
Creating Secrets out of Erasures

Katerina Argyraki1
∗

, Suhas Diggavi2
†

, Melissa Duarte1,

Christina Fragouli1
‡

, Marios Gatzianas1, Panagiotis Kostopoulos1

1EPFL, Switzerland 2UCLA, USA

ABSTRACT

Current security systems often rely on the adversary’s computa-
tional limitations. Wireless networks offer the opportunity for a
different, complementary kind of security, which relies on the ad-
versary’s limited network presence (i.e., that the adversary cannot
be located at many different points in the network at the same time).
We present a system that leverages this opportunity to enable n

wireless nodes to create a shared secret S, in a way that an eaves-
dropper, Eve, obtains very little information on S. Our system con-
sists of two steps: (1) The nodes transmit packets following a spe-
cial pattern, such that Eve learns very little about a given fraction
of the transmitted packets. This is achieved through a combina-
tion of beam forming (from many different sources) and wiretap
codes. (2) The nodes participate in a protocol that reshuffles the
information known to each node, such that the nodes end up shar-
ing a secret that Eve knows very little about. Our protocol is easily
implementable in existing wireless devices and scales well with the
number of nodes; these properties are achieved through a combi-
nation of public feedback, broadcasting, and network coding. We
evaluate our system through a 5-node testbed. We demonstrate that
a group of wireless nodes can generate thousands of new shared
secret bits per second, with their secrecy being independent of the
adversary’s computational capabilities.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General—Secu-

rity and protection; C.2.1 [Computer-Communication Networks]:
Network Architecture and Design—Wireless communication; H.1.1
[Information Systems]: Systems and Information Theory—Infor-

mation theory

∗Supported by ArmaSuisse.
†Supported in part by NSF award 1136174 and MURI award
AFOSR FA9550-09-064.
‡Supported by ArmaSuisse and ERC Starting Grant ERC-2009-
StG-240317.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full cita-

tion on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MobiCom’13, September 30–October 4, Miami, FL, USA.

Copyright 2013 ACM 978-1-4503-1999-7/13/09 ...$15.00.

http://dx.doi.org/10.1145/2500423.2500440.

Keywords

Physical-layer security; Group secret agreement

1. INTRODUCTION
To perform secret agreement in the presence of an adversary,

current security systems rely on the adversary’s computational lim-
itations. Consider the scenario where a principal Alice wants to
agree on a secret with a principal Bob over a communication chan-
nel, while an adversary Eve is eavesdropping on the same chan-
nel. Today, we solve this problem through algorithms like Diffie-
Hellman [10] or RSA [27], which rely on the assumption that Eve
cannot perform certain operations, e.g., large integer factorization,
in useful time.

Wireless networks offer the opportunity for a different kind of se-
cret agreement, which relies not on the adversary’s computational
limitations, but on her limited network presence (i.e., the fact that
the adversary cannot be located at many different points in the net-
work at the same time). Consider the scenario where Alice, Bob,
and Eve are standing in a noisy room; when Alice whispers some-
thing, Bob hears some part of it, Eve hears another part, but, as
long as Bob and Eve are not standing right next to each other, they
are highly unlikely to hear exactly the same thing. Information the-
ory tells us that Alice and Bob can agree on a secret that Eve knows
nothing about, as long as they know how much information Eve has
heard (e.g., they know that Eve heard half of Alice’s worlds, even
though they do not know which ones) [30, 21]. This result holds,
even when the Alice/Bob channel is worse than the Alice/Eve chan-
nel, as long as Eve does not always hear every single bit of infor-
mation that Bob does [30, 21]. So, it is theoretically possible for
Alice and Bob to agree on a secret that Eve knows nothing about,
even when Eve can hear Alice more clearly than Bob can.

This result has significant practical implications: It opens up
the possibility of wireless nodes continuously sharing fresh secrets,
simply by communicating with each other in a noisy environment.
Such a “secret stream” can be used to periodically refresh the nodes’
encryption and/or authentication keys [31]. This is important in
light of the fact that security is most often compromised through
stolen or weak keys, not vulnerabilities in the underlying algo-
rithms [31].

But there is a second, equally important (if more academic and
longer-term) reason to care for this line of work: As powerful
governments and corporations amass computational power, secret
agreement that makes no assumption about the adversary’s com-
putational capabilities will become a relevant problem. We do not
expect this to happen tomorrow, and we are by no means advo-
cating the replacement of existing cryptosystems that rely on the
adversary’s computational limitations, like RSA. But we do think
that there is value in researchers starting to think about alternatives,



even if these are bound to suffer, at first, from vulnerabilities and
deployment hurdles.

Our goal then is to design and build a system that enables n wire-
less nodes (we will call them “terminals”) to agree on a secret S,
in a way that an eavesdropper, Eve, obtains very little information
on S. We focus on groups (as opposed to pairs) of terminals,
because this scenario has received less attention by the research
community, even though it is becoming increasingly relevant: In-
ternet users are increasingly relying on their mobile phones to com-
municate in groups, e.g., participate in social networks and online
games. There is also evidence that they like to consume online
content (in particular, videos) in groups [5], and we are starting to
see commercial tools that explicitly target groups of mobile users
accessing the same content [4, 2].

Our system does not assume anything about Eve’s computational
capabilities, but it assumes limits on her network presence, e.g., that
she possesses no more than a certain number of antennas. Informa-
tion theory tells us that this is theoretically possible for n = 2
terminals, but not how to do it. In particular, the existing theo-
retical results (upper and lower bounds on the secrecy rate achiev-
able between two nodes given idealized channel conditions) rely on
combinatorial constructions that are not implementable in practice.
More recently, researchers have started to propose implementable
solutions for n = 2 terminals. The first proposals assumed channel
reciprocity between the two nodes and required a dynamic environ-
ment [13, 7, 32, 8, 17], or else risked compromising their security.
A more recent one avoids these pitfalls but requires physical-layer
changes and is specifically designed for OFDM [12]. To the best
of our knowledge, there exists no solution (for 2 or more terminals)
that does not require physical-layer changes, has been deployed on
a real testbed, and has been experimentally shown to generate high-
quality secrets in the presence of an adversary.

We present such a solution that consists of two phases: In the first
phase, the terminals transmit packets following a special pattern,
such that Eve learns very little about a given fraction of the trans-
mitted packets; this is achieved through a combination of beam-
forming (from many different sources) and wiretap codes. In the
second phase, the terminals participate in a protocol that reshuffles
the information known to each terminal, such that the terminals end
up sharing a secret that Eve knows very little about; this is achieved
through a combination of public feedback, broadcasting, and net-
work coding.

We evaluate our system on a small testbed of 5 WARP nodes, 4
of them playing the role of the terminals and one of them playing
the role of the eavesdropper Eve. We show that, for a variety of
node placements (all the placements we tried), the terminals agree
on thousands of new secret bits per second. We verify that these
bits are perfectly secret (Eve obtains no information about them) by
measuring the mutual information between the signal that reaches
Eve’s antenna and the signals that reach the antennas of the ter-
minals. In other words, we ensure that Eve cannot learn anything
about the shared secrets, even if she has access to corrupted packets
that get discarded by the lower layers of her device.

2. SETUP AND OVERVIEW
In this section, we state the input and output of our system (Sec-

tion 2.1), our adversary model (Sections 2.2 and 2.3), the basic
elements of our approach (Section 2.4), and its limitations (Sec-
tion 2.5).

2.1 Goal
We consider n wireless nodes, T0, . . . , Tn−1, connected to the

same broadcast channel; we will refer to these nodes as terminals;

sometimes we will refer to terminals T0, T1, and T2 respectively as
Alice, Bob, and Calvin. We also consider an adversary node, Eve,
connected to the same broadcast channel as the terminals.

