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Abstract. From contactless payments to remote car unlocking, many
applications are vulnerable to relay attacks. Distance bounding proto-
cols are the main practical countermeasure against these attacks. At
FSE 2013, we presented SKI as the first family of provably secure dis-
tance bounding protocols. At LIGHTSEC 2013, we presented the best
attacks against SKI. In this paper, we present the security proofs. More
precisely, we explicate a general formalism for distance-bounding proto-
cols. Then, we prove that SKI and its variants is provably secure, even
under the real-life setting of noisy communications, against the main
types of relay attacks: distance-fraud and generalised versions of mafia-
and terrorist-fraud. For this, we reinforce the idea of using secret sharing,
combined with the new notion of a leakage scheme. In view of resistance
to mafia-frauds and terrorist-frauds, we present the notion of circular-
keying for pseudorandom functions (PRFs); this notion models the em-
ployment of a PRF, with possible linear reuse of the key. We also use
PRF masking to fix common mistakes in existing security proofs/claims.

1 Introduction

Recently, we proposed the SKI [6,7,8] family of distance-bounding (DB) pro-
tocols.4 In this paper, we present a formalism for distance-bounding, which in-
cludes a sound communication and adversarial model. We incorporate the notion
of time-of-flight for distance-based communication. We further formalise security
against distance-fraud, man-in-the-middle (MiM) generalising mafia-frauds, and
an enhanced version of terrorist-fraud that we call collusion-fraud. Our formali-
sations take noisy communications into account.

Mainly in the context of security against generalised mafia-frauds (when TF-
resistance is also enforced), we introduce the concept of circular-keying security
to extend the security of a pseudorandom function (PRF) f to its possible uses

4 Due to space constraints, we refer to these papers for an overview of DB protocols.



in maps of the form y 7→ L(x)+fx(y), for a secret key x and a transformation L.
We also introduce a leakage scheme, to resist to collusion frauds, and adopt the
PRF masking technique from [4,5] to address distance-fraud issues. These formal
mechanisms come to counteract mistakes like those in proofs based on PRF-
constructions, errors of the kind exposed by Boureanu et al. [4] and Hancke [13].

We analyse and propose variants of SKI [6,7] and conclude that SKI is
historically the first practical class of distance-bounding protocols en-
joying full provable security.5 On the way to this, we formalise the DB-driven
requirements of the SKI protocols’ components.

2 Model for Distance-Bounding Protocols

We consider a multiparty setting where each participant U is modelled by a
probabilistic polynomial-time (PPT) interactive Turing machine (ITM), has a
location locU , and where communication messages from a location to another
take some time, depending on the distance to travel.

Consider two honest participants P and V , each running a predefined algo-
rithm. Along standard lines, a general communication is formalised via an ex-
periment, generically denoted exp = (P (x; rP )←→V (y; rV )), where r〈·〉 are the
random coins of the participants. The experiment above can be “enlarged” with
an adversary A which interferes in the communication, up to the transmitting-
time constraints. This is denoted by (P (x; rP )←→ A(rA)←→V (y; rV )). At the
end of each experiment, the participant V has an output bit OutV denoting
acceptance or rejection. The view of a participant on an experiment is the col-
lection of all its initial inputs (including coins) and his incoming messages. We
may group several participants under the same symbolic name.

We have a fixed integer constant B denoting the distance-bound. It defines
what it means to be “close-enough” to a verifier V .

The crux of proving security of DB protocols lies in Lemma 1: if V sends a
challenge c, the answer r in a time-critical challenge-response round is locally
computed by a close participantA from its own view and incoming messages from
far-away participants B which are independent from c. Clearly, it also captures
the case where the adversary collects information during the previous rounds.
On the one hand, we could just introduce a full model in which such a lemma
holds. We do so in our eprint report [8]. On the other hand, we could also just
state the text of the lemma and take it axiomatically.

Lemma 1. Consider an experiment B(z; rB) ↔ A(u; rA) ↔ V (y; rV ) in which
the verifier V broadcasts a message c, then waits for a response r, and accepts if r
took at most time 2B to arrive. In the experiment, A is the set of all participants
which are within a distance up to B to V , and B is the set of all other participants.
5 As far as we know, there exists only one other protocol with full provable security. It

was presented at ACNS 2013 [12] and compared with SKI at PROVSEC 2013 [17].
All other protocols fail against at least one threat model. (See [7, Section 2].)
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For each user U , we consider his view V iewU just before the time when U can
see the broadcast message c. We say that a message by U is independent from
c if it is the result of applying U on V iewU , or a prefix of it. There exists an
algorithm A and a list w of messages independent from c such that if V accepts,
then r = A(V iewA, c, w), where V iewA is the list of all V iewA, A ∈ A.

When modelling distance-bounding protocols, we consider provers P and
verifiers V . A denotes the adversary and P ∗ denotes a dishonest prover.

Definition 2 (DB Protocols). A distance-bounding protocol is a tuple
(Gen, P, V,B), where Gen is a randomised, key-generation algorithm such that
(x, y) is the output6 of Gen(1s; rk), where rk are the coins and s is a security
parameter; P (x; rP ) and V (y; rV ) are PPT ITM running the algorithm of the
prover and the verifier with their own coins, respectively; and B is a distance-
bound. They must be such that the following two facts hold:

– Termination: (∀s)(∀R)(∀rk, rV )(∀locV ) when doing (·, y) ← Gen(1s; rk)
and (R←→V (y; rV )), it is the case that V halts in Poly(s) computational
steps, where R is any set of (unbounded) algorithms;

– p-Completeness: (∀s) (∀locV , locP such that d(locV , locP ) ≤ B) we have

Pr
rk,rP ,rV

[
OutV = 1 :

(x, y)← Gen(1s; rk)
P (x; rP )←→V (y; rV )

]
≥ p.

Our model implicitly assumes concurrency.

Definition 3 (α-resistance to distance-fraud). (∀s) (∀P ∗) (∀locV such that
d(locV , locP∗) > B) (∀rk), we have

Pr
rV

[
OutV = 1 :

(x, y)← Gen(1s; rk)
P ∗(x)←→V (y; rV )

]
≤ α

where P ∗ is any (unbounded) dishonest prover. In a concurrent setting, we im-
plicitly allow a polynomially bounded number of honest P (x′) and V (y′) close to
V (y) with independent (x′, y′).7

We now formalise resistance to MiM attacks. During a learning phase, the
attacker A interacts with m provers and z verifiers. In the attack phase, A tries
to win in an experiment in front of a verifier which is far-away from `−m provers.

Definition 4 (β-resistance to MiM). (∀s)(∀m, `, z) polynomially bounded,
(∀A1,A2) polynomially bounded, for all locations such that d(locPj , locV ) > B,
where j ∈ {m+ 1, . . . , `}, we have

Pr

OutV = 1 :
(x, y)← Gen(1s)
P1(x), . . . , Pm(x)←→ A1 ←→ V1(y), . . . , Vz(y)
Pm+1(x), . . . , P`(x)←→ A2(V iewA1

)←→ V (y)

 ≤ β

6 In this paper, there is just one common input, i.e., we assume x = y.
7 This is to capture distance hijacking [10]. (See [8].)
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over all random coins, where V iewA1 is the final view of A1. In a concurrent
setting, we implicitly allow a polynomially bounded number of P (x′), P ∗(x′), and
V (y′) with independent (x′, y′), anywhere.

The classical notion of mafia-fraud [1] corresponds to m = z = 0 and ` = 1. The
classical notion of impersonation corresponds to ` = m.

We now formalise the terrorist-fraud by [6,8].

Definition 5 ((γ, γ′)-resistance to collusion-fraud). (∀s)(∀P ∗) (∀locV0 s.t.
d(locV0 , locP∗) > B) (∀ACF PPT) such that

Pr

[
OutV0 = 1 :

(x, y)← Gen(1s)
P ∗(x)←→ ACF ←→ V0(y)

]
≥ γ

over all random coins, there exists a (kind of)8 MiM attack with some parameters
m, `, z,A1,A2, Pi, Pj , Vi′ using P and P ∗ in the learning phase, such that

Pr

OutV = 1 :

(x, y)← Gen(1s)

P
(∗)
1 (x), . . . , P

(∗)
m (x)←→ A1 ←→ V1(y), . . . , Vz(y)

Pm+1(x), . . . , P`(x)←→ A2(V iewA1)←→ V (y)

 ≥ γ′

where P ∗ is any (unbounded) dishonest prover and P (∗) ∈ {P, P ∗}. Following the
MiM requirements, d(locPj , locV ) > B, for all j ∈ {m + 1, `}. In a concurrent
setting, we implicitly allow a polynomially bounded number of P (x′), P ∗(x′),
V (y′) with independent (x′, y′), but no honest participant close to V0.

