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Abstract Software transactional memories (STM) are described in the literature with as-
sumptions of sequentially consistent program execution and atomicity of high level oper-
ations like read, write, and abort. However, in a realistic setting, processors use relaxed
memory models to optimize hardware performance. Moreover, the atomicity of operations
depends on the underlying hardware. This paper presents the first approach to verify STMs
under relaxed memory models with atomicity of 32 bit loads and stores, and read-modify-
write operations. We describe RML, a simple language for expressing concurrent programs.
We develop a semantics of RML parametrized by a relaxed memory model. We then present
our tool, FOIL, which takes as input the RML description of an STM algorithm restricted
to two threads and two variables, and the description of a memory model, and automatically
determines the locations of fences, which if inserted, ensure the correctness of the restricted
STM algorithm under the given memory model. We use FOIL to verify DSTM, TL2, and
McRT STM under the memory models of sequential consistency, total store order, partial
store order, and relaxed memory order for two threads and two variables. Finally, we extend
the verification results for DSTM and TL2 to an arbitrary number of threads and variables
by manually proving that the structural properties of STMs are satisfied at the hardware level
of atomicity under the considered relaxed memory models.
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1 Introduction

Transactional memory (TM) has recently gained much interest due to the advent of multicore
architectures. Inspired by how databases manage concurrency, TM was first introduced by
Herlihy and Moss [23] in multi-processor design. Later Shavit and Touitou [38] introduced
STM, a software-based variant of the concept. An STM allows to structure an application
in terms of coarse-grained code blocks that appear to be executed atomically [23, 38]. An
STM provides the illusion of sequentiality to a programmer and maximal flexibility to the
underlying hardware. However, behind the apparent simplicity of the STM abstraction, lie
challenging algorithms that seek to ensure transactional atomicity without restricting paral-
lelism.

Various correctness criteria have been proposed for STM algorithms. One criterion, pop-
ular for its relevance to the STM designers, is opacity [22]. Opacity is motivated by the fact
that in STMs, observing inconsistent state by even an aborted transaction can lead to un-
expected side effects. Opacity builds upon strict serializability [31], a correctness property
used for database transactions. Strict serializability requires that the committed transactions
appear to be executed in a serial order, consistent with the order of non-overlapping trans-
actions. Opacity further requires that even aborted transactions appear to be executed in a
serial order.

Previous attempts at formally verifying the correctness of STMs [8, 19, 20] with respect
to different correctness criteria assumed that high-level transactional commands like start,
read, write, commit, and abort execute atomically and in a sequentially consistent manner.
Verification of an STM at this level of abstraction leaves much room for errors in a realistic
setting. This is because the actual hardware on which STMs run supports a finer-grained
degree of atomicity: in practice, the set of atomic instructions rather corresponds to load,
store, and read-modify-write. Furthermore, compilers and processors assume relaxed mem-
ory models [1] and are notorious for playing tricks to optimize performance, e.g., by revers-
ing the order of instructions to different addresses. Typically, STM designers use fences to
ensure a strict ordering of memory operations. As fences hurt performance, STM designers
want to use fences only when necessary for correctness.

To illustrate some of the issues, consider the code fragments of the commit and the read
procedures of a typical timestamp-based STM like TL2 [11] in Fig. 1. Assume that at the
start of a transaction, t1 and t2 are set to the global timestamp ts. The commit procedure
updates the timestamp ts before it updates the variables in the write set. The read procedure
first reads the timestamp, followed by the read of the variable, followed by a second read
of the timestamp. The read is successful only if the two timestamps are equal. A crucial
question is, given the memory model, which fences are required to keep the STM correct. On
a memory model like sequential consistency [26] or total store order [42], the code fragment
in Fig. 1 is correct without fences. On the other hand, on memory models that relax store
order, like partial store order [42], we need to add a store fence after the timestamp update in
the commit procedure. For even more relaxed memory models that may swap independent
loads, like relaxed memory order [42], as well as the Java memory model [29], we need
more fences, namely, load fences in the read procedure. But the question is how many?
Do we need to ensure that the read of v is between the two reads of ts, and thus put two
fences? The answer is no. To ensure correctness, we just need one fence and guarantee that
the second read of ts comes after the read of v.