The terminals can communicate with each other in two ways: (1)
When we say that terminal Ti transmits a packet, we mean that it
broadcasts the packet once. (2) When we say that terminal Ti re-

liably broadcasts a packet, we mean that it ensures that all other
terminals Ti receive it, e.g., through acknowledgments and retrans-
missions. To be conservative, we assume that Eve receives all reli-
ably broadcast packets.

We design a system that enables the n terminals to create a shared
secret S, in a way that Eve obtains very little information on S. We
will make no assumptions about Eve’s computational capabilities,
but we will make assumptions about her network presence. The
input to our system is: (a) the physical locations of the termi-
nals and certain properties of the terminals’ hardware, in particu-
lar, the shape of their primary antenna lobe and the SNR range of
a receiver located inside and outside the primary lobe; (b) an as-
sumption about Eve’s hardware, in particular, the minimum noise
experienced by Eve’s receiver relative to the noise experienced by
the terminals’ receivers.

2.2 Adversary Capabilities
The rate at which the terminals can agree on new secret bits de-

pends on their physical locations and hardware, as well as Eve’s
physical location and hardware. Since we cannot know where Eve
is or what kind of hardware she has, we design our system to be
configurable for different adversaries. In other words, the termi-
nals need to change the parameters of the system depending on
how strong an adversary they want to be secure against. Intuitively,
the stronger the adversary, the lower the rate at which the terminals
can agree on new secret bits.

As mentioned above, our system takes as input certain properties
of the terminals’ hardware and an assumption about Eve’s hard-
ware. Based on that, it estimates: (a) what is the maximum rate
at which the terminals can create new shared secret bits; (b) what
is the minimum physical distance δ between any terminal and Eve
for which the system is secure (i.e., Eve knows very little about
the created shared secret). To be conservative, the terminals can
(and should) configure for the case where Eve has a better receiver
than they do. For example, a group of terminals may configure the
system to be secure as long as Eve’s receiver experiences at least
a quarter of the noise experienced by any terminal’s receiver; the
system may estimate that, given this noise ratio and the terminals’
hardware, the terminals can create up to 10 secret Kbps, as long as
Eve is located, say, 3 m from any terminal.

We assume that Eve has access to all the layers of her device,
including the physical-layer signal that reaches her receiver. So,
when Eve tries to reconstruct the terminals’ communication (in
order to guess the secret S), we assume that she can exploit all
the data that reaches her, including data with errors that may get
dropped by the higher layers of her communication device.

2.3 Adversary Behavior
When we say that Eve is “passive,” we mean that she does not

perform any transmissions, she only processes the traffic she over-
hears from the terminals.

When we say that Eve is “active,” we mean that, on top of pro-
cessing the traffic she overhears from the terminals, she transmits
her own traffic. The goal of Eve’s transmissions may be (1) to jam
the wireless channels to prevent secret agreement from occurring
in the first place, or (2) to impersonate a terminal (e.g., pretend to
Bob that she is Alice).



Attack type Outcome Extra mechanism

Passive completes –
Jamming aborts –
Impersonation completes bootstrap auth.

Table 1: Outcome of our system under attack.

Table 1 summarizes what our system is meant to do in each case,
and whether it needs any extra mechanism to do it (on top of what
we describe in this paper).

In case of a passive attack, secret agreement should complete
successfully. This should not require any extra knowledge or mech-
anism, in particular, the terminals do not need to share any boot-
strap information to start the agreement. This is the main scenario
that drives our design.

Our current design does not handle jamming attacks, in the sense
that the terminals abort their secret agreement when they cannot es-
tablish among them communication channels of sufficient quality.
At this stage of the work, we consider it acceptable that the termi-
nals realize that they cannot agree on a secret and abort (as opposed
to agreeing on a secret that is compromised by Eve).

In case of an impersonation attack, secret agreement should com-
plete successfully, with the help of a bootstrap authentication mech-
anism. Once the terminals have agreed on a secret S using our sys-
tem, they can use part of S to form authentication codes and authen-
ticate each other (during subsequent uses of the system). The first
time they use the system, however, they need to rely on some ex-
ternal authentication mechanism. For example, the terminals may
share an initial secret σ (much smaller than S) and use it to form
initial authentication codes. This is fundamentally unavoidable: the
very first time Alice sends packets to Bob, she must have a way to
prove that it is she (not Eve) sending the packets.

One may ask: if the terminals need to already share an initial se-
cret σ (to authenticate each other when they first use our system),
why would they use our system at all? The answer is that our sys-
tem enables the terminals to continuously create new secrets that
are completely independent from σ (and from each other), without
using any out-of-band channel. So, even if the adversary at some
point cracks σ, that will not give her any information on the secrets
created with our system. Hence, as long as our system works as
it is supposed to, the only way an adversary can compromise it is
to crack σ, cancel out a terminal’s transmissions, impersonate that
terminal, and participate in secret agreement, while the terminals

are using our system for the first time, i.e., before they have agreed
on their first secret S.

2.4 Approach
The insight we use from information theory is that, when Alice

transmits, it is possible for Alice and Bob to agree on a secret, as
long as Eve does not receive exactly the same information as Bob.

Our system then consists of two phases: in the first phase, the
terminals exchange random packets using a special pattern, which
ensures that Eve misses some fraction of the exchanged packets;
in the second phase, the terminals participate in a polynomial-time
protocol, which enables them to agree on a common secret S. We
would like to emphasize two points: First, we do not need to know
or control which packets exactly Eve misses, it is sufficient to know
that she has missed some fraction of the packets exchanged by the
terminals in phase 1. Second, we do not assume the existence of
natural erasure channels: when a terminal transmits a frame, Eve
may receive only a part of that frame correctly and still extract use-
ful information from it. This is why we use a special transmis-
sion pattern in phase 1—to ensure that, despite receiving partial

frames, Eve will still completely miss some fraction of the packets
exchanged by the terminals.

We now outline each phase:
First, we create channel variability, i.e., ensure that no two nodes

(including Eve and any terminal) hear exactly the same informa-
tion. To achieve this, in phase 1, the terminals take turns in trans-
mitting random packets while beamforming and rotating their beams.
Beamforming enables a transmitter to concentrate its power along a
narrow beam, such that receivers within the beam receive a signif-
icantly stronger signal than those outside; rotating the beam keeps
changing the sets of receivers that are in and out of the beam.
Hence, by having the terminals take turns in beamforming while
rotating, we ensure that no two nodes hear all transmissions with
the same signal strength.

Next, we turn channel variability into packet erasures, i.e., en-
sure that any node (including Eve) completely misses some frac-
tion of the transmitted packets. To achieve this, when the terminals
transmit in phase 1, they use wiretap codes [18]. These create ar-
tificial erasure channels at the cost of extra bandwidth: they aug-
ment the packets generated by the terminals with redundant infor-
mation, enough to ensure that any receiver with a signal-to-noise
ratio (SNR) below a given threshold can extract zero information
about any transmitted packet.

So, at the end of phase 1, the terminals share (know the contents
of) some packets, while Eve has missed (knows nothing about the
contents of) some fraction of these packets; the terminals know a
lower bound of how many packets Eve has missed, but not which
ones. This lower bound is computed based on the input to our sys-
tem (the terminals’ hardware properties and the assumptions about
Eve’s hardware properties).

In phase 2, the terminals agree on a common secret S. To achieve
this, they mostly perform simple linear combinations of the pack-
ets they share at the end of phase 1. For example, suppose we have
n = 2 terminals, Alice and Bob; at the end of phase 1, Alice and
Bob share 3 packets, x1, x2 and x3, while Eve has missed two of
these packets, x1 and x2. If Alice and Bob know that Eve misses
two of their shared packets (but not which two), they can create a
shared secret that Eve knows nothing about, by concatenating two
linear combinations of their shared packets, e.g., 〈x1⊕x2, x2⊕x3〉
(where ⊕ denotes the bit-wise XOR operation over the payloads of
the corresponding packets). The actual protocol is more sophisti-
cated, as it must ensure that Eve cannot guess S no matter which
particular packets she has missed, and it must scale well with the
number of terminals.

