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Abstract — A multidomain pseudospectral time-domain (PSTD) method with a suitable
well-posed PML is introduced as an accurate and flexible tool for the modeling of electromag-
netic scattering by 2-D objects buried in an inhomogeneous lossy medium. Compared with
the previous Fourier PSTD method, this approach allows for an accurate treatment of curved
geometries as confirmed by numerical results showing an excellent agreement with analytical
solutions for scattering by perfectly conducting as well as permeable dielectric cylinders.
The algorithm has been applied to model various ground penetrating radar (GPR) applica-
tions involving interfaces of an arbitrary shape and in a lossy half space with an undulating
surface. The numerical results demonstrate the effectiveness of the multidomain PSTD algo-
rithm as an accurate, flexible and robust approach for the time-domain solution of Maxwell’s
equations.

Index Terms — Finite-difference time-domain (FDTD) method, pseudospectral time-
domain (PSTD) method, domain decomposition, perfectly matched layer (PML), ground
penetrating radar (GPR), rough surface.



I. Introduction

The finite-difference time-domain (FDTD) method [1] has been widely used to simulate
propagation, scattering, and radiation of electromagnetic waves although it is well known
that the conventional FDTD method has a second-order spatial and temporal accuracy. As
has been verified through numerous examples this requires that a sampling density of 10-20
cells per minimum wavelength is used to ensure that the FDTD method produces acceptable
results.

In recent years, higher-order and spectral methods [2, 3] have received increasing at-
tention as an efficient and robust computational technique with numerous applications in
computational fluid mechanics [3] and, more recently, in computational electromagnetics .
For the time-domain solution of Maxwell’s equations, two different pseudospectral techniques
have been introduced. The first approach, the Fourier pseudospectral time-domain (PSTD)
algorithm [4, 5, 6, 7], combines the fast Fourier transform algorithm with the perfectly
matched layer (PML) absorbing boundary condition to enable fast modeling of scattering
and penetration problems in simple geometries. The second approach is centered around a
pseudospectral multi-domain method [8, 9, 10, 11] to allow a flexible and accurate represen-
tation of the geometry and potential for highly parallel implementations. The central idea
of the PSTD methods is to use polynomials to express the unknown solution and its spa-
tial derivatives to achieve a much more accurate representation of the solution as compared
to the classical FDTD approach. While the Fourier PSTD method is simple to implement
and requires only two points per minimum wavelength in homogeneous and smoothly vary-
ing inhomogeneous regions, its accuracy is lower when applied to more complex problems
involving curved boundaries, perfectly conducting bodies, and discontinuous material distri-
butions. The multidomain PSTD overcomes these restrictions and can deal with complex
objects with a great flexibility, but with a slightly increased computational burden as it re-
quires 7 cells per minimum wavelength. Both methods have been shown to be more efficient
than the FDTD method for many applications.

Previously, the Fourier PSTD method has been applied to model ground penetrating
radar (GPR) detection of buried dielectric objects. Although this approach has significant
computational advantages over the FDTD method, a number of aspects of this approach
need further improvement, i.e., the geometric modeling of curved objects, the modeling of
perfect conductors, and the correct treatment of material interfaces, in which case the global-
domain approach of the Fourier PSTD method looses accuracy due the loss of smoothness
of the solutions. In such cases, the multidomain PSTD approach is a suitable alternative.
In the multidomain approach, the computational domain is divided into several subdomains
conforming to the problem geometry. A polynomial approximation is then used in each
subdomain as in the global approach, and the solution across subdomains are combined
using patching conditions derived in accordance with the physics of the problem to recover
the global solution.



The multidomain PSTD method retains the accuracy of the global PSTD method and
has several important advantages over its global counterpart: (a) geometric flexibility and
the ability to model material interfaces and metallic boundaries correctly; (b) reduction in
the computational cost when increasing the number of subdomain; and (c) potential for
efficient parallel implementation.

