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Abstract

We derive trace inverse inequalities for hp-finite elements. Utilizing orthogonal poly-

nomials, we show how to derive explicit expressions for the constants when consid-

ering triangular and tetrahedral elements. We also discuss how to generalize this

technique to the general d-simplex.
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1 Introduction

In the late seventies, Ciarlet [1] summarized a unified framework for the con-

struction of inverse-inequalities on finite element spaces utilizing arguments

of norm equivalence, i.e. the equivalence of any two finite dimensional norms.

The well known result takes the form

Theorem 1 For a planar triangle domain D the following result holds ∀u ∈

P2
p(D):

‖u‖∂D ≤ C
p√
h
‖u‖D ,

where h = diam(D).

Here P2
p(D) is the space of two-dimensional polynomials of order p defined on

D.

Unfortunately, this result does not explicitly illuminate the bounding coeffi-

cients relating the norms and, thus, leaves C unknown. Later work by Harari

et al. [3] explicitly calculated the constants for some inverse inequalities. How-

ever, the techniques used limits the order of the finite element spaces consid-

ered. More recently, Schwab [7] discusses these inverse inequalities for general

order and geometries, although also leaving the question of the bounding con-

stants open.
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These inverse inequalities have proven pivotal in the analysis of modern numer-

ical schemes including continuous and discontinuous versions of the Galerkin

method, see e.g. [9], as well as deriving approximate penalty parameters in-

volved in stabilizing these schemes and others.

In this paper we shall loosely follow the work of Verfurth [11] and present

explicit, sharp bounds for the finite element trace inverse inequality on d-

simplices. The results are sharp with respect to the geometry of the elements

(the so called h-dependence), with respect to the polynomial order, p, of the

finite element space, as well as the physical dimension, d, of the element.

What remains of the paper is formatted as follows. In the following section,

Sec. 2, we recall the notation used subsequently. Section 3 discusses in detail

the analysis of the triangular element, while Sec. 4 discusses the extension to

the tetrahedron and, subsequently, the d-simplex. In Sec. 5 we discuss circum-

stances under which the inequalities become equalities while Sec. 6 provides

a brief conclusion.

2 Notation

We shall consider the development of inequalities of the type

‖u‖∂D ≤ C(h, p) ‖u‖D ,
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where D is the element. In particular, we shall pay attention to the case where

D is the d-dimensional simplex with planar faces, i.e., it can be affinely mapped

to the canonical d-dimensional simplex, Td, defined by

Td =

(
(x1, x2, . . . , xd) ∈ Rd||xi| ≤ 1 ,

d∑
i=1

xi ≤ 2 − d

)
.

We assume that u(x) ∈ Pd
p(D), where Pd

p(D) is the space of d-dimensional p’th

order polynomials defined in D. In the special case where D is a d-simplex, we

have

Pd
p(D) = span

{
xi1

1 xi2
2 . . . xid

d | ik ≥ 0 ,
∑
k

ik ≤ p

}
.

The dimensional of the space, Pd
p(D), is in this case

N = dimPd
p(D) =




p + d

p




.

We generally assume that

u(x) =
N−1∑
n=0

ûnψn(x) ,

where x = (x1, x2, . . . , xd)
T and that an L2(D)-orthonormal basis, ψn(x), is

given, i.e.,

(ψi, ψj)D =
∫
D

ψi(x)ψj(x) dx = δij ,
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such that the expansion coefficients are given as

ûn =
∫
D

u(x)ψn(x) dx .

Orthogonal basis sets for the canonical Td-simplex are derived in [6,4,2] and

take the form of products of Jacobi polynomials [10]. For the simplest case

of D = T1, i.e., a line, the polynomial basis consists of the classical Legendre

polynomials, i.e.,

ψn(x) =
Pn(x)√

2
2n+1

.

3 Inequality for the Planar Triangle

To highlight the procedure to obtain the constants, let us first consider the

inverse inequality which bounds the value of a p’th order polynomial at the

end point of an interval by its integral over the same interval.

Theorem 2 Trace Inverse Inequality on a Finite Interval

For an interval D = [a, b] the following result holds ∀u ∈ P1
p(D):

|u(a)| ≤ (p + 1)√
|b − a|

‖u‖D (1)

PROOF. Consider the reference interval, T1 = [−1, 1], and the associated

L2-orthogonal polynomial, the classical Legendre polynomial. The value at
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one endpoint, e.g., x = −1, is given as

u2(−1) = ûT Fû ,

where û = (û0, . . . , ûp)
T is the vector of expansion coefficients and the entries

of the matrix, F are simply

Fij = ψi(−1)ψj(−1) .