The size of the resulting common secret S depends on the small-
est number of packets shared by any terminal pair and missed by
Eve at the end of phase 1. For instance, in the above example, Eve
misses 2 of the packets shared by Alice and Bob; hence, the secret
S should have at most the size of 2 packets. If the terminals cre-
ated a bigger secret, then Eve would be able to guess something
about it. So, our protocol is secure, as long as we can lower-bound
the number of packets missed by Eve in phase 1. We can obtain
such a lower bound thanks to the combination of beamforming and
wiretap codes.

2.5 Limitations
We have not considered yet the case where Eve has multiple re-

ceivers. Our current system takes as input the assumed level of
noise at Eve’s receiver; to deal with a multi-receiver Eve, it should
also take as input the assumed number of receivers R that Eve con-
trols. We currently upper-bound the amount of information that
Eve overhears in phase 1, by assuming that she is located in the
worst possible position, e.g., in the middle of all the terminals (Sec-



tion 4); to deal with a multi-receiver Eve, we would have to be more
conservative, i.e., assume that Eve’s R receivers are located in the
worst possible R positions with respect to the terminals. The next
question that we want to answer is how many receivers R Eve must
control in order to make the creation of a secret between n termi-
nals impossible.

We have experimented only with the simplest wiretap codes (two-
layer codes). However, we have observed evidence that using more
sophisticated wiretap codes (with more than two layers) would sig-
nificantly improve the performance of our system.

Our experimental evaluation is only a first step, and we need to
improve it in at least three ways:

(a) The performance of our system depends on the SNR range of
a receiver located inside and outside the transmitter’s primary lobe
(Section 4). We need to study how sensitive these SNR ranges are
to the particular environment (e.g., indoors versus outdoors, node
hardware, antenna specifications) and make our system robust to
environmental differences. So far, we have experimented only with
one environment (outdoors, WARP wireless nodes [3], and flat-
panel directional antennas [1]).

(b) The performance of our system also depends on the shape
of the terminals’ beam (Section 4). The antennas we are currently
using have relatively poor directionality (the primary lobe opens at
a 40 degree angle), which imposes a minimum physical distance
of 3 meters between any terminal and Eve. We need to experiment
with higher-quality antennas that can focus their beams at a smaller
angle, so that we decrease this minimum physical distance to less
than 1 meter.

(c) Our system relies on properties of simple wiretap codes (with
two layers). We still need to experimentally validate practical im-
plementations of such codes.

3. SECRET AGREEMENT
In this section, we describe phase 2, i.e., our secret-agreement

protocol: the input it expects from phase 1 (Section 3.1), its two
algorithms (Sections 3.2 and 3.3), and its main properties (§3.4).

At a high level: Alice first agrees on a pairwise secret Si with
each terminal Ti, such that Eve knows nothing about Si. Once
Alice has created a pairwise secret with each terminal, she could
use these pairwise secrets to communicate a group secret to all the
terminals. Perhaps counter-intuitively, there exists a significantly
more efficient way to agree on a group secret: Alice reliably broad-
casts certain carefully chosen information, which does not increase
the amount of secret information shared by Alice and each termi-
nal, but “redistributes” it, such that all terminals share the same
group secret S.

3.1 Input
At the end of phase 1, the terminals have transmitted some num-

ber of packets (we will call them x-packets). Each terminal, as
well as Eve, has received and knows the contents of some fraction
of these x-packets.

The input to the secret-agreement protocol consists of:

• The identities of the x-packets known to each terminal.

• A lower bound on the number of x-packets shared by each
pair of terminals and missed by Eve.

• A lower bound on the number of x-packets shared by at least
two terminals and missed by Eve.

Obtaining this input is the topic of the next section.

3.2 Pairwise-Secret Algorithm
The terminals take turns playing the role of Alice and running

the following algorithm:

1. Alice constructs linear combinations of the x-packets that
she knows (we will call them y-packets), using a well-defined
construction (see Appendix, Section 8.2). These y-packets
satisfy two constraints:

(a) Their total number is M .

(b) Mi of them are linear combinations of the x-packets
that Alice shares with terminal Ti.

Alice reliably broadcasts the identities of the x-packets she
used to create each y-packet.

2. Each terminal Ti (other than Alice) reconstructs the contents
of Mi y-packets.

At this point, Alice and terminal Ti share Mi y-packets. The pair-
wise secret Si is their concatenation.

For example, suppose we have n = 2 terminals, Alice and Bob.
At the end of phase 1, Alice and Bob share x-packets x1, x2, x3, x4,
x5, of which Eve knows x1, x2, x3. The pairwise-secret algorithm
works as follows: In step 1, Alice constructs M1 = 2 y-packets that
are linear combinations of the x-packets shared with Bob: y1 =
x1 ⊕ x3 ⊕ x5 and y2 = x2 ⊕ x4. Then, Alice reliably broadcasts
the identities of the x-packets she used to construct the y-packets,
but not their contents. In step 2, Bob uses this information to recon-
struct the contents of the y-packets. Eve overhears Alice’s reliable
broadcast, but she cannot reconstruct the contents of either y1 or
y2, because she does not know the contents of x4 or x5. At this
point, Alice and Bob have agreed on pairwise secret 〈y1, y2〉, and
Eve knows nothing about it.

It is important that Alice construct the y-packets using a particu-
lar construction, because not any linear combinations of x-packets
will do. The y-packets that we use above happen to work for the
particular example, but our protocol does not really construct so
simple linear combinations, as they may leak information to Eve.
For instance, suppose Alice constructed the y-packets as follows:
y′
1 = x1 ⊕ x2 ⊕ x3 and y′

2 = x4 ⊕ x5. In this case, Eve would be
able to reconstruct y′

1, hence recover half of the pairwise secret.
In this example, Eve knows nothing about the pairwise secret

〈y1, y2〉, because it consists of 2 linear combinations of the x-
packets, which is exactly the number of x-packets shared by Alice
and Bob and missed by Eve at the end of phase 1. So, to create
a perfect pairwise secret with terminal Ti, Alice needs to know a
lower bound on the number of x-packets shared with Ti and missed
by Eve, and she must set Mi (the size of the pairwise secret) to this
value.

3.3 Group-Secret Algorithm
Next, the terminals take turns playing Alice and running a second

algorithm. We first present a simplified version of it:

1. Alice constructs M −min{M1,M2, . . .Mn−1} linear com-
binations of the y-packets (we will call them z-packets), us-
ing a well-defined construction (see appendix 8.2). She re-
liably broadcasts both the contents of each z-packet and the
identities of the y-packets used to construct each z-packet.

2. Each terminal Ti reconstructs the (M −Mi) y-packets it is
missing by combining any of the (M −Mi) z-packets with
the Mi y-packets it reconstructed in step 2 of the pairwise
algorithm.



3. Alice constructs L = min{M1,M2, . . .Mn−1} linear com-
binations of the y-packets (we will call them s-packets), us-
ing a well-defined construction (see appendix 8.2). She reli-
ably broadcasts the identities of the y-packets that she used
to create each s-packet.

4. Each terminal is now able to reconstruct all the s-packets,
because it has all the y-packets.

At this point, all terminals share the same set of L s-packets. The
group secret S is their concatenation.

