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Abstract. From contactless payments to remote car unlocking, many
applications are vulnerable to relay attacks. Distance bounding proto-
cols are the main practical countermeasure against these attacks. At
FSE 2013, we presented SKI as the first family of provably secure dis-
tance bounding protocols. At LIGHTSEC 2013, we presented the best
attacks against SKI. In this paper, we present the security proofs. More
precisely, we explicate a general formalism for distance-bounding proto-
cols. Then, we prove that SKI and its variants is provably secure, even
under the real-life setting of noisy communications, against the main
types of relay attacks: distance-fraud and generalised versions of mafia-
and terrorist-fraud. For this, we reinforce the idea of using secret sharing,
combined with the new notion of a leakage scheme. In view of resistance
to mafia-frauds and terrorist-frauds, we present the notion of circular-
keying for pseudorandom functions (PRFs); this notion models the em-
ployment of a PRF, with possible linear reuse of the key. We also use
PRF masking to fix common mistakes in existing security proofs/claims.

1 Introduction

Recently, we proposed the SKI [6,7,8] family of distance-bounding (DB) pro-
tocols.* In this paper, we present a formalism for distance-bounding, which in-
cludes a sound communication and adversarial model. We incorporate the notion
of time-of-flight for distance-based communication. We further formalise security
against distance-fraud, man-in-the-middle (MiM) generalising mafia-frauds, and
an enhanced version of terrorist-fraud that we call collusion-fraud. Our formali-
sations take noisy communications into account.

Mainly in the context of security against generalised mafia-frauds (when TF-
resistance is also enforced), we introduce the concept of circular-keying security
to extend the security of a pseudorandom function (PRF) f to its possible uses

4 Due to space constraints, we refer to these papers for an overview of DB protocols.



in maps of the form y — L(z)+ f.(y), for a secret key x and a transformation L.
We also introduce a leakage scheme, to resist to collusion frauds, and adopt the
PRF masking technique from [4,5] to address distance-fraud issues. These formal
mechanisms come to counteract mistakes like those in proofs based on PRF-
constructions, errors of the kind exposed by Boureanu et al. [4] and Hancke [13].

We analyse and propose variants of SKI [6,7] and conclude that SKI is
historically the first practical class of distance-bounding protocols en-
joying full provable security.® On the way to this, we formalise the DB-driven
requirements of the SKI protocols’ components.

2 Model for Distance-Bounding Protocols

We consider a multiparty setting where each participant U is modelled by a
probabilistic polynomial-time (PPT) interactive Turing machine (ITM), has a
location locy, and where communication messages from a location to another
take some time, depending on the distance to travel.

Consider two honest participants P and V', each running a predefined algo-
rithm. Along standard lines, a general communication is formalised via an ex-
periment, generically denoted exp = (P(x;rp)«—V (y;rv)), where 7.y are the
random coins of the participants. The experiment above can be “enlarged” with
an adversary A which interferes in the communication, up to the transmitting-
time constraints. This is denoted by (P(x;rp) +— A(ra)+—V (y;rv)). At the
end of each experiment, the participant V' has an output bit Outy denoting
acceptance or rejection. The view of a participant on an experiment is the col-
lection of all its initial inputs (including coins) and his incoming messages. We
may group several participants under the same symbolic name.

We have a fixed integer constant B denoting the distance-bound. It defines
what it means to be “close-enough” to a verifier V.

The crux of proving security of DB protocols lies in Lemma 1: if V' sends a
challenge ¢, the answer r in a time-critical challenge-response round is locally
computed by a close participant A from its own view and incoming messages from
far-away participants B which are independent from c. Clearly, it also captures
the case where the adversary collects information during the previous rounds.
On the one hand, we could just introduce a full model in which such a lemma
holds. We do so in our eprint report [8]. On the other hand, we could also just
state the text of the lemma and take it axiomatically.

