Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Sequences with Minimal Time-Frequency Uncertainty
 
research article

Sequences with Minimal Time-Frequency Uncertainty

Parhizkar, Reza  
•
Barbotin, Yann  
•
Vetterli, Martin  
2015
Applied and Computational Harmonic Analysis

A central problem in signal processing and communications is to design signals that are compact both in time and frequency. Heisenberg's uncertainty principle states that a given function cannot be arbitrarily compact both in time and frequency, defining an “uncertainty” lower bound. Taking the variance as a measure of localization in time and frequency, Gaussian functions reach this bound for continuous-time signals. For sequences, however, this is not true; it is known that Heisenberg's bound is generally unachievable. For a chosen frequency variance, we formulate the search for “maximally compact sequences” as an exactly and efficiently solved convex optimization problem, thus providing a sharp uncertainty principle for sequences. Interestingly, the optimization formulation also reveals that maximally compact sequences are derived from Mathieu's harmonic cosine function of order zero. We further provide rational asymptotic expansions of this sharp uncertainty bound. We use the derived bounds as a benchmark to compare the compactness of well-known window functions with that of the optimal Mathieu's functions.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Sequences with minimal time-frequency uncertainty.pdf

Type

Publisher's Version

Version

Access type

openaccess

Size

797.08 KB

Format

Adobe PDF

Checksum (MD5)

b3eb8ba6d95e7ff1f6eb2a376bafbf7f

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés