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Abstract—In conventional group testing, the goal is to detect
a small subset of defecting items D in a large population N by
grouping arbitrary subset of N into different pools. The result of
each group test T is a binary output depending on whether the
group contains a defective item or not. The main challenge is to
minimize the number of pools required to identify the set D.

Motivated by applications in network monitoring and infection
propagation, we consider the problem of group testing with graph
constraints. As opposed to conventional group testing where any
subset of items can be pooled, here a test is admissible if it induces
a connected subgraph H ⊂ G. In contrast to the non-adaptive
pooling process used in previous work, we first show that by
exploiting an adaptive strategy, one can dramatically reduce the
number of tests. More specifically, for any graph G, we devise
a 2-approximation algorithm (and hence order optimal) that
locates the set of defective items D. To obtain a good compromise
between adaptive and non-adaptive strategies, we then devise a
multi-stage algorithm. In particular, we show that if the set of
defective items are uniformly distributed, then an l-stage pooling
strategy can identify the defective set in O(l ·|D|·|N |1/l) tests, on
the average. In particular, for l = log(|N |) stages, the number of
tests reduces to 4|D| log(|N |), which in turn is order optimum.

I. INTRODUCTION

The aim of group testing is to identify a subset of defective
items D (with size at most d) out of a much larger set of items
N (with size n). The problem is particularly interesting in sce-
narios where multiple items in a group can be simultaneously
tested. As a result, instead of testing each item individually,
we can hope that by pooling a subset of items together and
test them collectively, we can reduce the number of tests1. In
such scenarios then the fundamental challenge is to identify
the set D by means of the fewest possible number of tests (or
queries) in the following form:

“Does the test T , where T is a subset of N , contains at
least one defective item?”

The problem was originally considered during World War
II for syphilis screening [1]. It has also found numerous
application in a variety of situations such as DNA library
screening [2], [3], [4], [5], [6], product testing and quality
assurance [7], pattern matching [8], streaming algorithms [9].
We refer the interested reader to [10] for more details on the
major developments in this area.

1It is customary in the group testing literature to think of d as a parameter
that is noticeably smaller than n, i.e., d = o(n). Indeed, if d becomes
comparable to n, there would be little point in using a group testing scheme
and trivial tests on the individuals are more favorable.
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Fig. 1. The pools T1 = {1, 2, 8} and T2 = {6, 7, 8} are admissible. On
the other hand, the test T3 = {3, 4, 6} is not admissible, since its induced
graph is not connected.

A group testing problem can be either combinatorial or
probabilistic. In combinatorial group testing the subset of de-
fective items D, can be any element of a predetermined family
of subsets of N . The task is thus to devise an algorithm which
requires the minimal number of tests to identify D in the worst
case. In the probabilistic setting, a probability distribution µ
on the subset of defective items is given where the goal is to
minimize the expected number of tests (with respect to µ) to
identify D. For both combinatorial and probabilistic scenarios
there is an additional classification according to the number
of stages, i.e., the pool design can be composed of one or
more stages of parallel queries. In one-stage or non adaptive
algorithms all tests are specified in advance: the choice of the
pools does not depend on the outcome of the tests. The other
extreme case is adaptive algorithms: tests are performed one
at a time and the results from previous tests are allowed to
be used to guide future tests. While non-adaptive algorithms
are easier to implement, the number of tests required by them
can be potentially much larger than adaptive ones. A good
compromise between adaptive and non-adaptive algorithms
is the multi-stage algorithms where at each stage a set of
predetermined pools is designed and their outcomes is used for
the subsequent stage (see for example [11]). In this paper we
consider a generalization of the group testing problem where
the test should conform to the restrictions imposed by a graph.
More precisely, the set N is furnished with an undirected
graph G(V,E). A test T ⊂ N is admissible if and only if
the subgraph induced by T (i.e., containing all edges of G
between vertices in T ) is connected (see Figure 1). Like in
standard group testing, the main task is to identify the set of



defective items with the fewest possible number of tests in the
following form:

“Does the admissible test T , where T induces a connected
subgraph of G, contains at least one defective item?”