Def. 5 expresses the following. If a prover P ∗, situated far-away from V0, can
help an adversary ACF to pass, then a malicious (A1,A2) could run a rather
successful MiM attack playing with possibly multiple instances of P ∗(x) in the
learning phase. In other words, a dishonest prover P ∗ cannot successfully collude
with ACF without leaking some private information. We can find in [17] a discus-
sion on the relation with other forms of terrorist frauds, including SimTF [11,12].

3 Practical and Secure Distance-Bounding Protocols

The protocol SKI [6,7] follows a long dynasty originated from [14]. It is sketched
in Fig. 1. We use the parameters (s, q, n, k, t, t′, τ), where s is the security pa-
rameter. The SKI protocols are built using a function family (fx)x∈GF (q)s , with
q being a small power of prime. In the DB phase, n rounds are used, with
n ∈ Ω(s). Then, SKI uses the value fx(NP , NV , L) ∈ GF (q)t

′n, with nonces
NP , NV ∈ {0, 1}k and a mask M ∈ GF (q)t

′n, where k ∈ Ω(s). The element
a = (a1, . . . , an) is established by V in the initialisation phase, and it is sent en-
crypted as M := a⊕ fx(NP , NV , L), with M ∈ GF (q)t

′n. Similarly, V selects a
random linear transformation L from a set L (the leakage scheme), which is spec-
ified by the SKI protocol instance, and the parties compute x′ = L(x). The pur-
pose of L is to leak L(x) in the case of a collusion-fraud. Further, c = (c1, . . . , cn)

8 Here, we deviate from Def. 4 a bit by introducing P ∗(x) in the MiM attack.
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is the challenge-vector with ci ∈ {1, . . . , t}, ri := F (ci, ai, x
′
i) ∈ GF (q) is the re-

sponse to the challenge ci, i ∈ {1, . . . , n}, with F (the F -scheme) as specified
below. The protocol ends with a message OutV denoting acceptance or rejection.

Verifier Prover
secret: x ∈ GF (q)s secret: x ∈ GF (q)s

initialisation phase

pick NV ∈ {0, 1}k
NP←−−−−−−−−−−−− pick NP ∈ {0, 1}k

pick a ∈ GF (q)t
′n, L ∈ L

M,L,NV−−−−−−−−−−−−→
M = a⊕ fx(NP , NV , L) a = M ⊕ fx(NP , NV , L)

x′ = L(x) ∈ GF (q)n x′ = L(x) ∈ GF (q)n

distance bounding phase
for i = 1 to n

pick ci ∈ {1, . . . , t}
start timeri

ci−−−−−−−−−−−−→
stop timeri

ri←−−−−−−−−−−−− ri = F (ci, ai, x
′
i)

check #{i; ri and timeri correct} ≥ τ
OutV−−−−−−−−−−−−→

Fig. 1. The SKI schema of Distance-Bounding Protocols

In [6,7], several variants of SKI were proposed. We concentrate on two of
them using q = 2, t′ = 2, and the response-function

F (1, ai, x
′
i) = (ai)1 F (2, ai, x

′
i) = (ai)2 F (3, ai, x

′
i) = x′i + (ai)1 + (ai)2,

where (ai)j denotes the jth bit of ai. In the SKIpro variant, we have t = 3 and
L = Lbit, consisting of all Lµ transforms defined by Lµ(x) = (µ · x, . . . , µ · x) for
each vector µ ∈ GF (q)s. I.e., n repetitions of the same bit µ ·x, the dot product
of µ and x. In the SKIlite variant, we have t = 2 with the transform-set L = {∅}.
Namely, SKIlite never uses the ci = 3 challenge or the leakage scheme.

We note that both instances are efficient. Indeed, we could precompute the
table of F (·, ai, x′i) and just do a table lookup to compute ri from ci. For SKIpro,
this can be done with a circuit of only 7 NAND gates and depth 4. For SKIlite,
3 NAND gates and a depth of 2 are enough. The heavy computation lies in the
fx evaluation, which occurs in a non time-critical phase.

