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Abstract

Local Binary Descriptors (LBDs) are good at match-
ing image parts, but how much information is actu-
ally carried? Surprisingly, this question is usually ig-
nored and replaced by a comparison of matching per-
formances. In this paper, we directly address it by try-
ing to reconstruct plausible images from different LBDs
such as BRIEF [4] and FREAK [1]. Using an inverse
problem framework, we show that this task is achievable
with only the information in the descriptors, excluding
the need of additional data. Hence, our results repre-
sent a novel justification for the performance of LBDs.
Furthermore, since plausible images can be inferred us-
ing only these simple measurements, this emphasizes
the concerns about privacy and secrecy of image key-
points raised by [12], that could have an important im-
pact on public applications of image matching.

1. Introduction and background

What is a good keypoint ? This question is central for
many image-based Pattern Recognition and Computer
Vision algorithms, that rely on detecting and matching
interest points. The answer is commonly split into two
independent qualities: good detection and good descrip-
tion. The detection quality is usually assessed following
the work of Mikolajczyk and Schmid [9] by measuring
the stability (under geometric changes) and the accu-
racy (with respect to a pose estimation task) of the de-
tector. On the other hand, descriptors are judged from
their performance in retrieval challenges [11], implicitly
evaluating their descriptive and discriminative power.

We propose instead to explore an explicit approach
to measure the amount of local content captured by
a descriptor by attempting to reconstruct the original
geometry. We focus on the increasingly popular Lo-
cal Binary Descriptors (LBDs), mainly through two in-
stances: the Binary Robust Independent Elementary
Features (BRIEF) [4] and the Fast Retina Keypoint

(FREAK) [1].
LBDs encode the values of pixel-wise or patch-wise

differences in the region of interest, providing a spa-
tialized information. Note that it is still possible to ad-
dress the reconstruction task from descriptors based on
integral measures, such as SIFT [8] and SURF [3], as
shown by [12], but it requires some additional informa-
tion such as an a priori database of patches indexed by
their descriptors [12]. In contrast, our goal is to see how
far one can go without any external information.

1.1. Local Binary Descriptors

Given an image patch p, forming an LBD of size d
involves two steps: computation of a feature vector
L(p) ∈ Rd followed by its binarization in {0, 1}d.

Each component of L(p) is computed by:

L(p)i = 〈Gxi,σi
, p〉 − 〈Gx′

i,σ
′
i
, p〉, (1)

where Gx,σ denotes a Gaussian of width σ centered in
x, and 〈·, ·〉 is the usual scalar product (see Fig. 1). The
quantization step is a simple thresholding: Q(p)i = 1 if
L(p)i is strictly positive, and 0 otherwise.

Figure 1. Computation of L(p) in the case
d = 2. The Gaussian mean of each red
area is subtracted from the mean of the
corresponding green area.

Typically, a 32-by-32 pixels image patch (1024 val-
ues) is reduced to d = 512 differences, i.e. only 64 bytes
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after quantization. Hence, LBDs are very compact. Fur-
thermore, they are computationally very efficient: only
difference and thresholding operations are involved, and
matching scores are computed by fast XOR operations
to form Hamming distances. Added to their state-of-
the-art results in recognition tasks [1], these qualities
make them suitable for mobile applications where hard-
ware resources are a limiting factor.

1.2. The BRIEF and FREAK descriptors

LBDs differ by the way they pick up the measure-
ment Gxi,σi

. The pioneering BRIEF uses randomly se-
lected positions xi with a fixed (small) radius σi. On the
other hand, FREAK relies on a retinal sampling pattern
with increasing radii where the most relevant Gaussians
are kept according to a greedy selection process. As a
consequence, outer points have a low spatial resolution,
while the center of a patch is finely described.

2. Reconstruction as an inverse problem

In the sequel, we focus on the reconstruction from
the non-quantized vector L(p). Although there is no
convergence guarantee, our experiments in Sec. 3 show
that the proposed algorithm can also deal with binarized
descriptors Q(p).

