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We develop and evaluate a high-order discontinuous Galerkin method
for the solution of the shallow water equations on the sphere. To overcome
well known problems with polar singularities, we consider the shallow water
equations in Cartesian coordinates, augmented with a Lagrange multiplier
to ensure that fluid particles are constrained to the spherical surface.

The global solutions are represented by a collection of curvilinear quadri-
laterals from an icosahedral grid. On each of these elements the local
solutions are assumed to be well approximated by a high-order nodal La-
grange polynomial, constructed from a tensor-product of the Legendre-
Gauss-Lobatto points which also supplies a high-order quadrature. The
shallow water equations are satisfied in a local discontinuous element fash-
ion with solution continuity being enforced weakly.

The numerical experiments, involving a comparison of weak and strong
conservation forms as well as the impact of over-integration and filtering,
confirm the expected high-order accuracy and the potential for using such
highly parallel formulations in numerical weather prediction.

Key Words: discontinuous Galerkin method, filters, high-order, icosahedral grid, shallow
water equations, spectral element method, spherical geometry.

1. INTRODUCTION

The majority of current climate and numerical weather prediction (NWP) mod-
els, e.g., the operational NWP models developed by the European Center for
Medium-Range Weather Forecasting (ECMWF), the National Center for Environ-
mental Prediction (NCEP), and the Naval Research Laboratory (NRL), are based
on globally defined spectral methods [13, 16, 26, 27]. While these methods continue
to be essential tools for NWP, their limitations are beginning to emerge. For one,
the fixed global grid makes adaptive solution techniques very complex if possible at
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all. Furthermore, the recent paradigm shift in large-scale computing from vector
to distributed-memory computing platforms has exposed problems with achieving
efficiency due to the global, inter-processor, all-to-all communication needed in the
spectral transform.

Such considerations have stimulated research into parallel methods and poten-
tially adaptive methods, suitable for NWP, that maintain the accuracy of the global
spectral approach while overcoming its inherent limitations.

Continuous spectral element methods (SEM) have recently been proposed for
future climate [28] and NWP [10] models. In these methods the solution is first
constructed in a local element-by-element manner and then a portion of this local
solution is distributed to the global grid points shared by adjacent elements. This
global assembly from the elements to the global grid points is what enforces conti-
nuity and it is this requirement which reduces the locality of the method. Although
continuous spectral element methods parallelize quite well [29] their insistence on
continuity makes them cumbersome to employ in either a non-conforming approach
[19] or in an adaptive solution strategy.

In this paper we introduce a nodal high-order discontinuous Galerkin method for
geophysical flows on the sphere. Like continuous spectral element methods, discon-
tinuous Galerkin methods (DGM) can be constructed to have high-order accuracy,
while maintaining a large degree of locality, hence enabling high parallel perfor-
mance and adaptive solution procedures. The locality of these methods ensures
that they can be used with any type of grid, e.g., unstructured and non-conforming
if needed. In this paper we shall demonstrate this by using unstructured icosahedral
grids.

As a first step towards the construction of a fully 3D atmospheric model we
demonstrate the efficiency and accuracy of the nodal high-order DGM by solving
the shallow water equations on the sphere. The shallow water equations contain all
of the horizontal operators required in an atmospheric model and thus represent a
good first test for newly proposed methods for atmospheric models.

The remainder of the paper is organized as follows. In Sec. 2 we introduce the
spherical shallow water equations and discuss the reasons for using a Cartesian
grid. This sets the stage for Sec. 3 which introduces the numerical scheme and
discusses in detail the spatial curvilinear representation of the solution as well as
the formulation enabling one to satisfy the equations in a discontinuous fashion. We
also discuss the temporal time-stepping scheme and the approach taken to generate
a suitable grid on the sphere. In Sec. 4 we demonstrate the accuracy, efficiency, and
robustness of the complete scheme for the solution of benchmark problems for the
spherical shallow water equations. Section 5 contains a few remarks and outlines
natural extensions of the work presented here.

2. SPHERICAL SHALLOW WATER EQUATIONS
The spherical shallow water equations in conservation form are given as

0g

o+ Flg)=S(@q) . )

where
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T
q = [p, pu, pv, pw]

?

represents the state vector, g, composed of the geopotential height, ¢, and the three
Cartesian velocity components, (u,v,w), all being a function of x € R?® and time,
t. The units for ¢ and u are (m/s)? and m/s, respectively.

The flux, F(q), takes the form

wu o) pw
21,2
pu + 507 | 2 puv o puw -
F 2 k 2
(9) Quv t+ o + %902 J+ QW ) (2)
puw pow pw? + 12

where (2,7, k) represent the Cartesian unit vectors. The source term, S(z,q), in
Eq.(1), acting only on the momentum equations, is given as

20z

S(waQ) == R2

T xXu— Vo, +px . (3)

The first term in Eq. (3) accounts for the Coriolis force, with R = 6.371 x 10 m
being the radius and = 7.292 x 10~° rad/s the angular velocity of the earth, while
the second contribution models the effects of a variable surface height through the
surface potential, ¢s. The last term is a Lagrange multiplier, the specification of
which we shall return to shortly.

Equation (1) is derived from the incompressible and inviscid Navier-Stokes equa-
tions by vertically integrating the mass to yield the geopotential height equation
(for further details see [24]). Contrary to most other work on the numerical solu-
tion of Eq.(1) on a spherical shell, we shall not recast it in spherical coordinates
but rather maintain the Cartesian coordinates. The main motivation for doing so,
albeit at the expense of introducing an additional momentum equation, is to avoid
the problems associated with the polar singularity. For a spherical shell, described
by the coordinates (X, 6), of radius R the divergence of a vector field, F = fA+ g6,
is given as

V. F

1 ﬂ+agcos0
~ Rcosf [0\ 00

At the poles, i.e., § = +m/2, this is a source of numerical problems, caused by the
specific formulation rather than the nature of the shallow water equations and its
solutions. While the use of a local Cartesian coordinate system has been used to
overcome these problems in the past [28] we have, guided by the results of previous
work [10], chosen to maintain the Cartesian formulation everywhere. It should be
mentioned that this Cartesian formulation poses no difficulty to the construction
of a 3D atmospheric primitive equation model as we show in [11] for the continuous
spectral element method.