In [8], we also consider other variants with different F -schemes.

SKI Completeness (in Noisy Communications). Each (ci, ri) exchange is time-
critical, so it is subject to errors. To address this, we introduce the probability
pnoise of one response being erroneous. In practice, we take pnoise as a constant.
Then, our protocol specifies that the verifier accepts only if the number of correct
answers is at least a linear threshold τ . The probability that at least τ responses
out of n are correct is given by:

B(n, τ, 1− pnoise) =
n∑

i=τ

(
n

i

)
(1− pnoise)

ipn−inoise
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Thanks to the Chernoff-Hoeffding bound [9,15], τ ≤ (1 − pnoise − ε)n implies
B(n, τ, 1− pnoise) ≥ 1− e−2ε

2n. So, we obtain the following result.

Lemma 6. For ε > 0 and τ
n ≤ 1− pnoise − ε, SKI is (1− e−2ε

2n)-complete.

PRF masking. Importantly, SKI applies a random mask M on the output of
fx to thwart weaknesses against PRF programming [4]. This was called PRF
masking in [4,5]. So, the malicious prover cannot influence the distribution of a.

F -scheme. Related to the response-function F , we advance the concept of F -
scheme. This will take the response-function based on secret sharing by Avoine et
al. [2] further, beyond protection against terrorist-fraud only, offering formalised
sufficient conditions to protect against all three possible frauds.9 Thus, we stress
that using a secret sharing scheme in computing the responses may be too strong
and/or insufficient to characterise the protection against frauds mounted onto
DB protocols, and we amend this with Def. 7 and Def. 11.

Definition 7 (F -scheme). Let t, t′ ≥ 2. An F -scheme is a function F :
{1, . . . , t} ×GF (q)t

′ ×GF (q)→ GF (q) characterised as follows.
We say that the F -scheme is linear if for all challenges ci in their domain,

the F (ci, ·, ·) function is a linear form over the GF (q)-vector space GF (q)t
′ ×

GF (q) which is non-degenerate in the ai component.
We say the F -scheme is pairwise uniform if

(∀I  {1, . . . , n},#I ≤ 2)(H(x′i|F (ci, ai, x
′
i)ci∈I) = H(x′i)),

where (ai, x
′
i) ∈U GF (q)t

′ ×GF (q), #S denotes the cardinality of a set S, and
H denotes the Shannon entropy.

We say the F -scheme is t-leaking if there exists a polynomial time algorithm
E such that for all (ai, x′i) ∈ GF (q)t

′ ×GF (q), we have

E
(
F (1, ai, x

′
i), . . . , F (t, ai, x

′
i)
)
= x′i.

Let Fai,x′
i
denote F (·, ai, x′i). We say that the F -scheme is σ-bounded if for

any x′i ∈ GF (q), we have

Eai

(
max

y

(
#(F−1ai,x′

i
(y))

))
≤ σ,

where x′i ∈ GF (q) and the expected-value is E taken over ai ∈ GF (q)t
′
.

The pairwise uniformity and the t-leaking property of the F -scheme say that
knowing the complete table of the response-function F for a given ci leaks x′i,
yet knowing only up to 2 entries challenge-response in this table discloses no
information about x′i. The σ-boundedness of the schemes says that the expected
value (taken on the choice of the subsecrets ai) of the largest preimage of the
map ci 7→ F (ci, ai, x

′
i) is bounded by a constant σ. We have t

q ≤ σ ≤ t due to
the pigeonhole principle, since

∑
y #(F−1ai,x′

i
(y)) = t. Furthermore, σ ≥ 1.

9 Secret sharing is used to defeat an attack from [16] which is further discussed in [3].
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Lemma 8. The F -scheme of SKIpro is linear, pairwise uniform, 9
4 -bounded,

and t-leaking. The F -scheme of SKIlite is linear, pairwise uniform, 3
2 -bounded,

but not t-leaking.

The proof is available in [8].

Leakage scheme. We can consider several sets L of transformations to be used in
the PRF-instance, of the SKI initialisation phase. The idea of the set L is that,
when leaking some noisy versions of L(x) for some random L ∈ L, the adversary
can reconstruct x without noise to defeat the terrorist fraud by Hancke [13].

