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We introduce a reduced basis approach as a new paradigm for modeling, representing and searching for

gravitational waves. We construct waveform catalogs for nonspinning compact binary coalescences, and

we find that for accuracies of 99% and 99.999% the method generates a factor of about 10–105 fewer

templates than standard placement methods. The continuum of gravitational waves can be represented by

a finite and comparatively compact basis. The method is robust under variations in the noise of detectors,

implying that only a single catalog needs to be generated.
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Introduction.—The second generation of earth-based
gravitational wave detectors, such as Advanced LIGO
and Virgo, will become operational in 2014–2015. These
detectors are expected to directly measure gravitational
waves (GWs), with likely event rates of 0.4–400 per year
for binary neutron stars (NS) and 0.4–1000 for binary black
holes (BH) [1]. Direct detections would allow tests of
general relativity in the nonlinear regime as well as access
to portions of the universe otherwise unobservable.

Compact binary coalescences (CBCs), which consist of
a pair of NSs and/or BHs inspiraling and merging, are
considered to be one of the most promising sources of
gravitational waves. The preferred method to search for
GWs from CBCs is to employ matched filtering, which
compares data from a detector to a bank of possible tem-
plate waveforms and checks for a strong correlation be-
tween them. In low mass searches, the inspiral regime
dominates the observable signal but as the mass increases
the merger regime becomes increasingly relevant. The
merger regime requires numerical simulations—even if
used only for calibration of semianalytic models. Given
the number and cost of these simulations, knowing an
optimal choice of parameters is critical in order to limit
the number of large simulations needed to accurately rep-
resent the variation over the parameter space. For this
reason, it is desirable to seek a method that builds a
template bank of waveforms by sequentially selecting
only the most relevant points in the parameter space.

In addition, once a waveform catalog is constructed,
there is a significant computational cost in performing an
actual search for GWs due to the size of the catalogs.
Real-time analysis of the data is critical to generate alerts
to search for electromagnetic counterparts and enable
multimessenger astronomy [2–4]. With the standard

catalog placement method the number of templates needed
grows rapidly with the dimension P of the parameter
space (as ð1"MMÞ"P=2, with MM the minimal match
[5]) and such an approach could become impractical for
searches of spinning binaries or other complex physical
systems.
Reduced basis method.—The RB framework [6] con-

structs a global basis rather than using local methods and
can be seen as an application-specific spectral expansion.
In such an approach one seeks to enable a rapid online
evaluation of the reduced model at the expense of having to
build the basis prior to the application. While such an
approach is not suitable for certain types of applications,
it is particularly well suited for those requiring near real-
time or many inquiry response as is the case in the present
application. It has the following advantageous features
over standard model reduction techniques such as proper
orthogonal decompositions, singular value decomposi-
tions, or principal component analysis (see [7] for a general
review of these methods and [8,9] for applications to
GWs), see also [10]: (i) It is applicable to situations in
which one must choose the most relevant parameters on the
fly. (ii) It yields nested, hierarchically constructed catalogs
which can be easily extended. If CN ¼ fh1; . . . ; hNg is a
catalog from the RB method then adding additional wave-
forms for higher accuracy implies that the resulting cata-
logs contain the previous ones, CN % CNþ1 % CNþ2 ' ' ' .
(iii) It is highly computationally efficient. The cost of
adding a new member to an existing catalog of size N is
independent of N. Hence, the total cost of generating a
catalog of size N scales linearly with N, in contrast to
many other approaches. (iv) It yields catalogs that are
nearly optimal in terms of the error in approximating the
whole spectrum of GWs by a compact set of basis
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elements. This error is measured in the L1 norm, ensuring
a strict upper bound over the entire parameter space.

A gravitational wave is a function of time (or frequency
in Fourier space) and of the P parameters ~! ¼
f!1; . . . ;!Pg associated with the source. We denote each
of them simply by h ~! and do not explicitly write the time
or frequency dependence. Let H be the space of all
normalized GWs for the considered source(s). Although
H is a not a linear space (the sum of two waveforms is not
a waveform), we show that it can be represented by a linear
one with arbitrarily high accuracy. We start with a theo-
retical description of our approach, followed by a descrip-
tion of an actual implementation.

We are interested in approximating H by the best
linear combinations of members !i ( h ~!¼ ~!i

of a catalog
CN ¼ f!igNi¼1. All such linear combinations form the re-
duced basis space WN ¼ spanðCNÞ. The waveforms that
make up this catalog could be optimally chosen so that the
error in representing H with WN is minimized over the
choice of N catalog members. Such an optimal error is
given by the Kolmogorov N width [11],

dNðH Þ ¼ min
CN

max
~!

min
u2WN

ku" h ~!k: (1)

That is, one computes the error in the best approximation
of h ~! by a member of WN , then finds the parameter
~! yielding the largest error, and lastly finds the smallest
such error for all possible N-member catalogs. Here, the
norm in Eq. (1) is calculated from the complex inner
product h'; 'i, which is related to the standard overlap of
Wiener filtering by 4<½h'; 'i*, such that for two waveforms
F and G in Fourier space,

hF;Gi (
Z fU

fL

F+ðfÞGðfÞ
SnðfÞ

df; (2)

where SnðfÞ is the power spectral density (PSD) of the
detector.