To ensure that the fluid particles remain on the spherical shell, we require that
the fluid velocity remains perpendicular to the position vector, i.e., z-u = 0, which
yields the Lagrange multiplier



4 GIRALDO, HESTHAVEN, AND WARBURTON
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Here F represents the parts of the flux, Eq. (2), associated with the momentum
equations, i.e., the last three fluxes. As no constraint is needed on the geophysical
potential, essentially representing the local mass, the multiplier is needed in the
momentum equations only.

3. THE NUMERICAL SCHEME

In developing the numerical scheme for the solution of Eq. (1) we shall split the
discussion into a treatment of the spatial discretization and the approximation of
the resulting semi-discrete approximation.

3.1. The Spatial Approximation
The discussion of the spatial approximation scheme involves, as does any formula-
tion of a scheme for solving partial differential equations, attention to the questions
of how to represent the solution as well as in which way the equations are required
to be satisfied. In the following we address these two issues in more detail.

3.1.1. Representing the Solution and Basic Operations
Initially, we assume that the computational domain, S, i.e., a spherical shell, is
covered by K non-overlapping curvilinear quadrilaterals, D, such that

The construction of this sphere covering is not entirely trivial and we shall return
to this problem in Sec. 4. For now, however, we simply assume its existence.

To enable the efficient and accurate computation of operations such as differ-
entiation and integration, we introduce a nonsingular mapping, x = ¥(£), which
connects the local physical coordinates, * = (x,y, z), defined on D with a refer-
ence system & = (£,7,(), defined on the local element such that (&,7) lies on the
spherical surface. Thus, ( represents the spherical radius vector itself, i.e., { con-
stant corresponds to a shell of a constant radius. For simplicity we assume that
(&,m) € [-1,1]? on each element, see Fig. 1.

Associated with the local mapping, ¥, is the transformation Jacobian, J = ‘Z—%,

and the determinant
oz Ox Oz
J==G@, G=—x — ,
171 ¢ 0¢  On
where G represents the surface conforming component of the mapping (see [10] for
further details).
The mapping also supplies the local metric, V& and V7, as well as the local
normal vectors at the surface of the element. Indeed, as illustrated in Fig. 1, the
normals are given as
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FIG. 1. The geometry of the mapping and the associated metric information.
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for the sides 1/3 and 2/4, respectively.

With this in place we can now focus on the local element-wise representation of
the solution, q, and the approximation of operations such as differentiation and
integration. For simplicity, we assume ( to be unity in what remains and denote
& = (£,n) unless clarification is deemed necessary.

The simple structure of the standard element, |, spanned by € € [—1,1]?, makes
it natural to represent the local solution by an Nth order polynomial in £ as

V¢

n = é- T— el )

n=

(N+1)?
ay(x) = Z an(zk)Lr(z) ,
k=1
where x, represents (N +1)2 grid points and Ly, () reflects the associated multivari-
ate Lagrange interpolation polynomial. The logical square structure of | simplifies
matters further in that we can express the Lagrange polynomial by a tensor-product
as

Li(x) = hi(§(2))h;(n(z)) (5)

where 4,5 =0,..., N.
While many choices of the grid points, (&;,7n;), are possible, it is natural to choose
the Legendre-Gauss-Lobatto points, given as the tensor-product of the roots of

1-€)Py() =0,
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where Py (&) is the Nth order Legendre polynomial. This choice is natural as these
points are endowed with a Gaussian quadrature rule which shall become useful
shortly. With this choice, the one-dimensional Lagrange polynomials, h;(£), also
known as the Legendre cardinal functions, become

1 (1-€%)Py(¢)
N(N +1) (- &)Pn(&) '

hi(§) = —

and likewise for h;(n).
The choice of the Legendre-Gauss-Lobatto points enables the straightforward
approximation of element-wise integrals, i.e.,

— €.
/Dq(w)dw_/ d§ JZO 5@;% gz,nj)wiwj ’

where J represents the local Jacobian for the transformation between D and I, and
wf’ and w; are the Gaussian quadrature weights,

“ = N<N2+ 1) (PN1<§,-))2 ’

associated with the one-dimensional Legendre-Gauss-Lobatto quadrature. We re-
call that if ¢J is a polynomial of at most degree 2N — 1 in each local coordinate,
the quadrature is exact.

The evaluation of surface integrals, made particularly simple by the natural sep-
aration between interior and edge (side) nodes in the nodal formulation considered
here, follows the same line of thinking, i.e.,

}i af)do = yg €)7(€)de

> [, —1)J (&, =1) + (&, 1) (6, 1)]w

+ Z [q(_lanj)‘](_Lnj) + ‘I(lanj)J(Lnj)] w

Jj=0

1

3.1.2. Satisfying the Equation

With the local representation of the solutions and the central operations in place,
we shall now proceed to consider the question of how to satisfy the equation. We
assume that the solution, g, to Eq.(1) is represented locally by high-order polyno-
mials, g, defined on the curvilinear quadrilateral, D, and require that the equation
be satisfied element-wise in the following discontinuous Galerkin way

[ (B +v-ry-sv) @iz = § nen-my-Frld . ©
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where Li(x) (k € [1,..., (N + 1)?]) is the local polynomial basis, Eq.(5). We have
also introduced the polynomial representation of the flux, Fy = Fn(qy), and the
source, Sy = Sn(x,qy), as

(N+1)® (N+1)®
Fn(gy)= Y, Flan(@e)Li(@) , Sn(@,qy)= Y, S(@r, qy(@i))Li(@) .
k=1 k=1

The numerical flux, Fy, in Eq.(6) shall be discussed in detail shortly. Prior to that,
however, a few remarks concerning Eq.(6), are in order. First of all we note that
the interface conditions, introduced into the formulation through the numerical
flux, are enforced only weakly, i.e., the solution is in general discontinuous. As
we shall see, however, this does not impact the accuracy as the size of the jump
vanishes to the order of the interior approximation. Furthermore, the discontinuous
formulation ensures a highly parallel scheme as all communication is local between
elements sharing edges in two dimensions and faces in three dimensions. Finally,
the locality of the approximation makes it straightforward to extend the scheme to
include support for different orders of approximations in different elements, non-
conforming or different types of elements, e.g., triangles and quadrilaterals.