For example, suppose we have three terminals, Alice, Bob, and
Calvin. After running the pairwise algorithm, Alice has constructed
M = 3 y-packets. Of these, she shares M1 = 2 with Bob (y1 and
y2) and M2 = 2 with Calvin (y1 and y3). Eve knows nothing about
any of the y-packets.

First, we reach a point where all terminals share all the y-packets:
In step 1, Alice constructs M −min{M1,M2} = 1 linear combi-
nation of the y-packets, y2⊕y3, and reliably broadcasts its contents.
In step 2, each of Bob and Calvin uses this information to recon-
struct the y-packet that he is missing. At this point, all terminals
share y1, y2, y3, while Eve knows the value of y2 ⊕ y3.

Next, the terminals condense the y-packets into a group secret:
In step 3, Alice constructs L = min{M1, M2} = 2 s-packets that
are linear combinations of the y-packets: s1 = y1 ⊕ y2 ⊕ y3 and
s2 = y1 ⊕ y2. Then, Alice reliably broadcasts the identities of the
y-packets she used to create the s-packets, but not their contents.
In step 4, Bob and Calvin use this information to reconstruct the
contents of the s-packets. Eve overhears Alice’s reliable broadcast,
but she cannot reconstruct the contents of s1 or s2, because she
does not know the contents of y1 or y2. At this point, Alice, Bob,
and Calvin have agreed on group secret 〈s1, s2〉, and Eve knows
nothing about it.

As with the y-packets, it is important that Alice construct the z-
packets and s-packets using specific constructions, otherwise they
may leak information to Eve.

The size L of the final group secret is the size of the smallest
pairwise secret (minMi). So, the group-secret algorithm does not
increase the amount of secret information shared by Alice and any
terminal, but it “redistributes” this information, such that all termi-
nals share the same group secret.

What we presented above is a simplified version of the group
secret algorithm: according to our description, each terminal plays
the role of Alice and creates a separate group secret with the other
terminals; in the actual algorithm, all the terminals together act as
one “distributed Alice” and create a single group secret (see Ap-
pendix, Section 8.3).

3.4 Properties
Our secret-agreement protocol starts from the assumption that

each terminal pair shares some x-packets that Eve has missed. It
builds on this assumption to create, first pairwise secrets between
terminal pairs, then a common group secret S among all terminals.

The protocol is secure, in the sense that Eve knows nothing about
the group secret S (or the pairwise secrets), as long as the input to
the protocol (the lower bounds on what Eve knows) are correct.

Equivalently, to ensure that Eve knows nothing about the group
and pairwise secrets, we need to restrict their sizes: The size of each
pairwise secret Si must be no more than the number of x-packets
Mi shared by Alice and Ti and missed by Eve at the end of phase
1. The group secret S must be no bigger than the smallest pairwise
secret Si. So, the security of the protocol depends on our ability to
lower-bound the number of x-packets shared by different terminal
pairs and missed by Eve at the end of phase 1.

The intuition behind the security of the protocol is the following:
If Alice and Bob share N packets, of which Eve misses M (but we
do not know which ones), Alice and Bob can create exactly M

linear combinations of their N shared packets that are perfectly
secret from Eve. This is always the case, as long as N is above a
given threshold.

A practical question is how to pick linear combinations that are
guaranteed to be unknown to Eve and linearly independent, no mat-
ter which particular M packets she has missed; we do so with the
help of Maximum Distance Separable (MDS) codes. MDS codes
(which were created for entirely different purposes) have a conve-
nient property: any M columns of the M ×N generator matrix of
an [N,M,N −M +1] MDS code are linearly independent. Thus,
if we use this generation matrix to create M linear combinations of
N unknowns, and then set to zero any N −M of these unknowns
(i.e. remove them from the equations because Eve knows them),
the M equations (of the remaining M unknowns) are still linearly
independent.

The complexity of the protocol is polynomial in the size of the
secret and comes mainly from the encoding operations that Alice
has to perform. We note that there exist efficient implementations,
and similar-complexity encoding operations are often performed by
wireless systems today.

4. CREATING ERASURE CHANNELS
In this section, we describe phase 1, i.e., how the terminals create

erasure channels between themselves and Eve (Section 4.1), and
how they estimate the input needed for the next phase (Section 4.2).

At a high level: The terminals take turns in transmitting random
packets while beamforming and rotating their beams. When they
are done, they exchange information on which packets each of them
received correctly, and they estimate conservative lower bounds on
the number of packets missed by Eve (the input to phase 2).

4.1 Wiretap Coding and Beamforming
Our secret-agreement protocol assumes erasure channels between

the terminals and Eve: when a terminal transmits, Eve either re-
ceives a packet correctly or not at all. This assumption is funda-
mental to the correctness of the protocol (if it does not hold, Eve
may collect significant information about the secret).

Since erasure channels do not occur naturally, the terminals use
two-layer wiretap codes to emulate them: Such a code is character-
ized by two parameters, SNR1 and SNR2. When Alice transmits
using such a code, it is guaranteed that Bob will receive all her
packets correctly, while Eve will receive zero information about
any of them, as long as Bob hears Alice with SNR above SNR1

and Eve hears Alice with SNR below SNR2. Hence, as long as
there is a sufficient gap between Bob’s and Eve’s SNRs, the wiretap
code ensures that Bob will receive everything and Eve will receive
nothing. In this sense, wiretap coding translates SNR differences
into erasures (for a brief background on wiretap codes, please see
Appendix, Section 8.1).

Our main idea is the following: Provided that Alice, Bob and
Eve are physically separated by some minimum distance, when Al-
ice transmits, as she rotates her beam, there will exist some time in-
terval during which Bob will be inside Alice’s primary lobe, while
Eve will be outside (unless Alice, Bob, and Eve are located on a
single line). Suppose we could guarantee that, during this time in-
terval, Bob hears Alice with SNR above SNR1, while Eve hears
Alice with SNR below SNR2. Then, we could also guarantee that
Bob will receive correctly all the packets transmitted by Alice dur-
ing this time interval, while Eve will receive zero information about
any of them. To achieve this, we need to set SNR1 to the minimum



SNR that Bob may experience when he is inside Alice’s primary
lobe and SNR2 to the maximum SNR that Eve may experience
when she is outside Alice’s primary lobe (while also satisfying the
minimum acceptable physical distance from Alice and Bob). In
short, Alice transmits with a wiretap code such that: when Bob is
inside her primary lobe and Eve outside, Bob receives everything
and Eve nothing.

One challenge here is how to practically estimate the two thresh-
olds, SNR1 and SNR2. Fortunately, we do not need to be accu-
rate, merely conservative. One approach is to use the specifica-
tions of the terminals’ antennas and plug them into an analytical
model, e.g., the Friis equation, augmented with a factor that takes
into account the nature of the environment, e.g., indoors versus out-
doors, presence of multi-path, etc. Another approach is to rely on
calibration: before starting phase 1, the terminals perform mea-
surements in the specific environment where they plan to create a
shared secret, in order to assess the behavior of their antennas and
receivers within this environment. This calibration needs to happen
only once for each specific environment. Since this is the approach
we take in our experimental evaluation, we describe it next in more
detail.

