of the elliptic operator on a one element triangular domain,
preconditioned with the electrostatic based finite element preconditioner.
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TABLE 5

h and p dependence of condition number of electrostatic type

h-preconditioned elliptic operator, (h=2/M)

p | M=3 | M=4 | M=5 | M=6 | M=7 | M=8 | M=9 | M=10 | M=11 | M=12
1| 100 | 100 | 100 | 100 | 100 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00
2 | L79 | 187 | 171 | 193 | 183 | 196 | 189 | 1.92 | 1.90 | 1.90
3 | 261 | 264 | 262 | 261 | 260 | 259 | 259 | 258 | 258 | 258
4| 378 | 375 | 375 | 376 | 3.76 | 3.76 | 376 | 3.76 | 3.76 | 3.76
5 | 461 | 465 | 4.64 | 465 | 465 | 464 | 464 | 464 | 463 | 463
6 | 667 | 674 | 677 | 678 | 679 | 679 | 678 | 6.78 | 6.78 | 6.78
7| 956 | 9.62 | 950 | 968 | 9.61 | 967 | 966 | 9.66 | 9.66 | 9.66
8 | 1494 | 15.09 | 1514 | 1518 | 1520 | 1521 | 1522 | 15.22 | 15.23 | 15.23
9 | 2395 | 2416 | 24.25 | 24.29 | 24.30 | 24.31 | 2428 | 2430 | 24.25 | 24.27
10 | 44.75 | 45.02 | 45.12 | 45.18 | 4521 | 45.23 | 4524 | 4525 | 4526 | 45.26
11 | 8151 | 82.17 | 8245 | 8259 | 8266 | 82.71 | 82.74 | 8276 | 8277 | 82.77
12 | 150.93 | 151.87 | 152.32 | 152.58 | 152.74 | 152.85 | 152.93 | 152.99 | 153.03 | 153.06
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FIG. 8. Quadrilateral GLL node based finite element mesh for a reference element.

(p=4) (p=5) (p=6)
(p=7) (p=8) (p=9)
(p=10) (p=11) (p=12)

5.3. Quadrilateral GLL based h-type preconditioner
The h- and p-refinement test on the h-type preconditioner for the same problem
using an K = M? mesh of quadrilateral elements, confirms that the condition
number does not grow and experimentally validates the theory in [5] which states
that the condition number is bounded independently of h- and p-refinement. In
Figure 8 we show the Delaunay triangulation created using the Gauss-Lobatto-
Legendre nodes.

6. INCOMPRESSIBLE NAVIER-STOKES SIMULATIONS

6.1. Formulation
The two-dimensional incompressible Navier-Stokes equations are

E;—:+(V~V)VZ—VP+I/VZV+F,

V.v=0,

where v denotes the velocity of the fluid with components v = [u(z, y,t), v(x,y,t)]"
in the z and y directions; P(x,y,t) is the pressure; F'(z,y,t) is a forcing function
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TABLE 6
h and p dependence of condition number of the GLL type h-preconditioned
elliptic operator on a mesh of quadrilaterals.

p | M=3 | M=4 | M=5 | M=6 | M=7 | M=8 | M=9 | M=10 | M=11 | M=12

1 1.00 1.03 1.02 1.01 1.01 1.01 1.00 1.00 1.00 1.00
2 2.44 2.53 2.59 2.60 2.62 2.56 2.61 2.64 2.61 2.61
3 2.56 2.53 2.53 2.54 2.54 2.55 2.55 2.55 2.55 2.55
4 2.69 2.69 2.69 2.69 2.68 2.69 2.69 2.69 2.68 2.68
5 2.82 2.82 2.81 2.81 2.81 2.82 2.82 2.82 2.82 2.82
6 2.88 2.92 291 291 291 291 291 291 291 291
7 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00
8 3.07 3.07 3.07 3.07 3.07 3.07 3.07 3.07 3.07 3.07
9 3.13 3.13 3.13 3.13 3.13 3.13 3.13 3.13 3.13 3.13
10 | 3.16 3.18 3.18 3.17 3.17 3.17 3.17 3.17 3.17 3.17
11 | 3.17 3.22 3.22 3.22 3.22 3.22 3.22 3.22 3.22 3.22
12 | 3.24 3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25 3.25
13 | 2.18 3.29 3.29 3.29 3.29 3.29 3.29 3.29 3.29 3.29

and v is the kinematic viscosity. To discretize these equations in time we use a
high-order splitting scheme [17].