Before discussing the numerical flux, let us note that a mathematically equivalent
but numerically different formulation of Eq.(6) can be obtained by an integration
by parts to recover

/D(ag—;v_FN'v_SN> Lk(m)dm:—ﬁDLk(w)FRdm . (7)

This can be recognized as the classical discontinuous Galerkin method for conser-
vation laws [1, 2, 5, 20]. To distinguish between the two formulations, we shall
refer to Eq.(6) as the divergence form and the more familiar one, Eq.(7), as Green’s
form. Other terms often used to describe these formulations are the strong and
weak forms, respectively.

The numerical flux, F}, is the part of the formulation that allows information
to be passed between the individual elements, the union of which forms S. The
discontinuous formulation implies that the solution at an interface is non-unique and
we must ensure that an unique solution be identified and passed to both elements
in a way consistent with the dynamics of the problem.

This is a situation similar to a classical finite volume formulation to which Eq.(7)
reduces for the lowest order elements. Thus, we can borrow from the extensive
literature devoted to the development and analysis of numerical fluxes within the
context of finite volume methods, e.g., upwinding by linearization or approximate
Riemann solvers such as Roe [25], Engquist-Osher [7] or Van Leer [30] fluxes.

For simplicity and generality we use subsequently the simple Lax-Friedrichs flux
of the form

« _ Fngn) + Fn(py) A

Fy = 2 7(pN_CIN) )

where g, refers to the local computed solution and py refers to the solution in
the neighboring element. The dissipative term is scaled by |A| which represents the
maximum (local) eigenvalue of the flux Jacobian
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0 g Ty iz
on-F | f,p—uU nu+U  nyu U
O0q nyp —vU  fgv  fyu+U  fv ’
o —wlU  fgw Ayw Aw+U
where
U=n-u.

The eigenvalues of the flux Jacobian are A = [U,U,U + ,/p,U — \/G]T, such that

A =1UT+ve ,

is the maximum wave speed of the shallow water equations entering the Lax-
Friedrichs flux. While it is well known that the use of a Lax-Friedrichs flux in a
classical finite volume formulation leads to a very dissipative scheme, this is much
less of a problem in a high-order formulation where the quality of the numerical
flux is less critical [6].

To simplify matters further for both formulations, let us introduce

My = /D Li(e)Le(x) dz , Di = /D Li(e)VEIk(z)da | ®)

as the mass matrix and the differentiation operator, respectively. Note that D =
[D*,DY¥,D*] is a vector of matrices corresponding to a discrete gradient operator.
To account for the source we define

2
20 (N+1)

Su=1% D T /D Ly () Ly () Ly(@) Ly () dx , MY, = /D Li(2)Li(2) Vs (x) dz

m,n=1
where D, S and MY are 3-vectors of matrices.
Finally we introduce the operator associated with the surface integral as

Fi = ?go Li(x)Ly(z) dx |

where [ includes the trace of nodes on the face of D only. Denoting the local element-
wise grid vector of the geopotential as ¢y, the 3 momentum components as @u
and the corresponding state vector as gy = [@n, Puy]? Wwe can now express the
semi-discrete approximation of the divergence form, Eq.(6), as

d 0 0
LeMGay+D-Fxta) = |yt o | an ©

0 0 0
F[F — F*
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where I,. is a rank-r identity matrix and the Lagrange multipliers are contained
in the diagonal matrix, u = diag[u, ..., n+1)2]- Finally we have introduced the
arrays of nodal physical coordinates, xn = [zn,yn, 2N

Similarly, we can express the Green’s form, Eq.(7), using the above notation as

Lo Fax =D Fxtan) = |yt o | av (10)

dt
0 0 0 *
+[0 MI3®M][CBN]_(I4®F)F '

In both cases we can compute the Lagrange multipliers in a way similar to the
continuous case, Eq.(4), i.e., by requiring that the discrete momentum is pointwise
normal to the position vector.

3.1.3. Communication on Distributed-Memory Computers

It is worth noting that both schemes given above are fully explicit in time, i.e., no
global assembly is required in contrast to a classical finite element/spectral element
scheme, and is thus parallel by construction. By not having to enforce continuity
(and hence no global assembly required) the DGM element-wise solution is con-
structed locally with the only parallel communication required being the solution
at the edge values of the neighboring elements. In contrast, the need for continuity
in the SEM formulation requires a global assembly and hence each element requires
the solution of all the surrounding elements that share its vertices. As an example,
on the icosahedral grid using quadrilaterals (as we have used here) each element
has only 4 edge neighbors but as many as 9 vertex neighbors whereas for triangles
there are only 3 edge neighbors and as many as 13 vertex neighbors. This disparity
between edge and vertex neighbors gets significantly worse in three dimensions.
Therefore, although the length of the communication message for both the SEM
and DGM formulations are equal, O(4N + 2) corresponding to the edge nodes,
the SEM formulation has to communicate this message to at least twice as many
neighbors as the DGM formulation.

The only overhead associated with the DGM formulation is the additional mem-
ory required to store the multiple solutions at the overlapping regions of the el-
ements, i.e., the edges (sides). For high-order elements this memory overhead is
clearly negligible as the number of edge to volume nodes decreases rapidly as the
order increases.