We set SNR1 to the minimum SNR value experienced during
calibration by any receiving terminal when it is located inside the
transmitter’s primary lobe. Our rationale is that, whenever a re-
ceiving terminal is inside the transmitter’s primary lobe, we want
the receiver to correctly decode all transmissions. The worst-case
scenario related to SNR1 is that, during phase 1, Bob experiences
SNR below SNR1, even though he is located inside Alice’s primary
lobe (e.g., because he is located too far from her, or there is an ob-
stacle between them). In this case, Bob will not be able to decode
Alice’s transmissions, which will reduce the size of the final group
secret created in phase 2. This does not affect the security of our
system (Eve still knows very little about the created group secret),
but, if it happened often, it would reduce the system’s efficiency.
SNR2 is meant to capture the best SNR that Eve may experi-

ence when she is located (a) at the minimum physical distance δ

from the transmitter, but (b) still outside the transmitter’s primary
lobe. One approach would be to set SNR2 to the maximum SNR
value experienced during calibration by any receiving terminal that
satisfies (a) and (b). In our experimental evaluation, we take a more
conservative approach: we put a node (playing the role of Eve) in
the best possible location where Eve can position herself while still
satisfying (a) and (b), we let the terminals take turns transmitting,
and we set SNR2 to the average SNR experienced by our fictitious
Eve. For instance, in our testbed (Figure 1), we place our n = 4
terminals at the corners of a rectangle and the fictitious Eve right in
the middle, because, to the best of our current understanding, given
this environment and this number of terminals, this is the best lo-
cation where Eve can position herself to overhear the terminals’
transmissions (she is on a perfect line with two terminal pairs).

To account for the scenario where Eve has better hardware than
our terminals, we increase SNR2 by multiplying it by a factor of
νT
νE

, where νT and νE denote the thermal noise power at a ter-

minal’s and Eve’s receiver. For instance, νT
νE

= 2 configures the

system to be secure in the scenario where Eve’s receiver introduces
half the thermal noise introduced by any terminal’s receiver.

4.2 Estimating Eve’s uncertainty
At the end of phase 1, we lower-bound the amount of informa-

tion that Eve has missed. More specifically, of all the transmitted
packets that have been correctly received by at least one terminal,
we lower-bound the number missed by Eve. For this, we rely on
geometry and the same rationale that we used to estimate SNR2:

We assume that, when a terminal transmits, those inside the pri-
mary lobe receive everything while those outside receive nothing.
We also assume that Eve has positioned herself in the best possible
location to overhear the terminals’ transmissions.

We illustrate with an example: Suppose we have n = 4 ter-
minals, not positioned on a single line (as illustrated in Figure 1),
all of them within each other’s transmit range. When a transmit-
ting terminal has positioned its beam such that one other terminal
is inside the primary lobe and Eve is outside, we call this a “use-
ful” beam position (because it allows the transmitting and receiving
terminals to create secrecy). In our particular example, when a ter-
minal transmits, there are at least two useful beam positions: the
transmitting terminal will point its beam once at each of the 3 other
terminals, and Eve can be inside the primary lobe in at most one of
these beam positions. Hence, of all the packets transmitted by a ter-
minal in phase 1, at least those transmitted during 2 beam positions
are received by one other terminal and not Eve. Of course, we do
not know which two these beam positions are (because we do not
know Eve’s location). And this is precisely why we need a secret-
agreement protocol like the one described in Section 3, which only
needs as input a lower bound on the number of packets missed by
Eve, not which particular packets she missed.

The geometric approach that we use requires at least n = 3 ter-
minals, not all positioned on a single line and within each other’s
transmit range. Otherwise, our system conservatively creates no
group secret, because it is always possible for Eve to position her-
self so as to prevent one of the terminals from creating any secrecy
with the rest.

5. EVALUATION
In this section, we evaluate our system in terms of the quality

of the secrets it generates (how much Eve knows about them) and
the rate at which it generates new secrets. We first describe our
testbed (Section 5.1) and metrics (Section 5.2), then present our
experimental results (Section 5.3).

5.1 Testbed
Our testbed consists of 5 WARP nodes [3], deployed as depicted

in Figure 1, on a 7 × 7 m2 open terrace. Each node transmits
through a flat-panel directional antenna [1] with a 40-degree primary-
lobe angle. The transmission power is −19 dBm and the transmis-
sion rate 1 Mbps. In each experiment, one node plays the role
of Eve and n = 4 nodes play the role of the terminals that use our
system to continuously create new secrets. In phase 1, all the termi-
nals take turns in transmitting, and in phase 2 these transmissions
are used to create a shared group secret. Each experiment corre-
sponds to specific physical locations for the terminals and Eve, and
it yields a stream of new secrets agreed on by the terminals.

We selected this particular placement of the nodes, because it al-
lows us to experiment with an adversarial scenario: when the role
of Eve is played by the node located in the middle. We call this
adversarial for three reasons: (a) Eve is located at 3 m from any ter-
minal, which is closer than any pair of terminals are located to each
other. (b) Whenever one terminal points at another, Eve is posi-
tioned close to the peak of the main secondary lobe of the transmit-
ter’s antenna. This results in the maximum SNR that we measured
in this environment for a node positioned outside the transmitter’s
primary lobe. (c) Eve is positioned on the lines that connect two
pairs of terminals (hence prevents them from creating pairwise se-
crets in phase 1). This results in the maximum fraction of packets
overheard by Eve that we measured in this environment. We do not
have a proof that this is the worst node placement for our system
given this environment, n = 4 terminals, and a minimum distance



2 m

4.5 m

N2

4 m

N3

2.5 m

4.5 m

N5

N1

N4

concrete

barrier glass windows

Figure 1: Our testbed: 5 nodes (4 terminals and 1 Eve). The

identity of the node that plays the role of Eve changes with each

experiment.

of δ = 3 m between any terminal and Eve; but it is the worst that
we were able to observe.

This testbed has the following characteristics:
(a) The minimum physical distance between the terminals and

Eve is δ = 3 m, which is determined by the shape of the transmit-
ting antenna beam. If Eve can be closer than 3 m to a terminal, she
manages to be inside its transmitter primary lobe all the time, and
the system is not secure any more.

(b) The maximum physical distance at which the terminals can
communicate with each other is about 5 m. If two terminals are
further away (e.g., nodes N1 and N5), they do not hear each other
with a sufficient SNR to decode each other’s packets.

(c) We conservatively assume that each transmitting terminal
achieves only one useful beam position in phase 1 (Section 4.2).
E.g., consider the case where the role of Eve is played by node N3:
Node N1 exchanges packets with N2 and N4 (N5 is too far and
cannot decode N1’s packets). Since Eve’s location is not known
to the terminals, the system assumes that she may be located either
between N1 and N2 or between N1 and N4. Hence, it conserva-
tively assumes that Eve overheard half of the packets transmitted
by N1 and received by any other terminal.

5.2 Metrics
We consider the following metrics:

• Reliability represents how much Eve knows about the secret
stream. Reliability q means that Eve can correctly guess each
secret bit with probability 2−q . The maximum reliability is 1,
which means that Eve can correctly guess each secret bit with
probability 0.5, i.e., knows nothing about the secret stream.

• Efficiency is the number of secret bits agreed on by the ter-
minals, divided by the total number of bits transmitted by
the terminals. By definition, efficiency has to be below 1
(otherwise, every bit transmitted by the terminals would au-
tomatically become a secret bit, which is infeasible).

• Secrecy rate is the rate at which the terminals agree on new
secrets (in bits per second). This does not provide any extra
information over efficiency (it is equal to efficiency times the
transmission rate of the terminals). We report it only because
we find “1 secret Kbps” a more intuitive piece of information
than “efficiency 0.001.”

We consider two variations of our system:

• Sequential beamforming: In phase 1, each terminal transmits
in beam positions that differ by 20 degrees from each other
(half the angle of the primary lobe). The reason we rotate by
half the primary-lobe angle (as opposed to the exact angle) is
to ensure that each receiving terminal will be located close to
the vertical center of the transmitter’s primary lobe in at least
one beam position. We use enough beam positions to cover
the area of the testbed, and each terminal transmits the same
number of packets from each beam position.

• Selective beamforming: This is like sequential beamform-
ing, with the difference that, in phase 1, a terminal transmits
only when pointing its beam at a receiving terminal, which
requires that the terminals know each other’s exact position.
This variation is designed to achieve better efficiency (avoid
useless transmissions) in sparse topologies, where most beam
positions are useless, in the sense that they do not point to any
receiving terminal.