2.1. Inverse problem for a single patch

Stacking all its values in column, we identify the
patch p with the corresponding vector of Rn2

. The
averaging-then-differentiating process of Eq. (1) can
then be expressed as a row-column product. Consid-
ering all the d components of L(p) together, their com-
putation can be expressed as a matrix-vector product:

L(p) = ALp, (2)

where AL is a sparse matrix with d rows and n2

columns whose non-zero coefficients correspond to the
colored pixels in Fig. 1.

The reconstruction problem of a patch from its de-
scription is obviously ill-posed, since d � n2. Classi-
cally, we tackle this difficulty by using additional con-
straints: the resulting patch p̂ should have a small Total
Variation (TV) and belong to an acceptable set S that
will be made precise later.

Given a descriptor g = L(p), the reconstruction pro-
cess can now be cast as a regularized inverse problem:

p̂ = argmin
p

λ‖ALp− g‖1︸ ︷︷ ︸
data term

+ ‖p‖TV + δS(p)︸ ︷︷ ︸
regularization

, (3)

where ‖ · ‖TV =
√
‖∇p‖22 is the TV semi-norm, and

δS(·) is the indicator function of S defined by:

δS(p) =

{
0 if p ∈ S
+∞ otherwise.

(4)

Eq. (3) states that an estimated patch p̂ should have
a descriptor close to the observation g (in the `1 sense),
while being piecewise smooth and belonging to S. We
have chosen the `1-norm in the data term for its robust-
ness against actual matching error values, which makes
it a good candidate to address the task of reconstruction
from binarized measurements.

Since only differences are stored, the output of LBDs
is 0 for any constant input. Hence, patches can be re-
constructed only up to a constant. Assuming pixel val-
ues in the interval [0, 1], we arbitrarily fix the mean
value of the patches to 0.5 and define S by:

S = {p ∈ Rn
2

s.t. p̄ = 0.5 and ‖p‖∞ 6 1}, (5)

where p̄ is a shortcut for the mean (p̄ = 1
n2

∑n2

i=1 pi).

2.2. Primal-dual optimization background

To solve Eq. (3), we use the primal-dual algorithm
introduced in [6] and recall here the main results for
completeness.

We consider a generic primal problem of the form:

x̂ = argmin
x

F (Kx) +G(x), (6)

where K is a linear operator, and F and G convex
(non-smooth) functions. Introducing F ∗, the Fenchel-
Legendre transform of F , Eq. (6) can be recast as a
primal-dual problem on F ∗, G, x and its dual variable
y. Let us also define the proximal mapping proxσ[F ] of
a function F with:

proxσ[F ](x) = argmin
z

F (z) +
‖x− z‖22

2σ
. (7)

Then, given an upper bound L on the norm of K
and the expressions of proxσ[F ∗] and proxτ [G], Alg. 1
provides the solution of Eq. (6) (see [6] for a proof):

Algorithm 1 Basic Chambolle-Pock algorithm.
1: TakeL > ‖K‖2, choose τ, σ, θ such thatL2στ 6 1

and θ ∈ [0, 1]
2: Initialize: x0 ← 0, y0 ← 0, x̄0 ← x0
3: for i = 0 to n− 1 do
4: yi+1 ← proxσ[F ∗](yi + σKx̄i)
5: xi+1 ← proxτ [G](xi − τKT yi+1)
6: x̄i+1 ← xi+1 + θ(xi+1 − xi)
7: end for
8: return xn

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 21st International Conference on Pattern Recognition.
Received March 22, 2012.



While it may seem inefficient to solve both primal
and dual problems, this becomes interesting when the
constraints on x can be computed through simple prox-
imal mappings on either the primal or dual variable. For
example, TV can be minimized through a robust point-
wise thresholding of the dual [5, 6].

2.3. Patch reconstruction algorithm

From Eq. (2), it is clear that AL is a linear operator.