3.2. Temporal Integration and Stability
The explicit nature of the semi-discrete formulation

dqn
—~ =B
ot (an) >

where B signifies the operators given in Egs.(9)-(10), makes it natural to use a
standard explicit Runge-Kutta scheme. This yields

Vk=1,..,3 : ¢ =qk + Atay,B(¢") ,
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with gk=! = g% and
At &
gt =g + - ZﬂkB(qk) ,
k=1
where

1
a1 =az =g, az=1, and fi=fs1=1 Pa=fs=2.

The time step, At, is chosen in order to ensure a stable scheme and will generally
scale like

At < CFL x mig[|u-x|+g0\/x-x_1 ,
e

where the local grid distortion is measured by

X = (@ 2] 1€yl | Imyl 1€ _+_|7)z|>

AL T Ay AE T AnAE T Ay
Here (A€, An) reflects the local average grid size and u = (u, v, w) the local velocity.

Even with a suitably chosen value of the time-step it is well known that high-
order methods are prone to instabilities due to the nonlinear mixing and lack of
dissipation, see e.g. [12]. This is particularly true for problems with marginally
resolved phenomena where the nonlinear mixing of the solution with the Gibbs
oscillations can drive the instability.

The standard approach to avoid this instability in a controlled manner is through
the use of a weak high-order filter which modifies the high frequency modes without
altering the well resolved low frequency modes. As has been shown over the last
decade such filtering can be applied without sacrificing spectral accuracy [12, 28].

We shall focus on the filters developed by Boyd [3] and Vandeven [31]. While
these filters perform well, their use are known to pose difficulties in a classical
spectral element scheme where the solution is required to be continuous. As we
shall see shortly, however, these difficulties vanish in the current formulation.

Following the discussion in [3], consider the state variables, q,, as

(N+1)* N
an = Z an(&x)Li(€) = Z a;;Pi(§)F;(n)
k=1 i,j=0

where L (&) is the Lagrange polynomial associated with the points, &, P;(§) and
P;(n) the Legendre polynomials in  and 7, respectively, and q;; the discrete Leg-
endre expansion coefficients of the state vector computed by using the Legendre
quadrature.

The filtering approach proposed in [3] involves the weighted sum

N

gy =(1-v)gy +v Z 0i0;4;;P(§)P;(n) , (11)
i,j=0
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where v is the filter weighting, i.e., v = 0 represents no filtering and v = 1 full
filtering; typically, v = 0.2 is used (see [28]). Furthermore

1 for i<s
Ui:{a(](',_s)for s<i<N (12)
—8

is the filter function with o being the Boyd-Vandeven filter [3] and i = s, ..., N are
the modes affected by the filter; o; is defined likewise. Note that the filtering is
performed in an element sense. In other words, each element yields its very own
set of filtered values. However, if using a spectral element formulation we would
need to require that the state vector be continuous across elements. As the filtering
gives different values for grid points shared by elements some form of weighting is
typically required to recover continuity. Since we advocate a discontinuous element
formulation, however, this correction is unnecessary, hence greatly simplifying the
inclusion of filters into the schemes.

4. GENERATION OF ICOSAHEDRAL GRIDS ON THE SPHERE

Contrary to the more traditional solution techniques exploiting spherical har-
monics [13, 16, 18, 26, 27], the use of a multi-element formulation allows for the
use of any type of grid, e.g., not only unstructured grids but non-conforming grids
as well.

The generation of the grid on the sphere is a challenging problem and in this
section we describe the procedure for constructing the general high order icosahedral
grid proposed in [9, 10]. This grid is derived from the icosahedron comprised of 20
equilateral triangular elements and 12 grid points.

To construct icosahedral grids we consider the initial icosahedron and subdivide
each of the initial triangles by a triangular Lagrange polynomial of order njy. Prior
to mapping these elements onto the sphere it is convenient to map the triangles
onto a gnomonic space. The most unbiased mapping is obtained by mapping about
the centroid of the triangles.

Let (Ac,0.) be the centroid of the triangle we wish to map. The gnomonic
mapping is then given by

acosfsin(A — ;)

Y7 sin 0. sinf + cos . cos@ cos(A — A;)’ (13)

a[cosf, sin @ — sin 6. cos 6 cos(A — A.)]
sin 6. sin 6 + cos @, cos 8 cos(A — A;)

y:

To simplify matters a bit, we first apply a rotation whereby Eq.(13) becomes

x =atan )\, y =atanf sec\' (14)

in the new coordinate system with the coordinates (\,8) located at (0,0). The
rotation mapping is given as

cos@sin(\ — A.)

A = arctan
sin 0. sin @ + cos @, cos 6 cos(A — Ac) |’

(15)
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0" = arcsin[cosf, sinf — sin 6, cosf cos(A — \.)].

This approach enables the construction of a general icosahedral grid defined by

NS = 10(nr —1)>+20(n; —1) +12 ,

NI = 2(N] -2), (16)

e

N} = 3N} -2),

where N, N7, and N denote the number of points, elements, and sides com-
prising the triangular grid.

Once the triangular icosahedral grid is constructed, we subdivide each triangular
element into 3 quadrilateral elements. Upon dividing the triangles into quadri-
laterals one can construct the higher order collocation points inside each element
resulting in a quadrilateral grid with the following properties

N, = 6(N —2)N* +2 |
= 6(N, —2) , (17)
12(N -2) ,

22
ol

where N, N, and N, denote the number of points, elements and sides comprising
the quadrilateral grid, and NN is the polynomial order used in the semi-discrete
discontinuous Galerkin scheme discussed in Sec. 3.1.2.

Substituting the values in Eq.(16) into Eq.(17) yields

N, = 60(n7)®’N?+2 , (18)
N, = 60(”1)2 , (19)
N, = 120(ny)* . (20)

Table I provides examples of grids for various values of ny and N. Examples of
corresponding grids for ny = 1 and N = 4,8, 16, and 32 are illustrated in Fig. 2.