We compare our system against two non-implementable alterna-
tives, where an oracle helps us configure our system and/or deter-
mine Eve’s uncertainty:

• Oracle-Erasures: This alternative helps us evaluate how well
we lower-bound the number of packets missed by Eve in
phase 1: it works like our system, with the difference that an
oracle tells us the correct number of packets missed by Eve in
phase 1. I.e., this alternative achieves perfect reliability and
the maximum possible efficiency that can be achieved using
our beamforming and wiretap coding with the given SNR1

and SNR2 thresholds, and our secret-agreement protocol.

• Oracle: This alternative helps us evaluate how well we choose
our SNR1 and SNR2 thresholds: it works like Oracle-Erasures,
with the difference that an oracle tells us the SNR thresh-
olds that—given the traffic exchanged during phase 1—will
lead to perfect reliability and the maximum possible effi-
ciency. I.e., this alternative achieves perfect reliability and
the maximum possible efficiency that can be achieved us-
ing our beamforming and wiretap coding, and our secret-
agreement protocol.

5.3 Results
In all experiments, we achieve perfect reliability. This is because

we conservatively lower-bound the number of packets missed by
Eve in phase 1. However, the more conservative we are in picking
this lower bound, the smaller the size of the secret that we create
given a certain number of terminal transmissions. So, the question
is: how much does our conservatism cost us in terms of efficiency
and secrecy rate?

We show the efficiency and secrecy rate achieved by our system
and the oracle alternatives, with sequential and selective beamform-
ing, in Figures 2 and 3, respectively. The x-axis corresponds to the
identity of the node playing the role of Eve. We make three obser-
vations:



1 2 3 4 5
0

0.01

0.02

0.03

0.04

Eve index

E
ff
ic

ie
n
c
y

 

 

1 2 3 4 5
0

10

20

30

40

S
e
c
re

c
y
 r

a
te

 (
K

b
p
s
)

Our system
Oracle Erasures
Oracle

Figure 2: Efficiency with sequential beamforming.

First, in all experiments, our system achieves a secrecy rate of
several Kbps. As expected, Oracle is more efficient than Oracle-
Erasures, which is more efficient than our system. This is because
Oracle-Erasures knows exactly which packets Eve has successfully
decoded, hence it does not need to conservatively lower-bound this
number. Oracle, moreover, knows exactly which packets the ter-
minals and Eve will successfully decode, hence it does not need
to conservatively choose the SNR thresholds for the wiretap code.
The gap between the efficiency achieved by these alternatives and
our system shows the price we pay for being conservative.

Second, when we use sequential beamforming (Figure 2), the
efficiency gap between our system and the oracle alternatives is
smallest when Eve is the node in the middle. This is not surpris-
ing, given that we chose the SNR thresholds for our wiretap code
based on this scenario. It illustrates why we cannot achieve high
efficiency for all possible positions of Eve: if we want to account
for the adversarial scenario (where Eve is in the middle), we nec-
essarily become inefficient in the friendlier scenarios (where Eve is
further away from the terminals).

Third, selective beamforming (Figure 2) can significantly im-
prove the efficiency of our system, up to 20 secret Kbps. This is
not surprising, given that it reduces useless transmissions. At the
same time, selective beamforming increases the efficiency gap be-
tween our system and the Oracle alternative. This is due to the fact
that Oracle chooses the SNR thresholds for its wiretap code based
on a-priori knowledge of who will receive what and when; if we
also allow it to leverage this knowledge to altogether avoid use-
less transmissions (which is what selective beamforming enables),
it can pick even better SNR thresholds.

6. RELATED WORK
Wyner introduced the wire-tap channel, where Alice transmits

information to Bob, and a “wiretapper” Eve receives a noisy ver-
sion of what Bob receives; he showed that Alice and Bob can
achieve non-zero secrecy rate when the Alice/Bob channel is bet-
ter than the Alice/Eve channel [30]. Maurer extended the wire-
tap channel with public discussion; he provided lower and upper
bounds for the secrecy rate from Alice to Bob and showed that it
can be non-zero even when the Alice/Bob channel is worse than the
Alice/Eve channel [21]. This work proved the theoretical feasibil-
ity of perfect pairwise secrets (assuming Alice is connected to Eve
through an idealized channel). This triggered a significant body of

1 2 3 4 5
0

0.02

0.04

0.06

0.08

0.1

Eve index

E
ff
ic

ie
n
c
y

 

 

1 2 3 4 5
0

20

40

60

80

100

S
e
c
re

c
y
 r

a
te

 (
K

b
p
s
)

Our system
Oracle Erasures
Oracle

Figure 3: Efficiency with selective beamforming.

theoretical work [22, 23, 29, 24, 25, 26, 16], which also addressed
the scenario of multiple terminals [9].

More recently, researchers have started to propose concrete, im-
plementable protocols for creating pairwise shared secrets in wire-
less networks. Some of them rely on the time-varying nature of
wireless channels and the fact that Alice and Bob can measure the
(time-varying) channel between them whereas Eve cannot [13, 17,
7, 32, 8]. Of these protocols, the ones that have been implemented
achieve secret generation rates up to a few tens of bps (in modified
802.11 or 802.15 environments). However, they rely on channel
changes to extract secret bits, hence they are better-suited for mo-
bile environments (in static environments, they can be vulnerable
to eavesdropping) [15].

Our work is more closely related to the following proposals: Al-
ice and Bob can create pairwise shared secrets by combining and
heuristically condensing the frames that are transmitted between
them only once (the assumption being that these frames are less
likely to have been heard by Eve than the rest) [31]. In another pro-
posal, Alice and Bob create pairwise shared secrets by leveraging
transmissions made by Alice while pointing a directional antenna
at Bob (the assumption being that Eve is not located close to the
line between Alice and Bob and, even if she is, she does not always
have the computational capability to decode the frames that reach
her receiver) [6]. These two protocols have been implemented in an
802.11 environment, but there has not been any evaluation of the re-
liability or efficiency of these implementations yet. In iJam, when
Alice transmits, Bob jams a part of her transmission in a special
way (specific to OFDM) that prevents Eve from guessing which
part was jammed. Hence, Alice and Bob share common knowl-
edge that is secret from Eve, and they use it to create a pairwise
secret [12]. iJam achieves a secret-generation rate up to 18 Kbps
(in a modified 802.11 environment).

Our proposal differs from the above protocols in the following
ways: First, we create group secrets, whereas the above protocols
are fundamentally tied to pairwise secrets. Second, we do not re-
quire (a) the existence of quick channel changes in the wireless en-
vironment, nor (b) that Eve has limited computational capabilities,
nor (c) custom physical-layer operations that are specific to OFDM
(or any other transmission scheme).

We build on the idea that a conservative estimate of the num-
ber of bits missed by Eve is sufficient for creating shared secrets
at Kbps rates, which we first expressed in an earlier workshop pa-
per [28]. We have improved on that work in two ways: First, that



work relied on artificial noise to create a secrecy-friendly environ-
ment; the problem with artificial noise is that (a) it requires trusted
infrastructure to generate it and (b) a powerful adversary may be
able to cancel at least some part of it. Instead, we are now using
beam-forming, performed by the terminals themselves. Second,
our earlier work assumed the existence of erasure channels between
the terminals and Eve, i.e., did not account for the fact that Eve may
extract useful information from partially received packets. Instead,
we are now using wiretap codes to enforce this condition.