Lemma 1. Consider an experiment B(z;rg) > A(u;ra) <> V(y;rv) in which
the verifier V broadcasts a message c, then waits for a response r, and accepts if r
took at most time 2B to arrive. In the experiment, A is the set of all participants
which are within a distance up to B to V', and B is the set of all other participants.

5 As far as we know, there exists only one other protocol with full provable security. It
was presented at ACNS 2013 [12] and compared with SKI at PROVSEC 2013 [17].
All other protocols fail against at least one threat model. (See [7, Section 2].)



For each user U, we consider his view Viewy just before the time when U can
see the broadcast message c. We say that a message by U is independent from
c if it is the result of applying U on Viewy, or a prefix of it. There exists an
algorithm A and a list w of messages independent from ¢ such that if V accepts,
then r = A(View 4, c,w), where View4 is the list of all Viewy, A € A.

When modelling distance-bounding protocols, we consider provers P and
verifiers V. A denotes the adversary and P* denotes a dishonest prover.

Definition 2 (DB Protocols). A distance-bounding protocol is a tuple
(Gen, P,V,B), where Gen is a randomised, key-generation algorithm such that
(x,y) is the output’ of Gen(1%;7y), where ). are the coins and s is a security
parameter; P(xz;rp) and V(y;ry) are PPT ITM running the algorithm of the
prover and the verifier with their own coins, respectively; and B is a distance-
bound. They must be such that the following two facts hold:

— Termination: (Vs)(VR)(Vrg,ry)(Vlocy) when doing (-,y) < Gen(1%;1y)
and (R<—V (y;rv)), it is the case that V halts in Poly(s) computational
steps, where R is any set of (unbounded) algorithms;

— p-Completeness: (Vs) (Vlocy,locp such that d(locy ,locp) < B) we have

Pr [Outv =1:

TRyTP TV

(2,4) ¢ Gen(1%; 1) } .
P(asrp)s—V(y;rv) | =

Our model implicitly assumes concurrency.

Definition 3 (a-resistance to distance-fraud). (Vs) (VP*) (Vlocy such that
d(locy,locp~) > B) (Vry), we have

_ 1. (@y) & Gen(1% 1)
I:Vr {OUtV =1 P*(x)«—V(y;ry) sa

where P* is any (unbounded) dishonest prover. In a concurrent setting, we im-
plicitly allow a polynomially bounded number of honest P(x') and V (y') close to
V(y) with independent (x',y').”

We now formalise resistance to MiM attacks. During a learning phase, the
attacker A interacts with m provers and z verifiers. In the attack phase, A tries
to win in an experiment in front of a verifier which is far-away from ¢—m provers.

Definition 4 (S-resistance to MiM). (Vs)(Vm, ¥, z) polynomially bounded,
(VA1, A2) polynomially bounded, for all locations such that d(locp,,locy) > B,
where j € {m +1,...,£}, we have

(z,y) + Gen(1%)
Pr |Outy =1: Pi(z),...,Pp(x) +— A1 +— Vi(y),...,Vo(y) | <8
Prt1(x), ..., P(x) «— As(Viewa,) +— V(y)

5 In this paper, there is just one common input, i.e., we assume & = y.
" This is to capture distance hijacking [10]. (See [8].)



over all random coins, where View 4, is the final view of Ai. In a concurrent
setting, we implicitly allow a polynomially bounded number of P(z"), P*(z'), and
V(y') with independent (z',y'), anywhere.

The classical notion of mafia-fraud [1] corresponds to m = z = 0 and ¢ = 1. The
classical notion of impersonation corresponds to £ = m.
We now formalise the terrorist-fraud by [6,8].