5. RESULTS

In the following we evaluate the performance of the scheme discussed in the
previous sections. As a measure of the error we use the normalized Lo error

2
”q ” _ \/ID (Qexact - qN) dzx
N - .
L fD quact dzx

throughout this section. Here g, represents the computed conservation variables
and g, the exact when available. The global error is computed as a broken norm
using the local quadratures.

Seven test cases are used in order to test the algorithms and form a framework
for comparison between the two formulations. Cases 1, 2, 3, 5 and 6 correspond
to the test cases given in [32]. Case 4 has been used as a test case for the shallow
water equations in [9, 10, 22, 23]. Cases 1, 2, and 3 have analytic solutions and are
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TABLE I
The number of grid points, elements, and sides for the icosahedral
grid as a function of n; and N.

nr N nr- N Np Ne N
1 4 962 60 120
1 8 8 3842 60 120
1 16 16 15362 60 120
1 32 32 61442 60 120
1 64 64 245762 60 120
4 1 4 962 960 1920
8 1 8 3842 3840 7680

16 1 16 15362 15360 30720

32 1 32 61442 61440 122880

64 1 64 245762 245760 491520
2 2 4 962 240 480
4 2 8 3842 960 1920
8 2 16 15362 3840 7680

16 2 32 61442 15360 30720

32 2 64 245762 61440 122880
1 4 4 962 60 120
2 4 8 3842 240 480
4 4 16 15362 960 1920
8 4 32 61442 3840 7680

16 4 64 245762 15360 30720

used to evaluate the accuracy of the discontinuous Galerkin method quantitatively.
Cases 4, 5, and 6, on the other hand, do not have analytic solutions and are thus
used to obtain a qualitative assessment of the accuracy of the scheme. In addition,
Case 7 is used to test our scheme on flows containing non-smooth solutions. For
this test case we compare our nodal DGM scheme with the continuous spectral
element method in [10].

e Case 1: Steady-State Advection. This case concerns the solid body rotation of
a cosine wave. It only tests the mass equation as the velocity field is assumed to
remain unchanged throughout the computation. The cosine wave completes one
full revolution after 12 days of integration.

o Case 2: Global Steady-State Nonlinear Zonal Geostrophic Flow. This case is a
steady-state solution to the nonlinear shallow water equations. The equations are
geostrophically balanced and remain so for the duration of the integration. The
velocity field thus remains constant throughout the computation. The geopotential
height ¢ undergoes a solid body rotation but since the initial height field is given
as a constant band, the solution remains the same throughout the time integration.
The velocity field is the same as that used in Case 1. Williamson et al. [32]
recommend that the error be computed after 5 days of integration.
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FIG. 2. Anicosahedral grid forny =1 and a) N =4,b) N=8,c) N =16,and d) N = 32.

o Case 3: Steady-State Nonlinear Zonal Geostrophic Flow with Compact Support.
This case is similar to Case 2 except that the velocity is zero everywhere except in
a very small isolated region. This isolated region, or jet, encapsulates the flow and
limits the geopotential height field to remain within a very confined circular region.

As in Case 2, the errors are computed after 5 days.

e Case 4: Dancing High-Low Waves. This case comes from [22] and is not an
analytic solution to the shallow water equations. The initial geopotential height is
comprised of two large waves with the left wave being the low wave and the right
wave being the high wave, when viewed from the north pole. The waves rotate
clockwise in a swirling dance-like fashion so that after 10 days of integration, the

low wave is again on the left and the high wave is on the right.

e Case 5: Zonal Flow over an Isolated Mountain. This case is similar to Case 2
except that a mountain has been included on the sphere. This is the only problem
in the test cases studied here which includes topography. The mountain is conical
in shape and forces the zonal flow to deflect off the mountain. Due to the zonal
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flow impinging on the mountain, wave structures form and propagate around the
sphere. Results are reported for a 10 day integration period.

e Case 6: Rossby-Haurwitz Wave. Although Rossby-Haurwitz waves are not
analytic solutions to the shallow water equations, they have become a standard
test case. In a non-divergent barotropic model, the initial geopotential height field
undergoes a solid body rotation in a counterclockwise direction (when viewed from
the north pole). Results are reported for a 14 day integration.

e Case 7: Steady-State Advection of a Circular Column. This case is similar
to Case 1 except that the mass, ¢, is now assumed to be a circular column with
values ¢ € [0,100]. This circular column is the 2D analog of the 1D square wave
and thus no longer represents a smooth solution. We present this case in order to
judge qualitatively the performance of our nodal DGM scheme when confronted
with steep gradients.

In the following we shall use these 7 benchmarks as the stick against which to mea-
sure and compare the schemes and their numerical properties such as robustness
and accuracy. For the former we shall discuss the impact of various simplifications
and approximations introduced into the two schemes, Eqs.(9)-(10), while the latter
is evaluated by comparison with exact solutions as well as studies of a more quali-
tative nature. Throughout this section, unless explicitly stated, it is to be assumed
that no filtering is used.

5.1. Basic Convergence Tests

To discuss and illustrate the advantages of using a high-order scheme for solving
the shallow water equations we examine the solution of Cases 1, 2, and 3 using the
divergence form of the scheme, Eq.(9), only.

Figure 3 shows the computed mass error for the 3 cases using the following
orders of accuracy: N =1 (dashed), N = 2 (dotted), N = 4 (dashed-dotted), and
ny = 1 (solid). We plot the mass error norm as a function of the product nyN. The
N =1 results are obtained by using linear elements but increasing ny for increasing
nrN, i.e., it corresponds to a classic element refinement known as h-refinement. In
contrast, the ny = 1 results shown in the plots represent our Nth order scheme
where we keep the number of elements constant (given by ny = 1) and increase N
as is done in classic high-order/spectral convergence.