We note immediately that F is a symmetric rank one matrix, i.e., the spectral

radius of F is

ρ(F) =
p∑

i=0

ψi(−1)2 =
p∑

i=0

2i + 1

2
=

(p + 1)2

2
.

This yields the bound

u2(−1) ≤ ρ(F)ûT û =
(p + 1)2

2
‖u‖2

T1 ,

where the latter follows from Parsevals identity.

Using a scaling argument gives

u(a)2 ≤ (p + 1)2

2

2

b − a
‖u‖2

D ,

and, thus, the result.
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In the following we shall utilize this same approach to elucidate the explicit

form of the constant in Theorem 1.

Theorem 3 Trace Inverse Inequality for the Planar Triangle

For a planar triangle element, D, the following result holds ∀u ∈ P2
p(D) :

‖u‖∂D ≤
√√√√(p + 1)(p + 2)

2

Perimeter Length(D)

Area(D)
‖u‖D .

PROOF. We shall begin by considering the reference, right-angled, triangle:

T2 = (r, s| − 1 ≤ r, s ≤ 1 ; r + s ≤ 0) .

An orthonormal, polynomial basis for T2 was introduced by Proriol [6] and

revived by Koornwinder [4], Dubiner [2], and Owens [5]. The basis is indexed

by integer pairs (i ≥ 0; j ≥ 0; i + j ≤ p) and takes the form

ψ(ij)(r, s) = P
(0,0)
i

(
a :=

2(r + 1)

1 − s
− 1

) √
2i + 1

2

(
1 − s

2

)i

P
(2i+1,0)
j (b := s)

√
2(i + j) + 2

2
,

where P (α,β)
n (x) is the classical Jacobi polynomial of order n [10].

Again assuming that

u(r, s) =
∑
ij

ûijψ(ij)(r, s) ,

we compute the edge integral for the face, s = −1, i.e.,

1∫
−1

u2(r,−1) dr = ûT Fû .
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The edge mass matrix, F, has the entries

F(ij),(kl) =

1∫
−1

ψ(ij)(r,−1)ψ(kl)(r,−1) dr

=

1∫
−1

P
(0,0)
i (r)

√
2i + 1

2
P

(0,0)
k (r)

√
2k + 1

2
dr

×P
(2i+1,0)
j (−1)

√
i + j + 1P

(2k+1,0)
l (−1)

√
k + l + 1

= δik(−1)j+l
√

(i + j + 1)(k + l + 1) ,

where δik is the Dirac delta function, appearing due to the L2-orthogonality

of the Legendre polynomials, P (0,0)
n (x).

It is simple to show that F is block diagonal, with a block for each 0 ≤ i ≤ p.

To compute the spectral radius of F, we can consider each block separately.

This is made possible by realizing that for a fixed i the corresponding block

is a rank one matrix since

F(i) = v(i)
(
v(i)

)T
,

where

v
(i)
j = (−1)j

√
i + j + 1 , 0 ≤ j ≤ p − i .

Thus, we immediately deduce that for a fixed i,

ρ(F(i)) =
p−i∑
j=0

(i + j + 1) =
1

2
(p − i + 1)(p + i + 2) .
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As this is monotonically decreasing in i, we recover that

ρ(F) =
1

2
(p + 1)(p + 2) ,

such that

1∫
−1

u2(r,−1) dr ≤ 1

2
(p + 1)(p + 2) ‖u‖2

T2 ,

by using Parsevals identity for orthonormal complete expansions.

Using a standard scaling argument we generalize this to the arbitrary planar

triangle, D, as

2

length

∫
edge

u2(r,−1) dr ≤ 1

2
(p + 1)(p + 2)

2

Area(D)
‖u‖2

D ,

yielding

∫
edge

u2(r,−1) dr ≤ 1

2
(p + 1)(p + 2)

length

Area(D)
‖u‖2

D .

Rotating the coordinate system, this generalizes to any of the edges, resulting

in the combined result

‖u‖2
∂D ≤ 1

2
(p + 1)(p + 2)

Perimeter Length(D)

Area(D)
‖u‖2

D ,

and, thus, the stated result.
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We note in particular that as

Perimeter Length(D)

Area(D)
� h−1 ,

the result of Theorem 3 reflect the same hp-dependence as in Theorem 1.