Inspired by applications in network tomography [12], the
non-adaptive graph-constrained group testing was first intro-
duced in [13] and was further investigated in [14]. A few recent
works also consider graph constraints in compressed sensing
[15], optical networks [16], sensor failure detection [17] and
interactive search [18].

Our aim in this paper is to provide provably efficient
algorithms for graph-constrained group testing. To this end,
we first look at adaptive or sequential algorithms and provide
constructions based on which any subset of defective items
can be identified. To close the gap between adaptive and non-
adaptive algorithms, we then look at multi-stage strategies.
Unfortunately, one can provide simple examples (by carefully
choosing the set of defective items on the graph) in which there
is a huge gap between adaptive and multi-stage algorithms.
However, if the set of defective items are chosen uniformly
at random (and not adversarially), then we can again provide
an order-optimal algorithm. In brief, our contributions are as
follows:
• For any constraint graph G, we derive a lower bound on

the number of admissible tests needed to identify the set
of defective items.

• We devise an adaptive algorithm that can find the set
of defective items efficiently. We also show that our
algorithm test at most twice as often as the optimum
algorithm, in the worst case.

• Finally, for the uniformly distributed set of defective
items, we provide a multi-stage algorithm whose expected
number of tests is order optimum.

The remainder of this paper is organized as follows. We
briefly review the related work in Section II. In Section III we
introduce the notation and our corresponding model. We then
describe our main results in Section IV.

II. RELATED WORK

Any non-adaptive group testing problem can be reduced
to constructing a 0 − 1 test matrix M , where each row
corresponds to a group test. The design of such a matrix
has been extensively studied in literature (see for example,
[19], [20], [21], [22], [23]). In particular, the best known non-
adaptive design requires a test matrix whose number of rows
scale as O(d2 log n) [19] which almost matches the lower
bound Ω(d2 log n/ log d) [24]. The closest works to ours are
[13], [14] where authors consider non-adaptive group testing
under graph constraints. While the main contribution of [13]
is for the case of only one defective item (d = 1), the authors
in [14] could generalize their approach for d ≥ 1. Under
the assumption that the constraint graph G is richly con-
nected and has the mixing time T (n), they showed that with
O(d2T 2(n) log(n/d)) non-adaptive tests, one could identify
the defective set D. In contrast to [14], we aim to devise an

efficient strategy that works under any constraint graph G. To
this end, we consider adaptive algorithms.

Since in group testing, each test returns one of the two
values (either the subset contains no defectives or it contains
at least one defective ) a simple information theoretic lower
bound on the number of tests scales as log

(
n
d

)
≈ d log(n/d).

Hwang’s adaptive algorithm [25] exceeds the above informa-
tion theoretic lower bound by at most d, a result that was
further improved in [26], [27]. In particular, authors in [27]
provide a 1.5-approximation algorithm. Our approach in this
work is similar to [27] where we provide a 2-approximation
algorithm when the tests should conform to the constraints
imposed by a graph.

Multi-stage algorithms are at the mid-point between adap-
tive and non-adaptive algorithms. Much of the existing work
in the literature focuses on the probabilistic settings and two
stage scenarios (e.g., [28], [29]). In this regard, our work can
be seen as an extension to [28], [29] where we consider multi-
stage strategies with graph constraints.

III. SETTING AND NOTATION

Consider a set of items N with size n which are enumerated
from 1 to n. Among this set of objects we assume that at most
d of them are defective. Let D denote the set of defective
items. In our problem, the set N is furnished with a given
graph G = (V,E) where V is the set of nodes (and in our
case V = N ) and E is the set of edges. An admissible
group test T corresponds to a walk (a sequence of adjacent
edges, allowing repetitions) on the corresponding graph (see
Figure 1). The goal is to identify the set D with minimum
number of admissible group tests, where each test determines
whether the set of vertices observed along the walk has an
intersection with the defective set or not. Throughout this
paper we denote by G|T a subgraph of G induced by the
subset T ⊂ N .

To have a concrete example in mind, we can mention the
network monitoring application where the network can be
modeled as a graph G. The sets V and E correspond to the
routers/hosts and communication links, respectively. Among
the routers and hosts, we assume that only a few of them are
defective , i.e., drop the received packets. An admissible test
is simply performed by sending packets through the network
for which the path (routers and end hosts) are predetermined.
A central server collects all the results - whether each packet
has reached its destination or not - and based on them tries to
identify the subset of defective routers/hosts.