In this work, we apply the multidomain PSTD algorithm to lossy media, and incorporate
a well-posed PML for lossy media for the truncation of the computational domain. Unlike
most previous applications of the multidomain PSTD approach, using a sinusoidal field
excitation, we demonstrate the flexibility and accuracy of the scheme when applied to wide-
band GPR scenarios. For this particular application we found it necessary to develop a
localized source representation suitable for the multidomain PSTD method.

What remains of the paper is organized as follows. In Sec. II we briefly recall the
physical problem and the setup of a typical GPR scenario. This sets the stage for Sec. III
where we discuss the numerical scheme in detail, paying attention to the body-conforming
discretization and the high-order representation of the solution as well as the local patching
scheme, the time-advancement scheme, and the PML for lossy media. The efficacy of the
complete framework is addressed in Sec. IV where we present validation examples as well as
demonstrate the accuracy, flexibility, and robustness of the scheme on more realistic scenarios
of relevance to GPR analysis and development. Section V contains a few concluding remarks
and guidelines for future work within the present context.

I1. Physical Problem

We consider an isotropic, conductive, inhomogeneous medium with electric permittivity
€, magnetic permeability u, and conductivity o. A typical GPR detection scenario is shown
in Figure 1, illustrating an undulating ground surface and complex objects buried in the
earth.

For the two-dimensional TM, (transverse magnetic to z) polarization, Maxwell’s equa-
tions take the form
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where €, p, and o are only functions of (z,y).



II1. Numerical Scheme

The strategy for solving Maxwell’s equations using the multidomain Chebyshev PSTD
method is as follows. (i) The computational domain is divided into non-overlapping subdo-
mains, conforming with the problem geometry. For a general inhomogeneous medium each
block contains only smoothly varying materials. Dividing one block of homogeneous mate-
rial into several subdomains is based on computational efficiency consideration. In general,
interfaces between subdomains may have the same or different materials on both sides. (ii)
At each time step, the fields are first calculated independently within each subdomain, and
then (iii) patching conditions are applied to reconcile the fields from adjacent subdomains to
complete field calculation at one time step. (iv) An explicit Runge-Kutta method is used to
advance the solution to the next time step. In the following we shall discuss these individual
components in more detail.

I11.1 Maxwell’s Equations on Curvilinear Form

The traditional global-domain PSTD method requires coordinate directions parallel to
the boundary in the domain to avoid staircasing errors as well as a high degree of smoothness
of the solutions to allow a high order accuracy. Here, we will use a multidomain formulation
to enable the accurate modeling of problems with curved subdomains and the representation
of piecewise smooth solutions.

To facilitate this we use a coordinate transformation to map a subdomain with curved
boundaries in (x,y) coordinates into a regular domain in (£, n) coordinates as shown in Fig. 2.
Introducing a general curvilinear coordinates with the transform relation,

§:§(a:,y), 77277(33’9) (4)

Maxwell’s equations, Egs. (1)—(3), can be written in the matrix form
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and & = 0¢/0z, & = 06/0y and so on. With this transformation, we can then solve Eq.
(5) in the (£, ) coordinates for a general subdomain.



I11.2 Chebyshev Spectral Collocation Procedure

For 2-D problems, we assume that the computational domain can be broken into a
set of non-overlapping curvilinear quadrilaterals, conforming to the geometry and material
distribution. Using transfinite blending functions [13], each quadrilateral in (z, y) coordinates
can be mapped onto the unit square, i.e., [-1,1] x [—1,1], in (£, n) coordinates and we can
thus concern ourselves with the formulation of the scheme on this unit element.

Our aim is to accurately evaluate the spatial derivatives of functions, ¢(&,7), defined on
the unit element. For this we shall use a tensor-product Chebyshev method based on the
Chebyshev-Gauss-Lobatto collocation points

& = —cos(im/N), i=0,1,...N,
n; = —cos(jm/M), j=0,1,..M . (7)

In this setting we assume that ¢(&,n) is well represented by a tensor-product Chebyshev-
Lagrange polynomial of the form
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where the Lagrange interpolation polynomials are given as
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Here o = (&, 1), co = cy = 2 and ¢; = 1 otherwise, and the Nth-order Chebyshev polynomial
is defined as Ty (z) = cos(N cos™! z).
Under this assumption partial derivatives of ¢(&,n) at the grid points are obtained as
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where the elements of the differentiation matrix, Dg,?), are given as
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and the explicit expressions are given as [3]
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Hence, the evaluation of spatial derivatives are accomplished by matrix-vector multiplies,
similar to classical finite difference methods, yet with the potential for very high accuracy
for smooth solutions using only very few grid points.