The results in Fig. 3 confirm the spectral accuracy of the scheme for all three
test cases. These results also illustrate well the advantages offered by high-order
schemes over low-order schemes in terms of accuracy.

However, it is crucial to understand the cost incurred by this additional accuracy.
If the high-order scheme is prohibitively expensive for levels of accuracy of relevance
then the scheme loses much of its appeal.

In order to measure cost versus accuracy, we consider the number of operations
associated with the different schemes. The simplest reasonable operation count
is O(N3N? / %), where N is the local approximation order on the N, elements.
This estimate is obtained by including the N, evaluations of the derivatives, being
O(N3N,), and including an additional O(N?+/N,) work to account for the number
of time-steps required to advance the high-order method. Taking the expression for
N, from Eq.(20), this yields an estimate of the work as O(N°n$).
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FIG. 3. The mass error norm for the divergence form of the DGM comparing low order

schemes (N < 4) with the Nth order scheme (ny = 1) for a) Case 1, b) Case 2, and c) Case 3 for
a one day integration.

The main interest is to limit the number of operations needed to achieve a result
with a given accuracy; this will vary depending on the problem. Let us first consider
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the results of Case 1, illustrated in Fig. 3a. Taking an accuracy of 10~3 as the
goal Fig. 3a shows that the 4th order scheme is the one with the least operations,
about half that of the 2nd order scheme and almost 5 times less than the first order
scheme. In a similar fashion one finds for Case 2 and an accuracy goal of 10710 that
the Nth order scheme is most efficient while the 1st, 2nd, and 4th order methods
are prohibitively expensive. For Case 3 and an accuracy goal of 10710 we again
find the Nth order scheme to be most efficient.

These results provide only guidelines but they do confirm the advantages in using
a high-order scheme over lower accuracy methods. Whether one should use the
highest order approximation possible or rather limit the order and refine the element
size may well be problem dependent. However, as has also been found in other
similar studies [10, 14, 15, 17, 28] it is generally advantageous to use a moderate
order of approximation, N € [8,16], and refine the element size accordingly to
achieve a practical level of accuracy. Only for problems requiring very high accuracy
or long time integration can one benefit from using a very high order scheme, i.e.,
N > 16. The results obtained here support the validity of these guidelines.

5.2. The Divergence Form versus the Green’s Form

As a second test we shall evaluate the differences between the divergence, Eq.(9),
and Green’s formulations, Eq.(10), subject to various approximations and simplifi-
cations. As a basis for this comparison we shall again use Cases 1, 2, and 3. First,
we examine the two formulations using full and diagonal mass matrices. Second,
we examine both formulations using exact and inexact integration to compute the
discrete operators. Although these simplifications and approximations appear to
be minor they have a significant impact on the performance of the divergence and
Green’s formulations.

5.2.1. Full versus Diagonal Mass Matriz

One of the most immediate ways of improving the efficiency of the discontinuous
Galerkin method is to approximate the mass matrix, M, Eq.(8), by a diagonal (or
lumped) form. We form the diagonal approximation of the mass matrix by simply
summing all of the entries of each row and storing the sum in the main diagonal.

Figure 4 shows the errors obtained using the full and diagonal mass matrices for
the divergence and Green’s forms, Eqs.(9)-(10), on the ny = 1 grid for Cases 1,
2, and 3. These results use exact numerical integration. These results show that
there is little difference between using a full and diagonal mass matrix for both the
divergence and Green’s forms; only in Case 2 (Fig. 4b) does there seem to be a
difference where the Green’s form is adversely affected by this approximation.

5.2.2.  FEzxact versus Inexact Integration

The evaluation of the discrete operators, e.g., Eq.(8), requires the computations
of integrals. Despite the fact that we have the solution defined on Legendre-Gauss-
Lobatto quadrature points, the curvilinear geometry, reflected by the transforma-
tion Jacobian, and the terms associated with the Coriolis force will create polynomi-
als of higher order and over-integration would be needed to integrated these terms
exactly. Indeed, to integrate all of the matrices exactly requires @ = (cN + 1)/2
quadrature points, where ¢ is an integer constant denoting the factor of the maxi-
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mum order matrix. For the spherical shallow water equations ¢ = 4, coming from
the Coriolis term. For highly skewed elements, however, this factor increases to 6
because of the impact of the transformation Jacobians.

The question to address here is what is the effect of employing inexact in-
tegration only, as is done traditionally in continuous spectral element schemes
[8, 17, 21, 28]. Here we shall simply use the straightforward quadrature associ-
ated with the Legendre-Gauss-Lobatto nodes, to evaluate the inner products and,
thus, the discrete operators.

Figure 5 shows the mass error obtained using exact and inexact integration for
the matrices of the divergence and the Green’s forms on the ny = 1 grid for Cases
1, 2, and 3. Both the divergence and the Green’s forms clearly lose accuracy when
using inexact integration. However, these results show that the divergence form
appears to be more robust towards such approximations, i.e., the results obtained
using the divergence form is always less affected by the approximations than the
Green’s form. This is most noticeable for Cases 2 and 3 (Figs. 5b and 5c¢, respec-
tively) where the Green’s form varies substantially between the exact and inexact
integration as compared to the divergence form which exhibits less sensitivity to
this approximation.

5.2.8. Divergence versus Green’s Form

The results in Figs. 4 and 5 indicate that the Green’s form, Eq.(10), is superior in
accuracy to the divergence form, Eq.(9), of the discontinuous Galerkin formulation
only if everything is done exactly, i.e., full mass matrices and over-integration to
evaluate the discrete operators exactly. However, for all cases, the divergence form
performs almost as well even when doing all operations exactly and it was found to
be more robust to performance enhancing approximations such as diagonal mass
matrices and inexact integration.