Finding a catalog that exactly achieves the N width is a
computationally demanding optimization problem.
Instead, we use a greedy approach, which is an inexpensive
and practical procedure for hierarchically generating cata-
logs that nearly satisfy the N width [12].

One constructs a catalog by first choosing a waveform
for an arbitrary parameter value. A basis vector e1 is then
identified with this waveform, e1 ¼ h ~!1

, and the catalog is
C1 ¼ f!1 ¼ h ~!1

g. To add another waveform to the cata-
log, one seeks the parameter value ~!2 that maximizes
kh ~! " P1ðh ~!Þk where P1ðh ~!Þ ¼ e1he1; h ~!i is the (or-
thogonal) projection of h ~! onto W1. We call this step a
greedy sweep. The waveform corresponding to ~!2 is added
to the catalog so that C2 ¼ f!1;!2g. The new basis vector
e2 is then constructed via Gram-Schmidt orthonormaliza-
tion. Notice that C1 % C2, which demonstrates the hier-
archical nature of the catalogs generated. Additional
members of the reduced basis catalog are generated by

mathematical induction. At each step one picks up the
parameter value ~!j that maximizes khð ~!Þ " Pj"1ðhð ~!ÞÞk.
It can be shown [12] that if the decay of theN width with

N can be bounded by an exponential,

dNðH Þ , Ae"cN"
;

for some real c and", then the decay of the maximum error
for a catalog CN generated by this approach, which we call
the greedy error "N , is also exponential,

"N ( max
~!
kh ~! " PNðh ~!Þk , ~Ae"dN#

; (3)

where PNðh ~!Þ ¼
PN

i¼1hei; h ~!iei and d, # depend on c, "
(see [12] for more details). Similar results hold in the
case of power-law fall-off, i.e. dNðH Þ , BN"s im-
plies "N , ~BN"s. Note that "N is a bound on the error
between a waveform and its representation, and that "2N ¼
max ~!ð1"<½hh ~!; PNðh ~!Þi*Þ, so that "2N is an error on the
overlap directly comparable to (1"MM). Given that GWs
appear to depend smoothly on the parameters ~!, we expect
dNðH Þ, and hence the greedy error "N, to decay rapidly
(in fact exponentially) with N, which is a key feature of
this method. Notice that (3) implies that any waveform
can be represented as h ~! ¼ PNðh ~!Þ þ $h ~!ðfÞ where
k$h ~!ðfÞk , "N . Therefore, if "N is of the order of nu-
merical round-off then, in practice, the projection of h ~!

onto WN equals the waveform itself. In addition, the num-
ber of RBs needed to represent any h ~! is comparatively
small (see below).
In the case in which one is numerically solving equa-

tions on the fly while building the RB, the error (3) is
replaced by an inexpensive error estimate evaluation (such
as a residual), which is referred to as the weak greedy
approach. Once the next parameter value is chosen one
solves the full problem for it (referred to as the offline
stage) and proceeds to the next greedy sweep. In any
greedy approach, the maximum over ~! is searched for, in
practice, using a training space of samples ~!. However,
since this is done as part of the offline process, the training
space can be finely sampled and one can take advantage of
the observation that evaluations for different parameters
values are decoupled and, hence, embarrassingly parallel.
If one attempted a matched filter search with a RB

catalog CN by filtering each basis function against the
data and maximizing over arbitrary linear combinations
of these filter outputs, one would of course get a very high
false alarm rate. Instead, it is important to allow only linear
combinations that correspond to physical waveforms. To
be more specific, one could easily store the matrix
of overlaps between waveforms in the original template
bank (the training space) and the reduced basis, i.e., "ij ¼
hei; h ~!j

i. In fact, our algorithm provides this reconstruction

matrix as output. A matched filtering computation may
then be performed by integrating the incoming signal s
against each member of the basis hs; eii and using the
reconstruction matrix "ij to recover the matched filtering
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integral of the signal with any template h ~!j
in the original

bank. Explicitly, hs; h ~!j
i ¼ P

ihs; eii"ij. In this way, using

the reduced bases is equivalent to using the original wave-
form space but with many fewer matched filtering integrals
to compute for a given signal. Hence, using RB yields no
increase in the false alarm rate.

Catalogs for compact binary inspirals.—We discuss our
results for constructing reduced bases for ‘‘chirp’’ gravita-
tional waveforms for binary inspirals without spins [13,14].
We use the 2nd order post-Newtonian accurate waveforms
in the stationary phase approximation, which are known in
closed form, so that the parameter space is two-dimensional
(the binary’s masses). For simplicity, we take the coales-
cence time and phase to be constant for each waveform.