Definition 9 (Leakage scheme). Let L be a set of linear functions from
GF (q)s to GF (q)n. Given x ∈ GF (q)s and a PPT algorithm e(x, L; r), we define
an oracle OL,x,e producing a random pair (L, e(x, L)) with L ∈U L. L is a (T, r)-
leakage scheme if there exists an oracle PPT algorithm A〈·〉 such that for all
x ∈ GF (q)s, for all PPT e, Pr[AOL,x,e = x] ≥ Prr[dH(e(x, L), L(x)) < T ]r,
where dH denotes the Hamming distance.

Lemma 10. Lbit is a (n2 , s)-leakage scheme.

Proof. A calls the oracle s times, then —by computing the majority– A deduces
µ · x with probability p, for each of the obtained µ. We run OL,x,e until we
collect s linearly independent µ values. All the s obtained µ · x are correct with
probability ps. Then, we deduce x by solving a linear system. ut

Circular-Keying Security. We introduce the notion of security against circular-
keying, which is needed to prove security in the context in which the key x is
used not only in the fx computation.

Definition 11 (Circular-Keying). Let s be some security parameter, let b be
a bit, let q ≥ 2, let m ∈ Poly(s), and let x, x ∈ GF (q)s be two row-vectors. Let
(fx)x∈GF (q)s be a family of (keyed) functions, e.g., fx : {0, 1}∗ → GF (q)m. For
an input y, the output fx(y) can be represented as a row-vector in GF (q)m.

We define an oracle Ofx,x, which upon a query of form (yi, Ai, Bi), Ai ∈
GF (q)s, Bi ∈ GF (q)m, answers (Ai · x) + (Bi · fx(yi)). The game Circfx,x of
circular-keying with an adversary A is described as follows: we set bfx,x :=
AOfx,x , where the queries (yi, Ai, Bi) from A must follow the restriction that

(∀c1, . . . , ck ∈ GF (q))
(
#{yi; ci 6= 0} = 1,

k∑
j=1

cjBj = 0 =⇒
k∑

j=1

cjAj = 0
)
.

We say that the family of functions (fx)x∈GF (q)s is an (ε, C,Q)-circular-PRF
if for any PPT adversary A making Q queries and having complexity C, it is
the case that Pr[bfx,x = bf∗,x] ≤ 1

2 + ε, where the probability is taken over the
random coins of A and over the random selection of x, x ∈ GF (q)s and the
random function f∗.

7



The condition on the queries means that for any set of queries with the same
value yi, any linear combination making Bj vanish makes Aj vanish at the same
time. (Otherwise, we would trivially extract some information about x by linear
combinations.)

We note that it is possible to create secure circular-keying in the random or-
acle model. Indeed, any “reasonable” PRF should satisfy this constraint. Special
constructions (e.g., the ones based on PRF programming from [4]) would not.

Lemma 12. Let fx(y) = H(x, y), where H is a random oracle, x ∈ {0, 1}s, and
y ∈ {0, 1}∗. Then, f is a (T2−s, T,Q)-circular PRF for any T and Q.

The proof is available in [8].

We now state the security of SKI.

Theorem 13. The SKI protocols are secure distance-bounding protocols, i.e.,:

– A. If the F -scheme is linear and σ-bounded, if (fx)x∈GF (q)n is a (ε, nN,C)-
circular PRF, then the SKI protocols offer α-resistance to distance-fraud,
with α = B(n, τ, σ

t ) + ε, for attacks limited to complexity C and N partici-
pants. So, we need τ

n > σ
t for security.

– B. If the F -scheme is linear and pairwise uniform, if (fx)x∈GF (q)n is a
(ε, n(`+z+1), C)-circular PRF, if L is a set of linear mappings, the SKI pro-
tocols are β-resilient against MiM attackers with parameters ` and z and a
complexity bounded by C,

β = B

(
n, τ,

1

t
+

t− 1

t
× 1

q

)
+ 2−k

(
`(`− 1)

2
+

z(z + 1)

2

)
+ ε.

So, we need τ
n > 1

t +
t−1
t ×

1
q for security.

– B′. If the F -scheme is linear and pairwise uniform, if (fx)x∈GF (q)n is a
(ε, n(`+z+1), C)-PRF, if the function F (ci, ai, ·) is constant for each ci, ai,
the SKI protocols are β-resilient against MiM attackers as above.