Definition 5 ((v,7’)-resistance to collusion-fraud). (Vs)(VP*) (Vlocy, s.t.
d(locy,, locp+) > B) (VAT PPT) such that

(z,y) « Gen(1®)

PriOutvy =13 ploy 5 A s V()

el
over all random coins, there exists a (kind of )* MiM attack with some parameters
m, {, z, A1, Az, P, Pj, Vir using P and P* in the learning phase, such that

(z,y) + Gen(1%)
Pr |Outy =1: P (z),..., P (x) «— Ay «— Viy),.... Va(y) | =7
Poi1(z),..., P(x) +— As(Viewn,) +— V(y)

where P* is any (unbounded) dishonest prover and P*) € {P, P*}. Following the
MiM requirements, d(locp,,locy) > B, for all j € {m + 1,£}. In a concurrent
setting, we implicitly allow a polynomially bounded number of P(z'), P*(z'),
V(y') with independent (z',y"), but no honest participant close to V.

Def. 5 expresses the following. If a prover P*, situated far-away from V;, can
help an adversary AF to pass, then a malicious (A;,.A2) could run a rather
successful MiM attack playing with possibly multiple instances of P*(x) in the
learning phase. In other words, a dishonest prover P* cannot successfully collude
with AF without leaking some private information. We can find in [17] a discus-
sion on the relation with other forms of terrorist frauds, including SimTF [11,12].

3 Practical and Secure Distance-Bounding Protocols

The protocol SKI [6,7] follows a long dynasty originated from [14]. It is sketched
in Fig. 1. We use the parameters (s,q,n,k,t,t',7), where s is the security pa-
rameter. The SKI protocols are built using a function family (fz)zeqr(q):» With
q being a small power of prime. In the DB phase, n rounds are used, with
n € £2(s). Then, SKI uses the value f,(Np, Ny,L) € GF(¢)"", with nonces
Np, Ny € {0,1}* and a mask M € GF(q)'", where k € 2(s). The element
a = (ay,...,a,) is established by V in the initialisation phase, and it is sent en-
crypted as M := a & f,(Np, Ny, L), with M € GF(q)"'™. Similarly, V selects a
random linear transformation L from a set £ (the leakage scheme), which is spec-
ified by the SKI protocol instance, and the parties compute 2’ = L(z). The pur-
pose of L is to leak L(z) in the case of a collusion-fraud. Further, ¢ = (cy, ..., ¢y)

8 Here, we deviate from Def. 4 a bit by introducing P*(z) in the MiM attack.



is the challenge-vector with ¢; € {1,...,t}, r; := F(c;,a;,2}) € GF(q) is the re-
sponse to the challenge ¢;, i € {1,...,n}, with F (the F-scheme) as specified
below. The protocol ends with a message Outy denoting acceptance or rejection.

Verifier Prover
secret: x € GF(q)° secret: x € GF(q)°

initialisation phase
: k Np : k
pick Ny € {0,1} +——— pick Np € {0,1}

. ' M,L,Ny
pick a € GF(q)"' ", L€ L
M=a® fz(Np,Nv,L) a=M®& fz(Np,Nv,L)
z' = L(z) € GF(g)" 2’ = L(z) € GF(g)"

distance bounding phase
fori=1ton
pick ¢; € {1,...,t}
i

start timer; _
. T /

stop timer; — Ty = F(Ci> Qj, m7)

. . Outy,

check #{i;r; and timer; correct} > 7

Fig. 1. The SKI schema of Distance-Bounding Protocols

In [6,7], several variants of SKI were proposed. We concentrate on two of
them using ¢ = 2, ¢/ = 2, and the response-function

F(l,ai,77) = ()1 F(2,ai,77) = (0:)2  F(3,ai,7;) = 2} + (a:)1 + (ai)e,

where (a;); denotes the jth bit of a;. In the SKI,, variant, we have ¢ = 3 and
L = Ly, consisting of all L, transforms defined by L, (z) = (¢- x,...,p-x) for
each vector u € GF(q)°. Le., n repetitions of the same bit u -z, the dot product
of u and z. In the SKIjte variant, we have ¢t = 2 with the transform-set £ = {0}.
Namely, SKI};te never uses the ¢; = 3 challenge or the leakage scheme.

We note that both instances are efficient. Indeed, we could precompute the
table of F'(-, a;, ;) and just do a table lookup to compute r; from ¢;. For SKIpyo,
this can be done with a circuit of only 7 NAND gates and depth 4. For SKTjjte,
3 NAND gates and a depth of 2 are enough. The heavy computation lies in the
fz evaluation, which occurs in a non time-critical phase.

In [8], we also consider other variants with different F-schemes.

SKI Completeness (in Noisy Communications). Each (c;,r;) exchange is time-
critical, so it is subject to errors. To address this, we introduce the probability
Pnoise Of one response being erroneous. In practice, we take pyise as a constant.
Then, our protocol specifies that the verifier accepts only if the number of correct
answers is at least a linear threshold 7. The probability that at least 7 responses
out of n are correct is given by:

n n i, n—1
B(TL,T, 1 *pnoise) - Z (’L> (]‘ *pnoise) Proise

1=T



Thanks to the Chernoff-Hoeffding bound [9,15], 7 < (1 — pnoise — €)n implies
B(n, 7,1 — ppoise) > 1 — o2 So, we obtain the following result.

Lemma 6. Fore >0 and T <1 — ppoise —, SKI is (1 — 6_252”)-complete.

PRF masking. Importantly, SKI applies a random mask M on the output of
fo to thwart weaknesses against PRF programming [4]. This was called PRF
masking in [4,5]. So, the malicious prover cannot influence the distribution of a.

F-scheme. Related to the response-function F', we advance the concept of F'-
scheme. This will take the response-function based on secret sharing by Avoine et
al. |2] further, beyond protection against terrorist-fraud only, offering formalised
sufficient conditions to protect against all three possible frauds.? Thus, we stress
that using a secret sharing scheme in computing the responses may be too strong
and/or insufficient to characterise the protection against frauds mounted onto
DB protocols, and we amend this with Def. 7 and Def. 11.

Definition 7 (F-scheme). Let t,t' > 2. An F-scheme is a function F :
{1,...,t} x GF(q)" x GF(q) = GF(q) characterised as follows.

We say that the F-scheme is linear if for all challenges c; in their domain,
the F(ci,-,-) function is a linear form over the GF(q)-vector space GF(q)! x
GF(q) which is non-degenerate in the a; component.

We say the F-scheme is pairwise uniform if

(VI &AL, n} #1 < 2)(H (| F(ci, ai, 47)eier) = H(7)),

where (a;,x}) €y GF(q)" x GF(q), #S denotes the cardinality of a set S, and
H denotes the Shannon entropy.

We say the F-scheme is t-leaking if there exists a polynomaial time algorithm
E such that for all (a;,z}) € GF(q)" x GF(q), we have

E(F(1,a:,2}),...,F(t,a;,x;)) = .

Let Fy, o/ denote F(-,a;,x}). We say that the F-scheme is o-bounded if for
any x, € GF(q), we have

E,, (max (#(F, (y)))) <o,

Y

where =, € GF(q) and the expected-value is E taken over a; € GF(q)" .

The pairwise uniformity and the t-leaking property of the F-scheme say that
knowing the complete table of the response-function F' for a given ¢; leaks x,
yet knowing only up to 2 entries challenge-response in this table discloses no
information about x}. The o-boundedness of the schemes says that the expected
value (taken on the choice of the subsecrets a;) of the largest preimage of the
map ¢; — F(c¢;,a;,2}) is bounded by a constant 0. We have 3 < o <t due to

the pigeonhole principle, since Zy #(F(;lm/‘ (y)) = t. Furthermore, o > 1.

9 Secret sharing is used to defeat an attack from [16] which is further discussed in [3].



Lemma 8. The F-scheme of SKlyro is linear, pairwise uniform, %—bounded,
and t-leaking. The F'-scheme of SKliite is linear, pairwise uniform, 5-bounded,
but not t-leaking.