IV. MAIN RESULTS

In this section, we first derive a lower bound and then
describe our adaptive and multi-stage algorithms. To this end,
we need the following definition.

Definition IV.1. For any graph G, and an integer l ≥ 0,
we define CC(G, l) to be the maximum number of connected
components of graph G \ S where S could be any subset of
vertices with size at most l.



Algorithm 1 AdaptiveFinder: Finds all targets in a subgraph
H .
Input: Connected sub-graph H ⊂ G.
v ← SingleFinder(H)
Return v as one of the defectives and remove it from H .
Test which one of the connected components of H \ {v}
contains a defective item.
Recurse on the ones that contain a defective item.

Equipped with this definition, we can state our lower bound.

Lemma IV.2. The number of admissible tests required by any
strategy to identify the set of d defective items on a graph G
is lower bounded by max{CC(G, d− 1)− 1, d log(n/d)}.

Proof: Suppose CC(G, d−1) is realized by a subset S ⊂
V with |S| ≤ d−1, i.e. removing S leaves G with CC(G, d−
1) connected components. Note that any strategy, including the
optimum strategy, should identify the set of defectives D no
matter where they are located on the graph. In particular, the
optimum strategy has to identify D when all nodes of S are
defective and this side information is given. In this case, the
optimum strategy gains no information by testing a pool that
has a node in S (the result is positive anyway). Hence, the
optimum strategy tests only connected subgraphs that have no
intersection with S. Since G \S has CC(G, d− 1) connected
components, the optimum algorithm, therefore, makes at least
CC(G, d− 1)− 1 tests. Otherwise, there will be at least two
connected components T1 and T2 of G\S with which none of
the tests of the optimum strategy intersects. As a result, even
the optimum strategy cannot distinguish between the defective
and non-defective elements of T1 ∪T2 (Note that in the worst
case, it is always possible to have some, and not all, of the
nodes in T1 ∪ T2 defective). The second term in the lower
bound is simply the information theoretic lower bound stated
earlier.

A. Adaptive Algorithm

Our adaptive algorithm, named AdaptiveFinder, is shown
in Algorithm 1. Its task is to identify all of the defective
items in a connected subgraph H ⊂ G. To do so, it uses
Algorithm 2, named SingleFinder, as a subroutine. The task
of Algorithm 2 is to identify a single defective item of H . Once
this single item is identified, it is removed from H , which then
decomposes H \ {v} into (potentially) a number of connected
components. Algorithm 1 tests which one contains a defective
item and finds them by recursively calling Algorithm 2. To
start, we call Algorithm 1 with G as its input.

Note that there are two types of admissible group tests made
by our adaptive algorithm:

1) test made on the connected components of H \ {v} in
Algorithm 1.

2) test made on the subtrees of H in Algorithm 2.
The following lemmas bound the total number of tests made

for each type.

Algorithm 2 SingleFinder: Finds a target in a subgraph H .
Input: Connected sub-graph H ⊂ G.

Grow a connected subtree T ⊂ G until T spans dn/2e
vertices.
Test the connected subtree T (size dn/2e).
if T contains a defective item then

Recurse on the subgraph of G induced by T .
else

Collape all nodes in T into a single node vT , which is
connected to all v ∈ N adjacent to nodes in T in the
original G. Create G′ by Connecting all neighbours of
vT to one another and removing vT . Recurse on G′.

end if

Lemma IV.3. The total number of tests made on the connected
components in Algorithm 1 is at most CC(G, d− 1) + d.