6.1.1. Summary of Scheme, Boundary Conditions and Implementation
The splitting scheme involves the following four sub-steps:

Ji—1 Je—1
Vo= Y apv"TI AN BN + P (6)

q=0 q=0

apn+1 Je—1 B Je—1 B
5— = n l— > BNET) = v Y B[V x (V x v ][7)
q=0 q=0
:p_v. [

VP =V (At) (8)

2ontl YO ppr Lo pn+1
Vv ALY = “UA7 (Vv — AtVP"). 9)

where J; is the order of time integration for the diffusive term, J. is the order of
the advection term and the coefficients (ay, 84,70) are listed in [18].

The first step is performed using the values of the fields (u,v,p) at the nodal
points associated with each element. This will clearly involve some aliasing in
the non-linear term N(v). However experience with the existing PRISM [13] and
NexTar [29] codes indicates that this is not typically a big problem.

The second step is to evaluate the value of the pressure Neumann conditions
associated with the Dirichlet velocity conditions. Again this is calculated using the
nodal values of the (u,v) fields. The third step involves solving the linear system of
equations described in Section 3. Here, the right hand side is first evaluated using
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the derivative operators described in Section 2.3. The fourth step is similar to the
third step, and involves the solution of two independent systems of equation, one
for each component of the velocity.

For the following test cases the domains are not moving in time so it is efficient
to use Cholesky decomposition to factorize the Schur complement from equation 4
at the start of the computation. Direct solvers were also used for each element to
solve the decoupled interior-interior node systems.

6.1.2. Kovasznay Flow

The first Navier-Stokes solution we shall consider is the Kovasznay flow. This is
a laminar flow behind a two-dimensional grid, the exact solution of which is due to
Kovasznay [20]. This solution can be written as a function of Reynolds number Re
in the form:

A
u(z,y) = %exysin(%m:)

v(z,y) = 1— e cos(2mx)
where
1
2 3
/\:&— (R—e+47r2> .

Using the exact solution as Dirichlet boundary conditions, a steady state solution
was obtained using the discretizations shown in Figure 9.

FIG. 9. Meshes used in h- and p-refinement studies of the Kovasznay problem

M=2 M=3 V=4 V=6 V=8

Using the exact solution allows us to calculate the Ly error for increasing expansion
order as is shown in Figure 10. The rates of convergence for the two nodal sets are
shown in Tables 7 and 8. It is clear that the rate of convergence is close to p+ 1 up
to the time stepping error which is of the order A¢3. In this case At = 0.001 and
the convergence cut off is at O(1077).

6.1.3. Double Shear Layer Flow

The next test is similar to cases considered by Brown and Minion [3]. It consists
of an initial value problem in a periodic box of length two. Two thin shear layers
are perturbed and subsequently roll up into two vortices with trailing arms. The
initial condition is

u = tanh(e(y +0.5)) for y <0
tanh(e(0.5 —y)) for y >0

v = dcos(nz)
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TABLE

7

(Re=40) using Fekete nodes (** indicates that the solution

FIG. 10.

nodes.

has already converged to the time stepping error)

Mesh

p | M=2 | M=3 | M=4 | M=6 |

© 00~ O U W N

8.61
3.93
6.21
6.57
8.62
8.03
10.42
9.93

3.80
3.49
5.74
4.16
7.81
6.30
8.41
7.91

3.04
5.73
5.62
7.48
6.81
8.81
8.74
7.56

3.55
5.05
4.60
5.87
6.67
7.33
5.81

k3%

Convergence in the L2 norm as a function of polynomial order for the steady state
Kovasznay flow at a Reynolds number Re = 40. (a) using Fekete nodes. (b) using electrostatic

-0.6
Log(1/M)

Log(L2) Error

-0.6
Log(1/M)



! Please write \titlerunninghead{<(Shortened) Article Title>} in file! 19

TABLE 8
Rate of p convergence, in the Lz norm, for the Kovasznay problem
(Re=40) using electrostatic nodes (** indicates that the
solution has already converged to the time stepping

error)

| | Mesh |

| p| M=2 | M=3 | M=4 | M=6 |
2 | 8.61 3.80 3.04 3.55
31 3.93 3.49 5.73 5.05
4 6.32 5.51 5.76 4.52
5| 6.62 4.16 7.50 5.68
6 | 8.59 7.74 6.84 6.72
7| 7.94 6.54 8.78 7.25
8 | 10.34 | 8.71 8.81 5.74
9| 9.58 8.31 7.51 *x
= 40.0

6 = 0.05

We used this highly non-linear flow to test the potential aliasing properties of the
nodal triangle, and compare the results with those using the modal triangle. We
show in Figure 11 comparisons, at time 1.87, of the vorticity field for the simulation
run with p=9,p=11,p = 14 and p = 18 on a mesh of 12x12x2 triangle elements.
The plots on the left show the nodal results, and the plots on the right show the
modal results.