The proof is available in [8].

Leakage scheme. We can consider several sets £ of transformations to be used in
the PRF-instance, of the SKI initialisation phase. The idea of the set L is that,
when leaking some noisy versions of L(x) for some random L € £, the adversary
can reconstruct = without noise to defeat the terrorist fraud by Hancke [13].

Definition 9 (Leakage scheme). Let L be a set of linear functions from
GF(q)® to GF(q)". Givenx € GF(q)°® and a PPT algorithm e(x, L;r), we define
an oracle O 4 . producing a random pair (L,e(x, L)) with L €y L. L is a (T,r)-
leakage scheme if there exists an oracle PPT algorithm A®) such that for all
x € GF(q)%, for all PPT e, Pr[A®%=< = x] > Pr.[dy(e(z,L),L(z)) < T]",
where dy denotes the Hamming distance.

Lemma 10. Ly is a (3, s)-leakage scheme.

Proof. A calls the oracle s times, then —by computing the majority— A deduces
i - x with probability p, for each of the obtained p. We run Of ;. until we
collect s linearly independent p values. All the s obtained u - « are correct with
probability p*. Then, we deduce x by solving a linear system. a

Clircular-Keying Security. We introduce the notion of security against circular-
keying, which is needed to prove security in the context in which the key x is
used not only in the f, computation.

Definition 11 (Circular-Keying). Let s be some security parameter, let b be
a bit, let ¢ > 2, let m € Poly(s), and let ,T € GF(q)® be two row-vectors. Let
(f2)zear(qe e a family of (keyed) functions, e.g., fr :{0,1}* — GF(q)™. For
an input y, the output f.(y) can be represented as a row-vector in GF(q)™.

We define an oracle Oy, z, which upon a query of form (y;, A;, B;), A; €
GF(q)°, B; € GF(q)™, answers (A; - T) + (B; - fz(yi)). The game Circs, z of
circular-keying with an adversary A is described as follows: we set by, z :=
AOCs:.7 where the queries (y;, As, B;) from A must follow the restriction that

k k
(VCl,. ., CE € GF(q))(#{yZ,CZ 75 0} = ].,ZCij =0= ZCjAj = 0)
j=1 =1

We say that the family of functions (fs)eear(q)s 5 an (g,C,Q)-circular-PRF
if for any PPT adversary A making QQ queries and having complezity C, it is
the case that Prlby, . = b« z] < % + ¢, where the probability is taken over the
random coins of A and over the random selection of x,T € GF(q)® and the
random function f*.



The condition on the queries means that for any set of queries with the same
value y;, any linear combination making B; vanish makes A; vanish at the same
time. (Otherwise, we would trivially extract some information about T by linear
combinations.)

We note that it is possible to create secure circular-keying in the random or-
acle model. Indeed, any “reasonable” PRF should satisfy this constraint. Special
constructions (e.g., the ones based on PRF programming from [4]) would not.

Lemma 12. Let f,(y) = H(x,y), where H is a random oracle, x € {0,1}*, and
y € {0,1}*. Then, f is a (T27°,T,Q)-circular PRF for any T and Q.

The proof is available in [8].

We now state the security of SKI.
Theorem 13. The SKI protocols are secure distance-bounding protocols, i.e.,:

— A. If the F-scheme is linear and o-bounded, if (fz)zecr(qn is a (e,nN,C)-
circular PRF, then the SKI protocols offer a-resistance to distance-fraud,
with o = B(n, T, ) + ¢, for attacks limited to complerity C and N partici-
pants. So, we need = > % for security.

— B. If the F-scheme is linear and pairwise uniform, if (fi)zcar(gr 5 @
(e,n(l+2z+1), C)-circular PRF, if L is a set of linear mappings, the SKI pro-
tocols are B-resilient against MiM attackers with parameters £ and z and a
complezity bounded by C,

B—B<n’7-’1+t_1><;)+2k (5(6—1)+z(2+1))+6.

t t 2 2

So, we need = > % + % X % for security.