Proof: The progress of Algorithm 1 can be shown by a
tree T1 in the following way. The nodes of the tree are simply
the connected components of G tested by Algorithm 1 during
its process. More precisely, for each connected component
H ⊂ G, Algorithm 1 first finds a defective item v ∈ H ,
removing of which decomposes H into a number of connected
components. Each of these connected components can be
shown as a child of a subtree rooted at H . Algorithm 1
tests all the connected components (i.e., all the children) and
only recurses on those components that contain a defective
item/node. Hence, the total number of tests made on the
connected components in Algorithm 1 equals the total number
of nodes of T1. Therefore, we just need to bound the total
number of nodes of T1, i.e., the total number of leaves
plus internal nodes. Note that after finding the d-th defective
item, Algorithm 1 terminates. Hence, Algorithm 1 tests the
connected components for the first d − 1 defective items.
Therefore, the leaves of T1 are the connected components
of graph G after removing at most d − 1 defective nodes.
This implies that the total number of leaves of T1 is at
most CC(G, d − 1). On the other hand, the total number of
internal (non-leaf) nodes of T1 cannot be more than d. This
is due to the fact that each internal node is associated with a
distinct defective item whose removal results the children of
this internal node.

Lemma IV.4. The total number of tests made in Algorithm 2
does not exceed d log(n).

Proof: Each test made by Algorithm 2 halves the number
of remaining items. Hence in log n tests a defective item is
identified. Since there are no more than d defective items,
the total number of tests performed by Algorithm 2 is upper
bounded by d log(n).

The following lemma provides the approximation factor of
our adaptive algorithm.

Lemma IV.5. For any constant ε > 0, there exists some n0
such that the total number of tests performed by Algorithm 1
is at most 2 + ε times the optimum number of tests needed to
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Fig. 2. A star-shape graph with two defective items.
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Fig. 3. A line graph with two defective items.

identify defective nodes in a graph with n > n0 nodes.

Proof: Using Lemmas IV.4 and IV.3, we have that the
total number of tests in our algorithm is at most d(log(n) +
1) + CC(G, d − 1). On the other hand, by Lemma IV.2, we
know that any algorithm has to make at least max{CC(G, d−
1) − 1, d log(n/d)} tests. Hence, the approximation factor of
our algorithm is at most d(log(n)+1)+CC(G,d−1)

max{CC(G,d−1)−1,d log(n/d)} . Since
we are working in the regime that n� d, this ratio approaches
2 from above as n goes to ∞. In the other words, for every
ε > 0, this ratio is at most 2 + ε for large enough values of n.

In Figure 2 a simple example is shown. Observe that any
connected component with at least two vertices contains the
defective node n. After removing this node, the resulting
graph decomposes into n− 1 components. To find the second
defective node, any algorithm has to test n− 1 nodes, in the
worst case. Hence, even in this simple case (and at the same
time extreme case), the optimum algorithm has to perform
Θ(n) number of admissible tests in the worst-case. On the
other hand, for a line graph shown in Figure 3 the number of
tests perform by our adaptive algorithm is O(log(n)). It was
shown by [13] that any non-adaptive algorithm requires O(n)
tests to identify even a single defective node.

The vast difference between the performance of an adaptive
and non-adaptive algorithm in Figure 3 is due to the fact
that the set of defective items can be chosen arbitrarily. If,
on the other hand, the set of defectives is chosen randomly,
this difference diminishes and we can devise an order optimum
algorithm at least for the multi-stage scenario. This is the topic
of next section.

B. Multi-Stage Algorithm

In this section, we address the performance of multi-stage
algorithms when the set of defectives is chosen uniformly at

Algorithm 3 PathFinder: a multi-stage algorithm to find all
targets in a path
Input:A subpath Pi,j

if i = j then
Return vi as a target.

else
Divide subpath Pi,j into n1/l (almost) equal subpaths,
and test each of them.
Recurse on any subpath that contains some defective
node.

end if

random. Formally, there are Σd
i=0

(
n
i

)
possibilities for the set of

at most d defective nodes, and the probability that the defective
items form a specific set D (where |D| ≤ d) is 1/(Σd

i=0

(
n
i

)
).

Our approach is to reduce the multi-stage scenario in the
average case to the problem of identifying defective nodes on
a line graph (defined below) in the worst case. To start we
need the following definition.

Definition IV.6. The line graph, Pn, consists of n vertices
v1, v2, · · · , vn such that vi is connected to vi+1 for each 1 ≤
i ≤ n − 1. Subpath Pi,j denotes the connected subgraph of
Pn consisting of vertices vi, vi+1, · · · , vj for 1 ≤ i ≤ j ≤ n.