4 Generalization to the d-Simplex

Let is briefly discuss the extension of the approach used to above, first to the

tetrahedron and then to the general d-simplex.

Theorem 4 Trace Inverse Inequality for the Tetrahedron

For a tetrahedral element, D, the following result holds ∀u ∈ P3
p(D) :

‖u‖∂D ≤
√√√√(p + 1)(p + 3)

3

Surface Area(D)

Volume(D)
‖u‖D .

PROOF. We consider first the standard tetrahedron

T3 = (r, s, t| − 1 ≤ r, s, t ≤ 1 ; r + s + t ≤ −1) .

To prepare ourselves for the general d-simplex, we introduce the mapping

r =
(1 + a)

2

(1 − b)

2
(1 − c) − 1

s =
(1 + b)

2
(1 − c) − 1

t = c
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where −1 ≤ a, b, c ≤ 1, i.e., the mapping collapses the unit cube into T3.

These coordinates are often known as the Duffy coordinates.

As above we utilize the orthonormal basis for the tetrahedron introduced by

Dubiner [2]. The elements of the basis are indexed by integer triples (i, j, k)

and take the form

ψ(ijk)(r, s, t) =


P

(0,0)
i (a)√

2
2i+1







(
1−b
2

)i
P

(2i+1,0)
j (b)√

2
2(i+j)+2







(
1−c
2

)i+j
P

(2(i+j)+2,0)
k (c)√

2
2(i+j+k)+3


 .

We recall that P (α,β)
n (x) is the n’th order Jacobi polynomial defined on [−1, 1]

and that (a, b, c) are related to (r, s, t) through the inverse of the mapping

given above.

Proceeding as previously, we assume that

u(r, s, t) =
∑
ijk

û(ijk)ψ(ijk)(r, s, t) ,

and consider the integration over one face, c = −1, as

∫
face

u2(r, s,−1) dr ds =

1∫
−1

1∫
−1

u2(a, b,−1) da db = ûT Fû ,

where the face matrix, F, has the entries

F(ijk)(lmn) =

1∫
−1

1∫
−1

ψ(ijk)(a, b,−1)ψ(lmn)(a, b,−1) da db

= δilδjm


P

(2(i+j)+2,0)
k (−1)√

2
2(i+j+k)+3

P 2(l+m)+2,0
n (−1)√

2
2(l+m+n)+3




= δilδjm(−1)k+n

√
2(i + j + k) + 3

2

√
2(l + m + n) + 3

2
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This again takes on a block diagonal form and the blocks indexed by i+ j are

all rank one matrices, with the maximum eigenvalue, and thus the spectral

radius of F, being

ρ (F) =
(p + 1)(p + 3)

2
.

for i + j = 0.

As for the triangle this yields the following bound for u ∈ P 3
p (T3)

∫
face

u2(r, s,−1) dr ds ≤ (p + 1)(p + 3)

2
‖u‖2

T3 .

Using the affine nature of the simplex yields

∫
face

u2(r, s,−1) dx ≤ (p + 1)(p + 3)

2

2

3

Area(Face)

Volume(D)
‖u‖2

T3 .

Rotating the coordinates to cover the other faces immediately yields the result.

We again have the same asymptotic behavior as in Theorem 1 since

Surface Area(D)

Volume(D)
∼ h−1 .

The technique utilized here generalizes to the general simplex.

Theorem 5 Trace Inverse Inequality for the d-Simplex
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For a d-simplex, D, the following result holds ∀u ∈ Pd
p(D) :

‖u‖∂D ≤
√√√√(p + 1)(p + d)

d

Volume(∂D)

Volume(D)
‖u‖D .

PROOF. Consider the d-simplex

Td =

(
(r1, r2, . . . , rd)||ri| ≤ 1 ,

d∑
i=1

ri ≤ 2 − d

)
,

and introduce the canonically collapsed coordinate transform

r1 =
(1 + a1)

2

(1 − a2)

2

(1 − a3)

2
...(1 − ad) − 1 ,

r2 =
(1 + a2)

2

(1 − a3)

2

(1 − a4)

2
...(1 − ad) − 1 ,

r3 =
(1 + a3)

2

(1 − a4)

2

(1 − a5)

2
...(1 − ad) − 1 ,

...