I11.3 Characteristic Variables

So far we have concerned ourselves with the evaluation of the general curvilinear equations
within a single element. However, to recover the global solution one needs to pass information
between the individual subdomains in a way consistent with the nature of the problem.

For this purpose we shall exploit the characteristic variables associated with the hyper-
bolic system of equations, Eq. (5). We can diagonalize A as [9]
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The resulting characteristic vector can be written as
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The above characteristic variables reflect the amplitudes of the characteristic waves propa-
gating along —&, non-propagating, and along +¢&, respectively, while the eigenvalues, i.e. the
diagonal entries of A, correspond to their propagation speeds. The characteristic variables
of matrix B have a form similar to those of matrix A.

In a general scenario there are two distinct types of interfaces: one that separates two
subdomains with different materials and one that separates two subdomains with the same
material. The matching conditions for these two types of interfaces are different.

First consider an interface separating two subdomains of the same material. Suppose the
¢ axis points from subdomain 1 to subdomain 2. In this case, we match the characteristic
waves at the interface as

RY + R

RY + RV

12 _ 1 pa pe
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where the superscript denotes the two different subdomains. Essentially, these conditions re-
flect that the incoming characteristic wave is determined by the out-going characteristic wave
from the adjacent subdomain, the non-propagating characteristic wave remains continuous
and the out-going characteristic wave is left unaltered to enter the next domain.

For an interface separating two subdomains of different materials, physical boundary
conditions have to be applied. For dielectric interfaces, this implies continuity of the tangen-
tial electric and magnetic field components while for PEC interfaces we enforce a vanishing
tangential electric and normal magnetic field components.

I111.4 Time Stepping

To advance (5) in time we use a 4th order 5 stage low-storage version of the classical
Runge-Kutta method. Expressing (5) as

dq

= f(t.q) (19)
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Denoting g(tn+1) as g, ; where t, = nAt and At is the time step size, the low-storage form
of the Runge-Kutta method is given as

do = 4,
Vj e [1 5] . kj = ajkj—l + Atf((n + Cj)Ata qj)
T g;=4q; 1+ bk,
qn+1 =dgs (21)

where the constants a;, b; and c; are determined to yield the desired order, s — 1, of the
scheme. For the scheme to be self-starting we require that a; = 0. Note that we need only
two storage levels containing, k; and gq;, to advance the solution. The actual values of aj,
b;, and ¢; can be found in [12]. The choice of the time step was discussed in [9].

I11.5 A Well-Posed PML for Conductive Media

A key issue in the time-domain solution is the introduction of an absorbing boundary
condition to truncate the unbounded medium to enable the solution in a finite computational
domain without introducing noticeable reflections from the computational edge. One recent
significant breakthrough is the perfectly matched layer proposed by Berenger [14]. The
original PML formulation by Berenger, as well as those later developed by Chew and Weedon
[15] and extended to lossy media by Liu [16], uses the split-field formulation. Such split-
field schemes have later been shown to be only weakly well-posed [17]. Thus there has been
significant investigations on well-posed PML formulations (e.g., [18, 19, 20, 21, 22]). Most
of these well-posed PML formulations have been proposed for lossless media. Here we use a
systematic method [23] to derive a well-posed PML for a lossy medium.