For any 1 ≤ l ≤ log(n), Algorithm 3 presents an l-stage
algorithm that finds up to d defective nodes on a line graph Pn.
Using our reduction, we solve the problem for any connected
graph in the uniformly distributed setting with the same bound
on the number of tests. Algorithm 3 is a simple divide-and-
conquer algorithm that receives as an input a subpath Pi,j , and
divides it into n1/l subpaths of length b(j − i + 1)/n1/lc or
d(j− i+ 1)/n1/le. By testing each of them, Algorithm 3 only
recurses on the ones that contain a defective node.

Lemma IV.7. For a line graph Pn with at most d defective
nodes, the number of stages and the number of admissible
tests required by Algorithm 3 are at most l and d · l · n1/l,
respectively.

Proof: At the first stage, Algorithm 3 receives the line
graph Pn and divides it into n1/l disjunct subpaths. Then, each
of the subpathes are tested and only the defective ones (i.e.,
the ones containing a defective item) will be probed for the
next stage. Since there are at most d defective items/nodes, at
most d subpaths will be defective. The same process is applied
to each defective subpath, i.e., they will be divided into n1/l

equal parts. Hence, Algorithm 3 makes at most d · n1/l tests
in each stage, n1/l for each defective path. On the other hand,
since each defective path is divided into n1/l equal parts in
each stage, there cannot be more than l stages. In total, the
number of tests is bounded by l · d · n1/l.

We are ready to use Algorithm 3 to solve our problem
when the defective items are uniformly distributed. We need
to define some notions before presenting the reduction.

Definition IV.8. A trail in a graph is a sequence of vertices



such that each two consecutive vertices are connected via a
single edge (i.e.,a walk in which all the edges are distinct). A
trail is closed when its start and end vertices are the same. An
Eulerian trail contains each edge of the graph exactly once.
A graph is Eulerian if it contains an Eulerian trail. A graph
contains a closed Eulerian trail if it is connected and all of its
vertices have even degree. The degree of vertex v in a graph
H is denoted by dH(v).

Let T be a spanning tree of graph G. We duplicate each
edge of T to obtain a closed Eulerian graph T 2. We then
convert this closed Eulerian trail to an open Eulerian trail
W = v1, v2, · · · , v2n−2 by removing one of its edges arbitrar-
ily. Note that W has 2n−3 edges. Each vertex v ∈ G appears
in trail W at least once, and at most dT (v) times. We treat
multiple appearances of the same vertex in W as different
vertices. This way W can be seen as a line graph P2n−2.
Thus, one can run Algorithm 3 on W . Since every node of
the original graph G appears at least once in W , each defective
node will be identified at least once. The performance of this
multi-stage algorithm is given in the following lemma.

Lemma IV.9. The number of stages and expected number of
tests of Algorithm 3 applied on W is at most l and 2d · l ·
(2n)1/l, respectively.

Proof: Using Lemma IV.7, we know that the number of
stages is at most l, and it remains the same in our reduction.
We also know that the number of tests is at most the number
of defective items times l · (2n− 2)1/l. Although the number
of defective items in graph G is at most d, this number can
be potentially higher in W due to multiple appearances of
nodes. Nevertheless, we can bound the expected number of
appearances of defective items in W as follows. The number
of appearances of each node in W is at most its degree in the
spanning tree T . Hence, the expected number of appearances
of defective items in W is at most Σv∈T dT (v) Pr[v ∈ D]. The
set of defective nodes D is also chosen uniformly at random
(among all sets of at most d nodes in the graph), so each
node is defective with probability at most d/n. As a result,
the expected number of defective nodes’ appearances in W is
at most (d/n)Σv∈T dT (v) = (d/n)(2n − 2) < 2d. Therefore,
the expected number of tests is at most 2d · l · (2n− 2)1/l.

Note that the number of tests matches (up to a constant) the
information theoretic lower bound for l = log(n) stages.

V. CONCLUSION

In this paper, we considered the problem of group testing
with graph constraints. We devised efficient algorithms for
adaptive and multi-stage settings. An interesting future direc-
tion is to address general kinds of noise for this line of work.
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