— B'. If the F-scheme is linear and pairwise uniform, if (fz)zecr(qr 15 @
(e,n(l+2z+1),C)-PRF, if the function F(c;,a;,-) is constant for each ¢;,a;,
the SKI protocols are B-resilient against MiM attackers as above.

— C. If the F-scheme is t-leaking, if L is a (T,r)-leakage scheme, for all 0 €
10,1[, the SKI protocols offer (y,7')-resistance to collusion-fraud, for v~
polynomaially bounded, and

t—1. ) t—1\%\
'yzB(T,T—i—T—n,T) , v¥=1|1-B T,T—f—T—n,T .

So, we need =~ > 1 — % for security.

Th. 13 is tight for SKI,., and SKIjjte, due to the attacks shown in [6,7]. Fol-
lowing Lem. 8 and Th. 13, we deduce the following security parameters:

o Jé] Y
SKIPro B(TL, T, %) B(anv %) B(%ﬂ. - %’ %)
SKIjite B(n,7,3) B(n,7,7) 1



According to the data in the table above, we must take 1 — ppoise —€ > % > % +e
to make the above instances of SKI secure, with a failure probability bounded
by e~2"n (by the Chernoff-Hoeffding bound [9,15]). If we require TF-resistance
(as per Th. 13.C), we also get a constraint of Z > % + 5, similarly.

The proof of Th. 13.B’ is similar (and simplified) as the one of Th. 13.B. So,
we prove below the A, B, and C parts only.

Proof (Th. 13.A). For each key ' # x for which there is a P(z’) close to V, we
apply the circular-PRF reduction and loose some probability e. (Details as for
why we can apply this reduction will appear in the proof of Th. 13.B.)

If r; comes form P(z'), due to the F-scheme being linear, r; is correct with
probability % If r; now comes from P*, due to Lem. 1, r; must be a function
independent from c¢;. So, for any secret = and a, the probability to get one
response right is given by p; = Pro,cq1,...1y[ri = F(ci, a4, 2})]. Thanks to PRF
masking, the distribution of the a;’s is uniform.

Consider the partitions I, j € {1,...,t} as follows: I; is the set of all i’s

such that max, (#(Fa_lm, (y)) = j. Then, we are looking at the probability

Y

Py} = o | (#(55, ()) = 3]

Given z’ fixed, each iteration has a probability to succeed equal to Zj % =
So, the probability to win the experiment is bounded by p = B(n, 7, ). a
Proof (Th. 13.B). Let Gameg be the MiM attack-game described in Def. 4. Be-
low we consider a prover P; and a verifier V}, in an experiment, j € {1,...,¢},k €
{1,...,24+1}. Let (Npj, M, Lj, Nv,;) be the values of the nonces (Np, Ny), of
the mask M, and of the transformation L that the prover P; generates or sees
respectively, and (Np, Mg, Ly, Nyx) be the values of the nonces (Np, Ny),
mask M, and transformation L that a verifier Vj generates or sees at his turn,
je{l,.... ke {l,...,z2+1}.

Using a reduction by failure-event F', the game Gamey is indistinguishable
to game Game; where no repetitions on Np; or on Ny happen, j € {1,...,(},

_ L(6—1 z(z+1
ke{l,...,z+ 1} based on Pr[F] <2 k(%—i—%)

Since the F-scheme is linear, we can write F(c;, a;, %) = u;(¢;)z;+ (vi(e;)-a;)
where u;(c;) € GF(q),vi(¢;) € GF(q)". Note that, in terms of i, the vectors
(vi(1),...,v;(t)) span independent linear spaces. In Game;, each (Np, Ny, L, 1)
tuple can be invoked only twice (with a prover and a verifier) by the adversary.
The pairwise uniformity of the F-scheme implies that yv;(¢;) + y'vi(c}) = 0
implies yu;(¢c;) + y'ui(c;) = 0 for all ¢;, ¢} € {1,...,t} and all y,y’ € GF(q). So,
we deduce that the condition to apply the circular-keying reduction is fulfilled.
We can thus apply the circular-PRF reduction and reduce to Games, where
F(ci, fz(Np, Nv, L), x7) is replaced by u;(¢;)Z;+ (vi(c;)- f*(Np, Nv, L);), where
f* is a random function. This reduction has a probability loss of up to e.