rd = ad ,

where |ai| ≤ 1, i.e., the d-simplex is mapped to a bi-unit d-cube. The or-

thonormal, polynomial basis for the d-simplex is indexed by integer d-tuples

i = (i1, i2, i3, .., id) and takes the form

ψ
(i(r)) =

P
(i1,0)
i1 (a1)√

2
2i1+1

l=d∏
l=2




(
1−al

2

)Nl(i)
P

(2Nl(i)+l,0
il

(al)√
2

2Nl(i)+d




where

Nl(i) =
l∑

j=1

ij .
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As previously, we now consider the inner product over one (d − 1)-simplex,

associated with ad = −1, for which the mass matrix, F, has the entries

F
(i)(i)

=
∫

ad=−1

ψ
(i)

ψ
(j)

(a) da1 . . . ad−1

=
d−1∏
l=1

δilil(−1)id

√
2Nd(i) + d

2
(−1)jd

√
2Nd(j) + d

2
.

One again realizes that this is a block diagonal matrix. Indeed, when indexed

by i1, i2, .., id−1 each have one non-zero eigenvalue and the maximum of all of

these is

ρ (F) =
(p + 1)(p + d)

2
. (2)

Proceeding as previously, this yields for all u ∈ Pd
p(T

d)

∫
∂T d|ad=−1

u2 da ≤ (p + 1)(p + d)

2
‖u‖2

Td .

Observing that the volume of Td is

volume(Td) =
2d

d!
,

and using the affine nature of the d-simplex, and rotation of the coordinates

as previously, we recover the result for the general element, D, as stated.
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5 Extremal Polynomials

While we so far have provided sharp bounds on the scaling constants we have

not discussed the candidate polynomials which lead to equality in the bounds.

We shall restrict this discussion to the two-dimensional triangle case as the

same result for the d-simplex follows by immediate extension.

First recall that one can construct a quadrature for the triangle in the (a, b)

coordinates using a tensor-product of the Gauss-Lobatto-Legendre (GLL) and

the Gauss-Radau-Jacobi (GRJ) quadrature [8]. For the p’th order polynomial

space we use a set of p+1 GLL nodes in the a direction and a set of p+1 GRJ

nodes in the b direction. The GRJ quadrature weights include the necessary

(1 − b)/2 factor introduced by the Duffy mapping.

Corollary 6 Extremal polynomials For The Trace Inverse Inequality

For a planar triangle element, D, the only set of polynomials which turn the

trace inverse inequality into an equality are scalar multiples of that polynomial

which is constant in the r direction and is the Lagrange polynomial defined to

be unity at the s = −1 GRJ node and zero at the other p GRJ nodes.

PROOF. First consider the eigenpair (λ, u) where λ = (p+1)(p+2)
2

and u ∈

P2
p(T

2) such that the trace inverse inequality is an equality:

∫
edge

u2(a,−1) da = λ ‖u‖2

T2 .
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By the definition of the eigenpair we know from the earlier analysis that the

polynomial with the maximal eigenvalue is a constant in the a direction, i.e.,

i = 0, so the left hand side is trivially:

∫
edge

u2(a,−1) da = u(a = −1, b = −1)2 .

Since u is included in P2
p(T

2) we are able to evaluate the right hand side norm

using a minimal GLL-GRJ quadrature

λ ‖u‖T2 = λ
i=p∑
i=0

j=p∑
j=0

wGLL
i wGRJ

j u (ai, bj)
2

= λ
j=p∑
j=0

wGRJ
j u (a = −1, bj)

2

where wGLL
i and wGRJ

j are the weights from the GLL and GRJ quadrature

rules, respectively. The second step follows from u being independent of the a

coordinate. Combining these results yields

u (a = −1, b = −1)2 = λwGRJ
0 u (a = −1, b = −1)2 + λ

j=p∑
j=1

wGRJ
j u (a = −1, bj)

2

Now observe that

wGRJ
0 =

2

(p + 1)(p + 2)
=

1

λ
,

from which it immediately follows that u (a = −1, bj) = 0 for j = 1, 2, .., p.

The stated result follows from λ > 0 and the uniqueness of the p’th order

interpolant through p + 1 nodes.
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6 Conclusion

We have derived explicit bounds for the finite element inverse trace inverse

inequality. This was accomplished by using orthonormal polynomials on the

d-simplex and realizing that a special ordering makes the associated face ma-

trices block diagonal. Moreover, each of these blocks are rank one matrices,

thus allowing for obtaining explicit expressions for their spectrum. The affine

nature of the d-simplex allows the extension to the general simplex. The results

are asymptotically sharp in the element geometry and the order of the poly-

nomial. The analysis also reveals that structure of the polynomial for which

the bound becomes an equality.
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