Following [15, 16], we introduce complex coordinate-stretching variables as

oz = l1 + iwﬁx)] O oy = l1 + ““ZJM] dy. (22)

Defining new field variables for the PML region [21]
ﬁw =H,+ wzQxa ﬁy = Hy + way (23)

we can rewrite Eqs. (1)—(3) for the PML as
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Note that this non-split PML is well-posed for conductive media because Eq. (23) remains
the same symmetric hyperbolic system as the original Maxwell’s equations plus some lower
order terms that do not affect the well-posedness [24, 17]. When ¢ = 0, the PML equations
reduce to ones known for lossless media [19, 21, 20]. When w, = w, = 0, the PML equa-
tions reduce to Maxwell’s equations for a regular medium. In addition, Eqs. (25)-(28) are
ordinary differential equations without spatial derivatives, ensuring a simple and efficient
implementation.

The patching condition at an interface between a PML subdomain and a regular medium
with the same physical properties (e, u, o) is the continuity of tangential E and tangential
H. At the outer boundary of the PML subdomain, the incoming characteristic variable is
set, zero so that waves are purely outgoing.

I11.6 Source excitation treatments

Two types of excitation sources are considered in this work: uniform plane waves and
localized line sources. For plane wave excitation, the total-field/scattered-field formulation
is used. In this approach, the scattered field is calculated in the PML region while the total
field is used in the interior region.

For the line source excitation, special care must be taken because a line source represents
a delta function, which cannot be accurately represented by Chebyshev polynomials. To deal
with this problem one may use a spatially smoothed source, i.e., a set of line sources with a
smooth amplitude distribution, to approximate the line source [4, 5]. In this approach, the
total field formulation is used in the whole computational domain. This smoothed source



usually gives an acceptable accuracy when source remains away from a subdomain interface.
This approach is suitable to the applications where a uniform grid or a fixed source is used.

However, for GPR applications, the instrument, and thus the source, moves along the
surface of the ground. When the source moves close to an interface between subdomains,
the above smoothed source treatment will give rise to inaccurate result since the grid is
nonuniform and the available zone for source smoothing is reduced. To overcome this prob-
lem, we use a scattered-field/total-field formulation. In the subdomain where the source is
located, the scattered field is calculated, while the total field is calculated in the remaining
subdomains. To match the boundary condition on the boundary of the source subdomain,
a precalculated primary field due to a single line source in a homogeneous medium is used
for construction of the total field on the boundaries of the source subdomain. The increase
in computational cost is minimal as this primary field is only required on the boundary of
one subdomain.

In terms of the temporal excitation function, there are two kinds of GPR systems, i.e.,
systems with short-pulse excitation and those with step frequencies (sinusoidal excitation).
The following results will be presented for the short-pulse excitation where the Blackman-
Harris window function [4, 16] is used as the time functions for both the plane wave excitation
and the line source excitation.

IV. Numerical Results

The computational domain of rectangular shape is divided into non-overlapping quadri-
laterals. The outer layer of quadrilaterals is used as PML subdomains in which the PML
lossy media is applied using a second order polynomial absorption profile. Each quadrilateral
is meshed with a grid where the grid points are located at the Chebyshev-Gauss-Lobatto col-
location points. In all examples, a grid with 16 x 16 points are used for each subdomain. The
time function of the plane wave source and the line sources is chosen as the Blackman-Harris
window function.

As our first test example, we consider the plane wave scattering from a PEC cylinder in
free space. Fig. 3(a) illustrates the decomposition and Fig. 3(b) shows the grid used in the
calculation. A plane wave is incident on the cylinder along x axis. The central frequency of
the plane wave is 100 MHz, corresponding to ka = 4x /5. In the calculation, At = 40 ps,
and the receiver is located at v = y = —2.1036 m. Fig. 3(c) compares the PSTD numerical
results with the analytical solution, showing excellent agreement.

The second example is a dielectric circular cylinder with €, = 4 and p, = 1. The geometry
and source are similar to those in the first example as illustrated in Figs. 4(a,b). The time
step size is At = 21.5 ps. Figure 4(c) shows the comparison of the numerical and analytical
solution. Again we find excellent agreement.