Based on these results we shall use the divergence form with inexact integration
and diagonal mass matrices for the remainder of the paper as these approximations
have a negligible impact on accuracy but a major impact on efficiency. It should be
noted, however, that the problems we have considered and on which we have based
this choice are limited and it is not clear which formulation to choose for problems
of a more general nature (e.g., problems with discontinuous solutions). We hope to
address this in future work.

5.3. Convergence and Stability Study

In this section we show convergence results for all seven cases. Cases 1, 2, and
3 have analytic solutions and so we use these cases to judge the accuracy of our
results quantitatively. Cases 4, 5, and 6, on the other hand, are only used to judge
the convergence of the scheme qualitatively, as we do not have analytic solutions to
these cases. Case 7 is used to judge the robustness of our scheme for non-smooth
solutions which are representative of steep fronts that arise in the atmosphere. All
seven test cases are integrated for long periods of time in order to confirm the
stability of the scheme. Cases 1, 2, and 3 require no filtering whereas Cases 4, 5,
and 6 are filtered every 100 time steps. Results for Case 7 are shown both with and
without filtering.
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5.8.1.  Quantitative Study

Figure 6 shows the mass error norm as a function of the approximation order,
N, for Cases 1, 2, and 3. The results for Case 1 are for a 12 day integration
which corresponds to a complete revolution of the cosine wave around the sphere.
For Cases 2 and 3, the results are for 5 day integrations which is the time frame
recommended in [32].

For all cases we observe exponential convergence rates until the effect of reaching
machine double precision. Comparing these results to those published in [28] (Fig.
3 in that paper) we see that our nodal DGM model converges at a higher rate than
their continuous spectral element model. In addition, comparing table IT of that
paper we see that our nodal DGM model performs better than all the models listed
in [28] for all three test cases except for the NCAR spectral transform model. Our
nodal DGM model compares to the NCAR spectral transform model as follows: it
is equal in accuracy for Case 1 (O (1072)), more accurate for Case 2 (O (107'2)
versus O (107%)), and equally accurate for Case 3 (O (107?)). This comparison is
based on an equivalent number of grid points to the NCAR T42 model given by
our icosahedral grid ny = 1, N = 12 (N, = 8000).

However, in [18] the accuracy of the NCAR spectral transform model is shown
to vary substantially depending on the direction of the flow with respect to the
coordinate axes. This is particularly striking for Case 1 when the wave goes through
the poles. Note that the direction of the waves has no effect on the accuracy of
our DGM model because the poles are not treated in any special way, due to the
Cartesian coordinate system, and the icosahedral grid has no preferred directions,
unlike the spherical Gaussian grid. At increased levels of resolution we find that
our DGM model becomes more accurate than the NCAR model. Comparing our
N = 32 result with their T106 (Fig. 4.6 in [18]) we find the accuracy of our model
to be O (107?) compared to O (1072) for the NCAR model. In fact, our model at
this resolution is more accurate than their T170.

L Case 1 1

4 6 8 12 16 24 32

FIG. 6. The ¢ error as a function of the spatial approximation order, N, for Case 1
(dashed), Case 2 (dotted), and Case 3 (solid) after 12, 5, and 5 days of integrations, respectively.
The ny =1 grid is used.
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5.8.2.  Qualitative Study

In the previous section we tested cases that have analytic solutions against which
to compare and judge the accuracy of our nodal DGM scheme. However, the more
relevant Cases 4, 5, and 6, do not allow such simple analytic solutions. Instead we
shall evaluate the convergence characteristics of the scheme qualitatively by running
the cases using different resolutions. In addition, we show results for Case 7 which
contains steep solution gradients such as those that might arise due to weather
fronts.

In Figs. 7, 8, and 9 the left panels show the contours of the mass, the middle
panels show the zonal velocity component, and the right panels show the meridional
velocity component. The zonal velocity component is the u component in spherical
coordinates which is associated with the longitude A and is positive when traveling
west to east in a direction parallel to the Equator. The meridional velocity com-
ponent is the v component in spherical coordinates which is associated with the
latitude € and is positive when traveling from the South Pole to the North Pole.

Figure 7 shows the results for Case 4 for a 10 day integration using N = §,16,
and 32, respectively. The contours are shown from a viewpoint corresponding to the
North Pole (A, 8) = (0,90). These results confirm that the wave structures remain
the same for all three values of N. However the wave pattern clearly becomes better
resolved when increasing N. This is most obvious near the North Pole (center of
the plots) for the velocity components. The contours are a bit jagged for N = 8 but
become smoother for N = 16. Finally, for N = 32 we see that the same patterns
exist as in the N = 8 and N = 16 contours but the curves are much smoother
throughout, indicating a converged result.

Figure 8 shows the results of Case 5 for a 10 day integration at different resolutions
with the contours shown from the viewpoint (), §) = (180,0), where the peak of the
mountain resides at (\,6) = (180, 30). The flow impinging on the mountain causes
the resulting wave structures which we see in the figure around the mid-latitudes
(8 = £45). The contours for N = 8 are again a little jagged - not just for the mass
contours but for the velocity components as well. Increasing N to 16 removes much
of the jaggedness visible in the contours and increasing N further to 32 smoothens
the contours completely, resulting in clearly visible cohesive wave structures.

Figure 9 shows the results of Case 6 after a 14 day integration at different reso-
lutions with the contours shown from a viewpoint corresponding to the North Pole
(A, 6) = (0,90). In contrast to the previous two cases, the results for N = 8 show
that the wave structures are beginning to break down at this resolution which is
insufficient to support the dynamics of the system. This breakdown of the wave
structures is most obvious by looking at the mass. Increasing N to 16 results in a
dramatic improvement with the wave structures becoming more cohesive. This is
particularly noticeable in the mass contours where we see that the rotated Greek
cross pattern remains intact instead of breaking off into distinct blobs as in Fig.
9a. Increasing N further to 32 significantly improves the wave patterns. The mass
contours for the N = 16 scheme are beginning to reveal a semblance of break-off of
the wave pattern. This can be seen by looking at the bottom left tip of the cross.
For N = 32 the wave pattern remains completely intact without any indication of
break-off.
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FIG. 7. Case 4. Contours of the mass (left), u-velocity (middle), and v-velocity (right) on
grid ny =1 and a) N = 8, b) N = 16, and c) N = 32 after a 10 day integration viewed from
(X, 0) = (0,90).

