Abstract

Mass spectrometry (MS) has emerged as an important tool for studying anticancer metallodrugs in complex biological samples and for characterising their interactions with biomolecules and potential targets on a molecular level. The exact modes-of-action of these coordination compounds and especially of next generation drug candidates have not been fully elucidated. Due to the fact that DNA is considered a crucial target for platinum chemotherapeutics, metallodrug-DNA binding studies dominated the field for a long time. However, more recently, alternative targets were considered, including enzymes and proteins that may play a role in the overall pharmacological and toxicological profile of metallodrugs. This review focuses on MS-based techniques for studying anticancer metallodrugs in vivo, in vitro and in situ to delineate their modes-of-action.

Details

Actions