This test is a good indication of the effects of under-resolution. In Figure 11a
we see that four spurious vortices have been created due to lack of resolution.
In contrast the modal version in Figure 11b has created several weaker spurious
vortices, and the roll up of the arms has been distorted. Both these cases confirm
that lack of resolution can cause dubious physical phenomena. It is interesting
to note that the different triangle types have markedly different properties in this
regime. It is difficult to mark either case as being more accurate.

Comparing Figures 11c and 11d we see that for p = 11 the latter, modal version,
still exhibits a spurious vortex on the trailing arm of the lower vortex. The nodal
version (c) does not show any strong spurious vortices, but there are still some
residual oscillations on the trailing arms.

The results from increasing the resolution more, as shown in Figures 1le-11h,
clearly removes these anomalous vortices and restores the correct symmetries in
the solutions. It appears from these results that aliasing is not causing any greater
problem for the nodal triangle than for the modal triangle.
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FIG. 11. Vorticity contours for the double shear layer flow (Re=10,000,t=1.87). Fekete
nodes, (a) p=9 (c) p=11, (e) p=14, (g) p=18. Modified Dubiner basis: (b) p=9, (d) p=11, (f)
p=14, (h) p=18.
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TABLE 9
Resolution of Strouhal frequency (St) and Drag coefficient (Cd) by
nodal triangles, modal triangles, reference high resolution
modal hybrid grid and nodal quadrilaterals (Prism).

Code | Resolution | St | Cd |

Nodal Code K =490,p=9 | 0.1662 | 1.3447
Modal Hybrid NekTar | K =490,p=9 | 0.1661 | 1.3446
Modal Hybrid NexTar | K =780, p=11 | 0.1662 | 1.3447

Prism [14] 14000 dof 0.1664 | 1.3500

6.2. Flow Past a Cylinder

Flow past a cylinder provides a good way to verify an unsteady Navier-Stokes
code. For Re > 40 vortex shedding occurs at the cylinder and a von Karman street
of vortices forms in the wake of the cylinder. This shedding process causes the
forces on the cylinder to oscillate with a distinct frequency, known as the Strouhal
frequency (St). The Strouhal frequency will be used as a measure to compare the
results from this and other codes.

For Reynolds numbers up to approximately 190 the flow remains two dimen-
sional. Above this number three-dimensional instabilities occur, causing the two-
dimensional approximation to be increasingly inaccurate for higher Re.

For this test of the nodal triangle we consider two-dimensional flow past a circular
cylinder. The cylinder has unit diameter, and the domain surrounding the cylinder
is a rectangle [—22,69] x [—22,22]. Uniform velocity boundaries are used at the
inflow, upper and lower boundaries. Zero Neumann boundary conditions are used
for velocity and the pressure is set to zero at the outflow.

In Table 9 we compare the results for Strouhal frequency and Cd from the modal
element code, NexT ar , and the nodal quadrilateral code Prism for a Re=100
simulation. We see that very good agreement is reached between each of the dif-
ferent approaches for discretizing the domain.

7. SUMMARY

We have demonstrated a straight-forward algorithm for using unstructured nodal
spectral elements. For straight-sided triangles we have shown it is not necessary to
use a set of Gauss like weights for volume integrals. The nodal triangles achieve
exponential convergence with an optimal rate of (p+1)’th order accuracy. For
curved triangles we have shown that it is sufficient to introduce a quadrature or
cubature to achieve a sub-optimal rate of p’th order accuracy.

We have shown that there is not much difference between the accuracies using
the Fekete or electrostatic nodes with this algorithm. However, it is more difficult
to precondition elliptic solves using a finite element preconditioner based on the
electrostatic nodes than when using the Fekete nodes.

The algorithm has been demonstrated on three incompressible Navier-Stokes sim-
ulations, showing that (p+1)’th order accuracy is attained for Kovasznay flow and
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9, 490 elements). Bot-

100, p=

Top: Vorticity contours for flow past a cylinder (Re
tom: Full mesh with thick lines showing element boundaries and thin lines showing triangulation

FIG. 12.
of nodes.
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good agreement is achieved between modal and nodal triangles for well-resolved
simulations of thin shear layers. Thirdly, close agreement is reached between nodal
triangles, modal triangles, modal hybrid elements and nodal quadrilateral elements
for flow past a cylinder.

In future work we intend to investigate the use of the rotational symmetries, as
suggested in [16], in the nodal sets in order to improve the efficiency of the inner-
product and derivative operators at higher polynomial orders. We also intend to
investigate the use of overlapping preconditioners to accelerate the elliptic solves.
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