Figure 1 shows results for the greedy error using a re-
duced basis model for inspirals of binary neutron stars
(BNS) with mass components in the range ½1–3*M- (for
Initial LIGO with a lower frequency cutoff at 40 Hz)
compared with the standard metric template placement
method [5]. After a slowly decaying region, the reduced
basis model gives very fast exponential convergence decay,
which can be fitted by "2N ¼ ae"bNp

with a¼9:65.10"4,
b ¼ 0:598, p ¼ 1:25. The metric method yields approxi-
mately linear decay for a two-dimensional parameter space.
As already mentioned, this decay becomes slower as the
dimensionality P of the parameter space increases. The fast
decay of the reduced basis model allows a representation of
the whole set of gravitational waves for these sources and
mass ranges towithinmachine precision.We have found the

same feature in all mass ranges that we have explored. This
leads to the rather remarkable finding that for all practical
purposes the set of relevant gravitational waveforms in
compact parameter regions appears to be finite dimensional.
When increasing the number of samples x in the training set
we find the following fit for the number of RB for machine

precision error, N¼aþbx"1=2þcx"1 with a ¼ 921,
b ¼ "2090, c ¼ "9:18. 105 for the case of Fig. 1. In
particular, in the limit x ! 1 only 921 bases are needed to
represent, within numerical accuracy, the full space of
waveforms H for this range of masses for BNS inspirals.
Figure 2 shows the chosen parameter values in the chirp

mass vs symmetric mass ratio plane and a density plot of
the number of RBs. The histograms highlight that most
values are picked for (nearly) equal mass systems of low
chirp mass.
Table I shows the number of RB that we need to repre-

sent, for different overlap error tolerances, inspirals of
BNS and stellar size binary black holes (BBH, with mass
components in the range ½3–30*M-). The limit x ! 1 is
not taken here for simplicity so the RB values listed in
Table I are slightly underestimated.
Sensitivity to nonstationary noise.—The PSD of any

ground-based interferometer will fluctuate in time due to
changes in environmental noises and other factors. Since
the PSD weights the inner products used to construct the
reduced basis, one might worry that a new RB needs to be
constructed for any variation in the PSD.
Remarkably, we find indications that the RB constructed

assuming a fiducial PSD is highly robust against rather
large perturbations. From a histogram of the sensitivity of
the LIGO interferometers during a portion of LIGO’s fifth
science reported in [15], we conclude that a 20% increase

FIG. 1 (color online). Error in approximating the space of
waveforms by a discrete catalog for BNS inspirals with Initial
LIGO. For reduced basis, the error is the square of the greedy
error (3) while for metric placement the error is (1"MM) with
MM the minimal match. The lower panel shows the extrapola-
tion of the maximum number of RBs generated for an infinitely
large training space. The fit shown (red) excludes the two points
with largest x, which change the asymptotic value by 0.2.

FIG. 2 (color online). The points show the parameter values
chosen for the catalog of BNS and Initial LIGO. The density
of parameter values is shown using a coloramp as well as
histograms.
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or decrease in the sensitivity to BNS signals is a large but
realistic fluctuation to the sensitivity of the Initial LIGO
interferometers. Therefore, we constructed smooth defor-
mations of the Initial LIGO design PSD meant to simulate
variations in the seismic, thermal and shot noise levels
which yield roughly a 20% increase or decrease in sensi-
tivity to BNS signals. We find that the RB generated for the
Initial LIGO design PSD with a greedy error tolerance of
"N can represent any inspiral waveform within the per-
turbed PSDs considered here with an error of no more than
1:3"N. This result implies that one needs to compute only a
single reduced basis for a given source for a particular
detector. This is unlike the current operating procedure in
which a new template bank is generated every /2048
seconds because of the drifts in the nonstationary noise.
We will provide further details in a forthcoming paper.

Conclusions.—We have considered the development and
use of a reduced basis method to template bank construc-
tion and found rapid exponential convergence of the wave-
form catalog over the full parameter space. The catalog is
computationally cheap to derive, hierarchical (i.e., if a
more accurate catalog is required, elements can be added),
can be extended for a computational cost that is indepen-
dent ofN, and is robust under changes in a detector’s noise.
We have found that the space of gravitational waveforms
considered in this paper is essentially finite dimensional for
any finite range of physical parameters, and conjecture that
it is in general the case. Elsewhere, we will present a more
detailed description of these results and further applica-
tions of the RB framework.
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TABLE I. Number of reduced bases and templates for different target accuracies with the
reduced basis (RB) and template metric (TM) approaches for binary neutron stars (BNS) and
binary black holes (BBH), using spinless chirp waveforms. We assume a lower frequency cutoff
of 40 Hz for Initial LIGO and 10 Hz for advanced LIGO and Virgo. The error is given by "2N for
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Detector Overlap Error
BBH BNS

RB TM RB TM

10"2 165 2450 898 10, 028
InitLIGO 10"5 170 1:2. 106 904 4:3. 106

2:5. 10"13 182 5:9. 1012 917 1:4. 1013

10"2 1, 058 19, 336 5, 395 72, 790
AdvLIGO 10"5 1, 687 1:5. 107 8, 958 4:9. 107

2:5. 10"13 1, 700 2:3. 1014 8, 976 5:6. 1014

10"2 1, 395 42, 496 7, 482 156, 127
AdvVirgo 10"5 1, 690 3:1. 107 8, 960 8:3. 107

2:5. 10"13 1, 703 4:8. 1014 8, 977 6:0. 1014
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