Then, choosing K =

(
AL
∇

)
, y = ALp and z = ∇p

transforms Eq. (3) to the desired form of Eq. (6) with:

F (Kp) = F1(y) + F2(z)

= λ‖y − g‖1 + ‖z‖1, (8)
G(p) = δS(p). (9)

Dualizing with respect to F , we introduce the dual
variables q and r of y and z respectively. The corre-
sponding conjugate functions F ∗1 (q) and F ∗2 (r) are:

F ∗1 (q) = δBox(λ)(q) + 〈q, g〉G, (10)
F ∗2 (r) = δBox(1)(|r|), (11)

where δBox(λ) is the `∞-ball of radius λ:

δBox(λ)(x) =

{
0 if ‖x‖∞ 6 λ

∞ otherwise.
(12)

Using ∇T = −div, it is straightforward to see that
KT ( q r ) = ATLq − div r in line 5 of Alg. 1.

Finally, one needs the different proximal mappings.
Since G is an indicator function, proxτ [G] is obtained
by projection onto S, which is a hyperplane of equation
(1/n2)

∑n2

i=1 pi = 0.5, and the components of the re-
sult are clipped to [0, 1]. The proximal mappings of F ?1
and F ∗2 can be obtained through variational calculus:

proxσ[F ?1 ](q) = sign(q − σg) ·max(λ, |q − σg|),

(13)

proxσ[F ?2 ](r) =
r

max(1, |r|)
, (14)

where all operations are taken component-wise and
pixel-wise.

3. Results and discussion

3.1. Implementation

LBDs are indeed local descriptors. Hence, to re-
construct images, we first work on a subset of patches.

Then, we merge the reconstructed patches by averaging
on their overlap to form the final image.

To check the consistency of the reconstruction qual-
ity with retrieval performances, we have tested three
different operators: BRIEF [4], FREAK [1], and a ran-
domized selection of the pairs used for the training of
FREAK. All the operators were reimplemented in C++
using the same codebase for a fair comparison. Algo-
rithmic parameters were kept identical.

Figure 2. Reconstruction from floating-
point descriptors L(p) of 512 pairs.
From top to bottom: BRIEF, randomized
FREAK, FREAK.

3.2. Reconstruction results

Fig. 2 shows some examples of reconstructing differ-
ent classical images, for various patch sizes and overlap.
In these images, one can clearly recognize the depicted
objects. It is remarkable that the reconstruction results
almost look like Laplacian filtered versions of the im-
ages, emphasizing the edges.

The hierarchy of the patterns is respected: the opti-
mized FREAK behaves better than the randomized ver-
sion, and better than BRIEF. This ranking is empha-
sized when the patch size grows: barbara was re-
constructed using 32-by-32 patches, and cameraman
using 64-by-64 patches.

Fig. 3 shows some preliminary results obtained by
applying the proposed algorithm on binarized FREAK
descriptorsQ(p). No modification is made to the imple-
mentation. In particular, the operator used in the recon-
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struction process does not include the binarization step
and remains linear. Yet, these first results are clearly
promising.

Figure 3. Preliminary results from bina-
rized descriptors. Left: using floating-
point FREAK. Right: binarized FREAK.

Finally, Fig. 4 shows the result of reconstructing only
patches that were selected by the FAST detector [10].
Interestingly, the image content is near recognizable,
hence also justifying a posteriori the definition of FAST.

Figure 4. Left: original kata image. Right:
reconstruction of FREAK descriptors
computed around each FAST keypoint.

4. Conclusion and future work

In this work, we have shown that it is actually possi-
ble to reconstruct image parts from their local descrip-
tors without any additional information, extending pre-
vious results from [12]. Furthermore, the proposed al-
gorithm is robust enough to handle, at least partially,
binarized descriptors, that carry very few bits of infor-
mation.

Our results provide another perspective on the per-
formance analysis of LBDs: descriptors that lead to
the best reconstructions also lead to the best retrieval
results. Application developers will be interested in
the privacy and secrecy issues raised here and in [12].
We plan to improve the proposed algorithm to reliably
handle quantized descriptors by integrating techniques
from 1-bit Compressive Sensing [7].
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