7. CONCLUSIONS
We have presented a system that enables n wireless nodes to

agree on a group secret S in the presence of an eavesdropper Eve,
such that Eve obtains very little information on S. The novelty
of the system lies in the fact that it does not make any assump-
tions about Eve’s computational capabilities, but instead assumes
that she has limited network presence. Our system is not yet ready
for deployment (we have evaluated it only on one testbed, with one
adversary). However, it constitutes the first experimental evidence
that it is feasible for a group of wireless nodes to agree on thou-
sands of perfectly secret bits per second, without relying on the
adversary’s computational limitations.

8. APPENDIX

8.1 Background: Multi-layer Wiretap Codes
A wiretap code, first introduced by Wyner in [30], enables a Bob

who has a “better” channel than Eve, to receive securely informa-
tion from Alice at a rate that depends on how much better his re-
ception SNR is. More specifically, assume that the Alice-Bob and
Alice-Eve channels take the fixed values (hB , hE) = (h1, h2),

and thus Bob and Eve experience receive SNRs SNR1 = |h1|
2

N0

and SNR2 = |h2|
2

N0
, respectively, where assumed they experi-

ence the same thermal power N0. Then the two channels become
simple Gaussian channels of capacity CB = log2 (1 + SNR1)
and CE = log2 (1 + SNR2). Assume Bob has a “better” chan-
nel than Eve, that is, SNR1 > SNR2 and CB > CE . Alice
can use a wiretap code to securely transmit a message at any rate
0 < R < CB − CE so that Bob can decode the message with an
arbitrarily small probability of error while Eve is kept totally igno-
rant of the message. Hence, Bob receives the message essentially
“perfectly” while Eve knows nothing about it, it is erased for her.
The difference in the quality of the SNR1 and SNR2 channels,
determines the rate at which we can securely send information.

This is the simplest form of a wiretap code, that is designed
specifically for the values SNR1, SNR2, and achieves the maxi-
mum secure rate for these channels. If we do not know what these
values are, we can employ a layered wiretap code [19, 18] that
leverages the following observation. The wiretap code we designed
for the channels SNR1 and SNR2 will still yield perfect reception
for Bob and an erasure for Eve as long as SNRB > SNR1 and
SNRE < SNR2. It would not achieve the optimal rate possi-
ble, as it is designed to only exploit the SNR1 and SNR2 differ-
ence, but it would still guarantee erasures. Thus we can think of
the SNR1 and SNR2 as two thresholds we can impose, that en-
able us to get secrecy at a fixed rate whenever Bob has a channel
realization better than SNR1 and Eve worse than SNR2. Such a
code is determined by two design parameters: the values of SNR1

and SNR2.
To achieve rates that more closely follow the actual differences

in the channel realizations of Bob and Eve, we can use instead of

two, multiple layers [19, 18]. The more layers we use, we bet-
ter match the difference in the Bob-Eve realizations, but the more
complex the wiretap code becomes. Moreover, the more difficult
it also becomes to accurately estimate the distribution of the chan-
nel realizations of Eve. Other optimizations are possible to further
increase the secrecy rates, such as power allocation optimizations.

8.2 Linear Combinations

Main approach

Our algorithms construct the y-packets, the z-packets and the s-
packets as linear combinations of the x-packets. Namely, let X ,
Y , Z, S, be matrices that have as rows the x, y, z, and s-packets
respectively, then

Y = AyX, Z = AzY, S = AsY.

During the first phase, Eve observes some of the x-packets, i.e.,
she observes W = AEX , where the matrix AE specifies which
distinct x-packets are known to Eve. During the second phase we
assume that Eve observes all the z-packets, i.e., the matrix Z. In
this appendix we provide the constructions for the matrices Ay , Az

and As, and prove that they enable information theoretical security
as we described in Section 3.

To prove that our constructions are secure, we need to prove that

H(S|Z,W ) = H(S).

We achieve this in steps, by constructing y-packets, z-packets and
s-packets that have the following properties:

• The y-packets are constructed to be linearly independent from
Eve’s observations, and thus information-theoretically secure
from Eve. That is, our constructions achieve

H(Y |W ) = H(Y ). (1)

• The z-packets that enable reconciliation, are a function of the
y-packets. Thus, since the y-packets are linearly independent
from Eve’s observations, so are the z-packets, and we have

H(Z|W ) = H(Z). (2)

• We construct the s-packets to be linearly independent from
the z-packets, since Eve may overhear the z-packets during
the reconciliation. Thus, we construct the s-packets to satisfy

H(S|Z) = H(S). (3)

Note that since the s and z-packets are a function of the y-
packets, we also have

H(S,Z|W ) = H(S,Z). (4)

We then have

H(S|Z,W )

= H(S,Z|W )−H(Z|W )

(a)
= H(S,Z)−H(Z)

= H(S|Z)

(b)
= H(S)

(5)

where (a) is due to (2) and (4), and (b) is due to (3).



Construction of y-packets

Alice considers each subset of terminals J , identifies the NJ x-
packets that were received by all the terminals in the subset but no
other terminals, and creates MJ linear combinations y1, . . . , yMJ

of these packets as

Y = AyX,

where matrix X has as rows the NJ x-packets, matrix Y has
as rows the MJ y-packets and Ay is the generator matrix of a
Maximum Distance Separable (MDS) linear code with parameters
[NJ ,MJ , NJ −MJ +1] (e.g., a Reed-Solomon code [20]). Each
terminal Ti in the set J can also reconstruct these y packets. We
next prove in Lemma 1 that this construction ensures that the y-
packets are linearly independent, and Eve has no information about
any of them. Alice creates in this manner in total M =

⋃

J MJ

y-packets. Each terminal Ti creates Mi =
⋃

T〉∈J MJ y-packets.

LEMMA 1. Consider a set of N x-packets, say x1, . . . , xN ,

and assume Eve has a subset of size N −M of the x-packets. Con-

struct M y-packets, say y1, . . . , yM , as

Y = AX,

where matrix X has as rows the N x-packets, matrix Y has as rows

the M y-packets, and A is the generator matrix of a Maximum Dis-

tance Separable (MDS) linear code with parameters [N,M,N −
M + 1] (e.g., a Reed-Solomon code [20]). Then the M y-packets

are information-theoretically secure from Eve, irrespective of which

subset (of size N −M ) of the x-packets Eve has.

Proof: ⊲Let W be a matrix that has as rows the packets Eve
has. To prove that the y-packets are information-theoretically se-
cure from Eve, we must show that:

H(Y |W ) = H(Y ).

⊲ We can write
[

Y

W

]

=

[

A

AE

]

X
def
= BX,

where AE is a N −M ×N matrix of rank(AE) = N − M ,
which specifies the N − M distinct x-packets that are known to
Eve. AE is not known to us, however we know is that in each row
of AE there is only one 1 and the remaining elements are zero; so
all of the vectors in the row span of AE have Hamming weight (the
number of nonzero elements of a vector [20]) less than or equal
to N − M . On the other hand, from properties of MDS codes,
rank(A) = N −NE , and any set of M columns of the matrix Ay

are linearly independent [20]; thus the row span of A and AE are
disjoint (except for the zero vector) and the matrix B is full-rank,
i.e. rank (B) = N .
⊲ If the packets xi have length Λ, we have that:

H(Y |W ) = H(Y,W )−H(W ) =

= rank (B) Λ− rank(AE)Λ = MΛ

= rank(A)Λ = H(Y ). �

Construction of z-packets

Alice constructs the z-packets as linear combinations of the Y pack-
ets., i.e.,

Z = AzY,

so that: every terminal Ti 6=0 can combine M −Mi z-packets with
the Mi y-packets it already has and reconstruct all the M y-packets;
choosing the z-packets can be done using standard network-coding
techniques [11].

Construction of s-packets

Alice constructs the L s-packets using again a linear code, i.e,

S = AsY,

where As is constructed using any standard basis-extension method
so that

rank

([

As

Az

])

= M.