The results for these three cases show that increasing the order of the approxi-
mation, N, either improves the smoothness of the contour curves or allows for the
resolution of finer scale waves. This is particularly noticeable in Cases 5 and 6. In
Case 5, the velocity components exhibit very localized wave formations that are
extremely well resolved by our nodal Nth order DGM scheme. Case 6 illustrates
the breakdown of the wave structure if insufficient grid resolution is used.

Finally, we show results for a non-smooth solution comparing the continuous
spectral element method (SEM) and the discontinuous Galerkin method (DGM).
Figures 10 and 11 show profiles of the mass along the Equator after one full revo-
lution (12 days) using the same time-step and grid (ny = 1, N = 16).

In Fig. 10 we compare the SEM and DGM formulations using no filtering. Note
that the steep gradient produces Gibbs phenomena in the SEM formulation whereas
the DGM formulation handles this gradient more gracefully. However, in reality,
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FIG. 8. Case 5. Contours of the mass (left), u-velocity (middle), and v-velocity (right) on
grid ny =1 and a) N = 8, b) N = 16, and c) N = 32 after a 10 day integration viewed from
(X, 0) = (180,0).

we would not use the SEM form without filtering and so in Fig. 11 we com-
pare the two methods with the Boyd-Vandeven filter applied every 10 time steps.
The SEM formulation benefits greatly from filtering whereas it is unclear whether
the DGM formulation benefits at all. For the very simple case of advection of a
circular column, the filtered DGM seems to handle local gradients slightly more
accurately than the filtered SEM. Part of the reason for the difference stems from
the fact that, like its lower-order relative the finite volume method, the DGM form
is locally conserving; the SEM formulation, however, is only globally conserving.
The property of local conservation may not be too important in global numerical
weather prediction (except perhaps in hurricane tracking), but it will certainly be
important in mesoscale models which are used to simulate fine-scale flows involving
fronts, density currents, and hydraulic jumps due to topography (e.g., mountains
and coastlines, see [4]).
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FIG. 9. Case 6. Contours of the mass (left), u-velocity (middle), and v-velocity (right) on
grid ny =1 and a) N = 8, b) N = 16, and c) N = 32 after a 14 day integration viewed from
(X, 0) = (0,90).

5.4. Effect of Filtering on Accuracy

It is important to understand what effects, if any, filtering has on the order of
accuracy of a particular scheme; this is especially important for high order methods.
In Fig. 12 we show the effects of filtering on the convergence rate of Case 2. In
this figure, we plot filtering every: 10 time steps (dashed), 100 time steps (dotted),
1000 time steps (dashed-dotted), and no filtering (solid). From Fig. 12 we note
that applying the filter too often (every 10 time steps) can result in a decrease of
two orders of magnitude for the highest order scheme (N = 32). Clearly, we need
to apply sufficient filtering to insure stability without over-damping the solution.
For all the test cases explored in this paper we found the solution to be stable for
the filtering time Ty < 400 At; however, for simplicity we apply the filter every 100
time steps for Cases 4, 5, and 6.
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Another interesting result given by Fig. 12 concerns the leveling-off of the conver-
gence rate for N > 16. Note that the difference in accuracy between the filtered and
unfiltered solutions increases for increasing N up until N = 32. For Ty = 1000 At
(dashed-dotted line) the error approaches that of the unfiltered solution (solid line).
This is a good indication that the accuracy for this N value is limited by machine
precision otherwise we would expect the difference in accuracy to increase as it does
for N < 16; however, for Ty = 10 At the filter dampens the highest waves thereby
causing the leveling-off shown in Fig. 12 (dashed line). Based on these limited
results it would seem prudent to use a maximum N value of 16.

It should be mentioned that it is possible to avoid filtering altogether but this
would require exact integration of the discrete operators in the DGM formulation.
However, in practice it is far more economical to use inexact integration with fil-
tering as is done in the continuous spectral element method.

6. CONCLUSIONS
The objective of this paper has been to present the formulation and verification of
a high-order accurate nodal discontinuous Galerkin formulation for the solution of
the spherical shallow water equations. Curvilinear quadrilateral elements are used
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FIG. 12. The p error as a function of the spatial approximation order, N, with and without
filtering. Ty denotes the filter time, therefore, Ty = 10At represents filtering every 10 time steps,
and so forth. Results are shown for Case 2 for a 5 day integration.

to cover the sphere, using an icosahedral grid as the basis for the grid generation,
with the equations solved in Cartesian form to avoid problems with coordinate
singularities. On each curvilinear element the solutions are represented by Lagrange
polynomials in a purely nodal form, i.e., the solutions are given on quadrature
points and operations such as differentiation and integration become matrix-matrix
operations. The equations are satisfied in a discontinuous element form with the
element continuity being imposed only weakly. This decouples all elements and
makes the formulation highly parallel as well as well-suited for adaptive solution
techniques as no constraints on element conformity is needed.

The accuracy of the scheme, given in two mathematically equivalent but com-
putationally different forms, has been illustrated by considering the solution of the
standard set of benchmarks proposed in [32]. The results confirm the expected
high-order/spectral accuracy and illustrate the advantages of using such methods
to efficiently solve geophysical flow problems.

To understand, however, whether the approach proposed here provides a realistic
alternative to existing methods based on spherical harmonics or continuous spectral
element methods requires extensive further validation. The inherent properties
of the proposed technique, e.g., high parallel efficiency, high-order accuracy and
support for adaptive, non-conforming solution techniques, are sufficient to warrant
such exhaustive studies and we hope to report on such results in the near future.
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