– C. If the F -scheme is t-leaking, if L is a (T, r)-leakage scheme, for all θ ∈
]0, 1[, the SKI protocols offer (γ, γ′)-resistance to collusion-fraud, for γ−1

polynomially bounded, and

γ ≥ B(T, T + τ − n,
t− 1

t
)1−θ , γ′ =

(
1−B

(
T, T + τ − n,

t− 1

t

)θ
)r

.

So, we need τ
n > 1− T

tn for security.

Th. 13 is tight for SKIpro and SKIlite, due to the attacks shown in [6,7]. Fol-
lowing Lem. 8 and Th. 13, we deduce the following security parameters:

α β γ
SKIpro B(n, τ, 3

4 ) B(n, τ, 2
3 ) B(n2 , τ −

n
2 ,

2
3 )

SKIlite B(n, τ, 3
4 ) B(n, τ, 3

4 ) 1

8



According to the data in the table above, we must take 1−pnoise−ε ≥ τ
n ≥

3
4 +ε

to make the above instances of SKI secure, with a failure probability bounded
by e−2ε

2n (by the Chernoff-Hoeffding bound [9,15]). If we require TF-resistance
(as per Th. 13.C), we also get a constraint of τ

n > 5
6 + ε

2 , similarly.
The proof of Th. 13.B

′
is similar (and simplified) as the one of Th. 13.B. So,

we prove below the A, B, and C parts only.

Proof (Th. 13.A). For each key x′ 6= x for which there is a P (x′) close to V , we
apply the circular-PRF reduction and loose some probability ε. (Details as for
why we can apply this reduction will appear in the proof of Th. 13.B.)

If ri comes form P (x′), due to the F -scheme being linear, ri is correct with
probability 1

t . If ri now comes from P ∗, due to Lem. 1, ri must be a function
independent from ci. So, for any secret x and a, the probability to get one
response right is given by pi = Prci∈{1,...,t}[ri = F (ci, ai, x

′
i)]. Thanks to PRF

masking, the distribution of the ai’s is uniform.
Consider the partitions Ij , j ∈ {1, . . . , t} as follows: Ij is the set of all i’s

such that maxy

(
#(F−1ai,x′

i
(y)
)
= j. Then, we are looking at the probability

Pj(x
′
i) := Pr

ai

[
max

y

(
#(F−1ai,x′

i
(y))

)
= j

]
,

Given x′ fixed, each iteration has a probability to succeed equal to
∑

j
jPj

t = σ
t .

So, the probability to win the experiment is bounded by p = B(n, τ, σ
t ). ut

Proof (Th. 13.B). Let Game0 be the MiM attack-game described in Def. 4. Be-
low we consider a prover Pj and a verifier Vk in an experiment, j ∈ {1, . . . , `}, k ∈
{1, . . . , z+1}. Let (NP,j ,M j , Lj , NV,j) be the values of the nonces (NP , NV ), of
the mask M , and of the transformation L that the prover Pj generates or sees
respectively, and (NP,k,Mk, Lk, NV,k) be the values of the nonces (NP , NV ),
mask M , and transformation L that a verifier Vk generates or sees at his turn,
j ∈ {1, . . . , `}, k ∈ {1, . . . , z + 1}.

Using a reduction by failure-event F , the game Game0 is indistinguishable
to game Game1 where no repetitions on NP,j or on NV,k happen, j ∈ {1, . . . , `},
k ∈ {1, . . . , z + 1} based on Pr[F ] ≤ 2−k

(
`(`−1)

2 + z(z+1)
2

)
.