Lemma 2 shows that the s-packets are secure from Eve.

LEMMA 2. Consider a set of M y-packets, say y1, . . . , yM ,

and a set of M − L z-packets, say z1, . . . , zM−L, related as

Z = AzY,

where matrix Y has as rows the M y-packets, matrix Z has as

rows the M − L z-packets, and Az is a known M − L × M full

rank matrix. Assume that Eve knows all the z-packets. Using any

standard basis-extension method [14], find an L × M matrix As,

with rank (As) = L, such that

rank

([

As

Az

])

= M.

Then we can construct L s-packets, say s1, . . . , sL, as

S = AsY,

where matrix S has as rows the s-packets, and satisfy H(S|Z) =
H(S).

Proof: To prove that the s-packets are information-theoretically se-
cure from Eve, we need to show that H(S|Z) = H(S). Similarly
to the proof of Lemma 1, if the y-packets have length Λ, we have
that:

H(S|Z) = H(S,Z)−H(Z) = rank

([

As

Az

])

Λ−

− rank (Az) Λ = LΛ = rank (As) Λ = H(S). �

8.3 Coded Cooperative Data Exchange
Assume we have n nodes and a set of packets; each node has a

subset of the packets, and is interested in collecting the ones she
misses. We want to achieve this using the minimum total number
of transmissions from the nodes. We can solve this problem in
polynomial time; for completeness, we provide in the following an
Integer Linear Program (ILP).

We will use the following notation:

• L: a subset of the nodes; there exist 2n such subsets.

• Lc: set of all nodes not in L.

• Pc
i : set of all packets that node i does not have.

• Ki: total number of transmissions that source i makes.

min K1 +K2 + . . .+Kn

subject to
∑

i∈L

Ki ≥ |
⋂

i∈Lc

Pc
i |, ∀L,

Ki ∈ Z
+
.



9. REFERENCES
[1] DataSheet for the L-com HyperLink HG2418P Antenna.

http://www.l-com.com/multimedia/

datasheets/DS_HG2418P.PDF.

[2] Redbow Labs. http://vimeo.com/37679492.

[3] Rice University Wireless Open-Access Research Platform
(WARP). http://warp.rice.edu.

[4] Shoelace Wireless.
http://www.shoelacewireless.com/.

[5] Google Survey: The On-demand Video Consumer.
http://www.youtube.com/yt/advertise/

research.html, 2012.

[6] Y. Abdallah, L. A. Latif, M. Yousse, A. Sultan, and H. E.
Gamal. Keys through ARQ: Theory and Practice. IEEE

Transactions on Information Forensics and Security,
6(3):737–751, 2011.

[7] B. Azimi-Sadjadi, A. Kiayias, A. Mercado, and B. Yener.
Robust Key Generation from Signal Envelopes in Wireless
Networks. In Proceedings of the ACM Conference on

Computer and Communications Security (CCS), 2007.

[8] J. Croft, N. Patwari, and S. Kasera. Robust Uncorrelated Bit
Extraction Methodologies for Wireless Sensors. In
Proceedings of the ACM/IEEE International Conference on

Information Processing in Sensor Networks (IPSN), 2010.

[9] I. Csiszar and P. Narayan. Secrecy Capacities for
Multiterminal Channels. IEEE Transactions on Information

Theory, 54(6):2437–2452, 2008.

[10] W. Diffie and M. E. Hellman. New Directions in
Cryptography. IEEE Transactions on Information Theory,
22(6):644–654, 1976.

[11] C. Fragouli and E. Soljanin. Network Coding Fundamentals.
Foundations and Trends in Networking, 2007.

[12] S. Gollakota and D. Katabi. Physical Layer Wireless Security
Made Fast and Channel Independent. In Proceedings of the

IEEE INFOCOM Conference, 2011.

[13] J. Hershey, A. Hassan, and R. Yarlagadda. Unconventional
Cryptographic Keying Variable Management. IEEE

Transactions on Communications, 43(1):3–6, 1995.

[14] Horn and Johnson. Matrix Analysis. Cambridge press, 1985.

[15] S. Jana, S. N. Premnath, M. Clark, S. Kasera, N. Patwari, and
S. Krishnamurthy. On the Effectiveness of Secret Key
Extraction from Wireless Signal Strength in Real
Environments. In Proceedings of the ACM MOBICOM

Conference, 2009.

[16] B. Kanukurthi and L. Reyzin. Key Agreement from Close
Secrets over Unsecured Channels. In Proceedings of the

International Conference on the Theory and Application of

Cryptographic Techniques (EUROCRYPT), 2009.

[17] H. Koorapaty, A. Hassan, and S. Chennakeshu. Secure
Information Transmission for Mobile Radio. IEEE

Communications Letters, 4:52–55, 2000.

[18] Y. Liang, L. Lai, H. Poor, and S. Shamai. A Broadcast
Approach for Fading Wiretap Channels. Submitted to IEEE
Transactions on Information Theory.

[19] Y. Liang, L. Lai, H. Poor, and S. Shamai. The Broadcast
Approach over Fading Gaussian Wiretap Channels. In
Proceedings of the IEEE International Symposium on

Information Theory (ISIT), 2009.

[20] F. J. Macwilliams and N. J. A. Sloane. The Theory of Error
Correcting Codes. North-Holland, 2006.

[21] U. Maurer. Secret-Key Agreement by Public Discussion
from Common Information. IEEE Transactions on

Information Theory, 39:733–742, 1993.

[22] U. Maurer. Information-Theoretically Secure Secret-Key
Agreement by NOT Authenticated Public Discussion. In
Proceedings of the International Conference on the Theory

and Application of Cryptographic Techniques

(EUROCRYPT), 1997.

[23] U. Maurer and S. Wolf. Privacy Amplification Secure
Against Active Adversaries. In Proceedings of the

International Conference on Cryptology (CRYPTO), 1997.

[24] U. Maurer and S. Wolf. Secret Key Agreement over
Unauthenticated Public Channels Part III: Privacy
Amplification. IEEE Transactions on Information Theory,
49(4):839–851, 2003.

[25] R. Renner and S. Wolf. Unconditional Authenticity and
Privacy from an Arbitrarily Weak Secret. In Proceedings of

the International Conference on Cryptology (CRYPTO),
2003.

[26] R. Renner and S. Wolf. The Exact Price for Unconditionally
Secure Asymmetric Cryptography. In Proceedings of the

International Conference on the Theory and Application of

Cryptographic Techniques (EUROCRYPT), 2004.

[27] R. L. Rivest, A. Shamir, and L. Adleman. A Method for
Obtaining Digital Signatures and Public-key Cryptosystems.
Communications of the ACM, 21(2):120–126, 1978.

[28] I. Safaka, C. Fragouli, K. Argyraki, and S. Diggavi. Creating
Shared Secrets Out of Thin Air. In Proceedings of the ACM

Workshop on Hot Topics in Networks (HotNets), 2012.

[29] S. Wolf. Strong Security Against Active Attacks in
Information-Theoretic Secret-Key Agreement. In
Proceedings of the International Conference on the Theory

and Application of Cryptology and Information Security

(ASIACRYPT), 1998.

[30] A. D. Wyner. The Wire-tap Channel. Bell System Technical

Journal, 54(8):1355–1387, 1975.

[31] S. Xiao, W. Gong, and D. Towsley. Secure Wireless
Communication with Dynamic Secrets. In Proceedings of the

IEEE INFOCOM Conference, 2010.

[32] C. Ye, S. Mathur, A. Reznik, Y. Shah, W. Trappe, and
N. Mandayam. Information-Theoretically Secret Key
Generation for Fading Wireless Channels. IEEE Transactions

on Information Forensics and Security, 5:240–254, 2010.