From here, we use a simple bridging step to say that the adversary A has
virtually no advantage over Gamey and a game Games, where the vector a =

a
7



f*(Np, Ny, L) is selected at random. So, the probability p of A of succeeding
in Gameg is the probability that at least 7 rounds have a correct r;. Due to
Lem. 1, r; must be computed by A (and not P;). Getting r; correct for ¢; can
thus be attained in two distinct ways: 1. in the event el of guessing ¢, = ¢;
and sending it beforehand to P; and getting the correct response r;, or 2. in the
event e2 of simply guessing the correct answer r; (for a challenge ¢} # ¢;). So,
p = B(n,7,Prlel] + Pr[e2]) = B(n, 7,1 + 1 x é) O
Proof (Th. 13.C). Assume as per the requirement for resistance to collusion-
fraud that there is an experiment exp‘F = (P*(x) «— A (rce)«—Vo(y; rvy)),
with P* a coerced prover who is far away from Vp and that Pr,, . [Outy, =
1] = ~. Given some random ¢y, ..., ¢, from Vy, we define View; as being the
view of AF before receiving ¢; from V', and w; as being all the information that
ACF has received from P* before it would be too late to send 7; on to V. This
answer 7; done by AF is formalised in Lem. 1. So, r; := AF(View;||c;|jw;).

Let C; be the set of all possible ¢;’s on which the functions A" (View;|| -
|lw;) and F(.,a;,x%) match. Let C; = {c € {1,...,t} | AF(View;|c|w;) =
F(c,a;,z})}, S={ie{l,....,n}|c; € Ci},and R = {i € {1,...,n} | #C; =t}
The adversary A succeeds in exp®F if #5 > 1.

If we were to pick a set of challenges such that #S > 7 and #R <n—1T, we
should select a good challenge (from no more than ¢t — 1 existing out of t), for
at least T+ 7 — n rounds out of T In other words, Pr[#S > 7, #R <n—T] <
B(T\ T+ 71 —n, %) But, by the hypothesis, Pr[#S > 7] > ~. So, we deduce
immediately that Pr[#R < n—T|#S > 7] <y 'B(T,T+7—n, £71). Therefore,
Pr#R>n—T|#S>71]>1—-~"'B(T,T+71—n,).

We use m = £ = z = O(y~1r) (i.e., Ay will directly impersonate P to V after
A ran m times the collusion fraud, with P* and V'). We define A5 such that, for
each execution of the collusion fraud with P* and V, it gets View;, w;. For each
i, Az computes the table ¢ — AF (View; | c/|w;) and apply the t-leaking function
E of the F-scheme on this table to obtain y; = E(c — AF(View;||c||w;)). For
each i € R, the table matches the one of ¢ — F(c,a;,2;) with 2’ = L(z), and
we have y; = z}. So, Ay computes a vector y. If V' accepts the proof, then y
coincides with L(x) on at least n — T + 1 positions, with a probability of at least
p:=1-~y"'B(T,T+1—n, %) That is, after O(y~!) runs, Ay implements an
oracle which produces a random L € £ and a y which has a Hamming distance
to L(xz) up to T — 1.

By applying the leakage scheme decoder e on this oracle, with r samples, it
can fully recover x, with probability at least p". Then, by taking v = B(T,T +
T—mn, %)1_9 and v = (1 - B(T,T+1—n, %)‘9)8, we obtain our result. 0O
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