Since the F -scheme is linear, we can write F (ci, ai, x
′
i) = ui(ci)x

′
i+(vi(ci)·ai)

where ui(ci) ∈ GF (q), vi(ci) ∈ GF (q)t
′
. Note that, in terms of i, the vectors

(vi(1), . . . , vi(t)) span independent linear spaces. In Game1, each (NP , NV , L, i)
tuple can be invoked only twice (with a prover and a verifier) by the adversary.
The pairwise uniformity of the F -scheme implies that yvi(ci) + y′vi(c

′
i) = 0

implies yui(ci) + y′ui(c
′
i) = 0 for all ci, c′i ∈ {1, . . . , t} and all y, y′ ∈ GF (q). So,

we deduce that the condition to apply the circular-keying reduction is fulfilled.
We can thus apply the circular-PRF reduction and reduce to Game2, where
F (ci, fx(NP , NV , L)i, x

′
i) is replaced by ui(ci)x̃i+(vi(ci)·f∗(NP , NV , L)i), where

f∗ is a random function. This reduction has a probability loss of up to ε.
From here, we use a simple bridging step to say that the adversary A has

virtually no advantage over Game2 and a game Game3, where the vector a =

9



f∗(NP , NV , L) is selected at random. So, the probability p of A of succeeding
in Game3 is the probability that at least τ rounds have a correct ri. Due to
Lem. 1, ri must be computed by A (and not Pj). Getting ri correct for ci can
thus be attained in two distinct ways: 1. in the event e1 of guessing c′i = ci
and sending it beforehand to Pj and getting the correct response ri, or 2. in the
event e2 of simply guessing the correct answer ri (for a challenge c′i 6= ci). So,
p = B(n, τ,Pr[e1] + Pr[e2]) = B(n, τ, 1

t +
t−1
t ×

1
q ). ut

Proof (Th. 13.C). Assume as per the requirement for resistance to collusion-
fraud that there is an experiment expCF = (P ∗(x)←→ ACF(rCF)←→V0(y; rV0)),
with P ∗ a coerced prover who is far away from V0 and that PrrV0

,rCF [OutV0 =
1] = γ. Given some random c1, . . . , cn from V0, we define V iewi as being the
view of ACF before receiving ci from V , and wi as being all the information that
ACF has received from P ∗ before it would be too late to send ri on to V0. This
answer ri done by ACF is formalised in Lem. 1. So, ri := ACF(V iewi‖ci‖wi).

Let Ci be the set of all possible ci’s on which the functions ACF(V iewi‖ ·
‖wi) and F (., ai, x

′
i) match. Let Ci = {c ∈ {1, . . . , t} |ACF(V iewi‖c‖wi) =

F (c, ai, x
′
i)}, S = {i ∈ {1, . . . , n} | ci ∈ Ci}, and R = {i ∈ {1, . . . , n} |#Ci = t}.

The adversary A succeeds in expCF if #S ≥ τ .
If we were to pick a set of challenges such that #S ≥ τ and #R ≤ n−T , we

should select a good challenge (from no more than t − 1 existing out of t), for
at least T + τ − n rounds out of T . In other words, Pr[#S ≥ τ,#R ≤ n− T ] ≤
B(T, T + τ − n, t−1

t ). But, by the hypothesis, Pr[#S ≥ τ ] ≥ γ. So, we deduce
immediately that Pr[#R ≤ n−T |#S ≥ τ ] ≤ γ−1B(T, T+τ−n, t−1

t ). Therefore,
Pr[#R > n− T |#S ≥ τ ] ≥ 1− γ−1B(T, T + τ − n, t−1

t ).
We use m = ` = z = O(γ−1r) (i.e., A2 will directly impersonate P to V after

A1 ran m times the collusion fraud, with P ∗ and V ). We define A2 such that, for
each execution of the collusion fraud with P ∗ and V , it gets V iewi, wi. For each
i, A2 computes the table c 7→ ACF(V iewi‖c‖wi) and apply the t-leaking function
E of the F -scheme on this table to obtain yi = E(c 7→ ACF(V iewi‖c‖wi)). For
each i ∈ R, the table matches the one of c 7→ F (c, ai, x

′
i) with x′ = L(x), and

we have yi = x′i. So, A2 computes a vector y. If V accepts the proof, then y
coincides with L(x) on at least n−T +1 positions, with a probability of at least
p := 1− γ−1B(T, T + τ −n, t−1

t ). That is, after O(γ−1) runs, A2 implements an
oracle which produces a random L ∈ L and a y which has a Hamming distance
to L(x) up to T − 1.

By applying the leakage scheme decoder e on this oracle, with r samples, it
can fully recover x, with probability at least pr. Then, by taking γ = B(T, T +
τ − n, t−1

t )1−θ and γ′ =
(
1−B(T, T + τ − n, t−1

t )θ
)s, we obtain our result. ut
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