The third test example considers the field due to a line source (central frequency 100
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MHz) at the center of an air filled cylinder in a homogeneous lossy medium. In this example,
the grid used is the same as in the first examples and the parameters of the outer material
are ¢, = 4, u, = 1, and o = 0.002 S/m. To show the effect of the permeability, we also
consider the case in which the relative permeability of the cylinder is changed from p, =1
to u, = 4. The time step size is At = 21.5 ps, and the receiver location is the same as in
the above examples. Figure 5 shows the excellent agreement between the numerical result
and the analytical solution for both cases. For this problem, the minimum wavelength at
f = 3f. = 150 MHz is Apin = 0.5 m, while the average cell size is Az = 0.125 m, or 1/4 of
the minimum wavelength.

In the above examples, curved interfaces have been accurately modeled by the multido-
main PSTD through coordinate transformation to curvilinear coordinates. This procedure
makes the numerical results highly accurate without the staircasing error, even with the
average sampling rate being as low as 4 cells per wavelength.

In the following, we consider the applications of the multidomain PSTD to GPR detection
of buried objects. In these examples, the electric parameters of the earth are ¢, =4, u, =1
and o = 0.002 S/m. The central frequency of the line source is 300 MHz. The scattered
field is defined as the total field in the presence of buried objects subtracted by the field in
the absence of buried objects.

As a first example we consider three cylinders of different shape and electric parameters
being buried in a lossy half space. Figs. 6(a) and 6(b) show the geometry and the grid. A
line source and a receiver at a fixed distance are moving along the interface between air and
earth. The scattered field from the buried objects is plotted in grad-level form as shown in
Fig. 6(c).

The second GPR example is for two circular cylinders, one PEC and the other dielectric
(e, =2, 0 =0), buried in a lossy half-space. Figs. 7(a) and 7(b) show the geometry and the
distribution of the scattered field, respectively.

To demonstrate the efficiency and flexibility of the multidomain PSTD algorithm, we
consider the effects of the rough surface on the scattering by buried objects. A square PEC
cylinder is buried in a lossy medium, but the air/soil interface is undulated as shown in
Fig. 8(a). The source and receiver are moving together along the surface at y = 0. Fig. 8
(b) shows the total electric field distribution in the presence of the undulating surface. For
comparison, we also show the field distribution when the rough surface is replaced by a
plane surface in Fig. 8 (¢). The effect of the undulating surface is strong as clearly seen by
comparing the two figures. Nevertheless, in spite of the undulating surface, the scattered
field clearly shows the presence of the buried object.

V. Conclusions

A multidomain pseudospectral time-domain (PSTD) scheme is applied to model electro-
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magnetic scattering by 2-D objects buried in lossy media. The formulation incorporates a
well-posed PML for lossy media and utilizes a scattered-field /total-field formulation to en-
able the excitation of a localized moving source in GPR applications. The numerical results
show an excellent agreement with analytical solutions for various canonical problems. The
algorithm has been applied to model various GPR applications involving interfaces of arbi-
trary shape in a lossy half space and the numerical results demonstrate the efficiency and
robustness of the multidomain PSTD algorithm as a body-conforming high-order accurate
time-domain solver for Maxwell’s equations.
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FIGURE CAPTIONS

Fig. 1. A typical GPR measurement geometry and computational domain.

Fig. 2. Domain mapping from a curved quadrilateral to a unit square.

Fig. 3. Plane wave scattering from a PEC cylinder in free space. (a) Geometry and subdo-
mains. (b) Grid. (c) Comparison the PSTD result with analytical solution.

Fig. 4. Plane wave scattering from a dielectric cylinder in free space. (a) Geometry and
subdomains. (b) Grid. (c¢) Comparison the PSTD result with analytical solution.

Fig. 5. Field due to line source at the center of a cylinder with ¢, =1, (a) u, = 1 and (b)
tr =4 in a lossy medium.

Fig. 6. Scattering by objects buried in a lossy half space. (a) Geometry. (b) Grid. (c)
Scattered field distribution.

Fig. 7. Scattering from buried PEC and dielectric cylinders in a lossy half space. (a)
Geometry. (b) Scattered field distribution.

Fig. 8. Scattering from a PEC square cylinder and an undulating ground surface. (a) Ge-
ometry. (b) Total field distribution in presence of a rough surface. (c) Total field distribution
in presence of a plane surface.
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