Devising a verification technique to model check STM algorithms assuming relaxed
memory models and hardware-level atomicity is challenging. A first challenge is to de-
vise a precise and unified formalism in which the STM implementations can be expressed.
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Fig. 1 Code fragments of commit and read procedures of a timestamp-based STM

A second challenge is to cope with the non-determinism explosion. Not surprisingly, when
compared to verifying an STM at a high-level atomic alphabet, the level of non-determinism
to be dealt with at hardware-level atomicity under a relaxed memory model is much higher.
For example, the implementation of DSTM [24] with 2 threads and 2 variables generates
1,000 states with a high-level atomic alphabet [19] and 1,200,000 states with a low-level
one, even on a sequentially consistent memory model. A relaxed memory model further
increases the state space.

This paper takes up the challenge of bridging the gap between STM descriptions in the
literature and their real implementations on actual hardware. We start by presenting a for-
malism to express memory models as a function of hardware memory instructions, that is,
loads and stores to 32 bit words. We describe various relaxed memory models, such as to-
tal store order (TSO), partial store order (PSO), and relaxed memory order (RMO) in our
formalism. The reason for choosing these memory models is to capture different levels of
relaxations allowed by different multiprocessors. Unlike earlier formalisms [8, 19] used for
verification, our formalism can be used to express and check the correctness of STMs with
both update semantics: direct (eager) and deferred (lazy). Then, we present a new language,
RML (Relaxed Memory Language), with a hardware-level of atomicity, whose semantics
is parametrized by various relaxed memory models. Then, we describe a new tool, FOIL
(a fencing weapon), to verify the opacity of three different STM algorithms, DSTM, TL2,
and McRT STM, under different memory models. We choose these STMs as they represent
three different and important trends in STM design. DSTM is obstruction-free (does not
use locks), TL2 is a lock-based STM with deferred-update semantics, and McRT STM is a
lock-based STM with direct-update semantics. While we choose opacity as the correctness
criterion, using FOIL we can also verify other correctness properties such as strict serial-
izability that can be specified in our formalism. Our verification technique consists of two
parts. First, we use our automated tool FOIL to verify the correctness of STM algorithms
restricted to two threads and two variables. Then, we use manual proofs of the structural
properties to extend the verification results to an arbitrary number of threads and variables.

FOIL proves the opacity of the considered STM algorithms under sequential consistency
and TSO. As the original STM algorithms have no fences, FOIL generates counterexam-
ples to opacity for the STMs under further relaxed memory models (PSO and RMO), and
automatically inserts fences within the RML description of the STM algorithms which are re-
quired (depending upon the memory model) to ensure opacity. We observe that FOIL inserts
fences in a pragmatic manner, as all fences it inserts match those in the manually optimized
official implementations of the considered STMs. Our verification leads to an interesting
observation that many STMs are sensitive to the order of loads and stores, but neither to the
order of a store followed by a load, nor to store buffering. Thus, while two of the STM al-
gorithms (TL2 and McRT-STM) we consider need fences for opacity under PSO and RMO,
they are indeed opaque under TSO without any fences.
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At last, we extend the proof of correctness of DSTM and TL2 for two threads and two
variables to an arbitrary number of threads and variables. We build upon a set of structural
properties of STMs [19] and manually prove that these structural properties are satisfied
for DSTM and TL2 at the hardware level of atomicity under relaxed memory models. We
cannot extend the verification results for McRT STM to an arbitrary number of threads and
variables as McRT STM does not satisfy the structural properties.

2 Transactional programs

We first present a general formalism to express hardware memory instructions. Then, we
present a simple language RML for expressing transactional programs. We then formalize
memory models which describe the interaction between memory instructions. Then, we
formalize the correctness property, opacity. We define TM specifications and build one for
representing opacity.

2.1 Memory instructions

Let Addr be a set of memory addresses. Let Inst be the set of memory instructions that are
executed atomically by the hardware. We define the set Inst as follows, where a ∈ Addr:

Inst ::= 〈load a〉 | 〈store a〉 | 〈cas a〉
We use the 〈cas a〉 instruction as a generic read-modify-write instruction.

We introduce a high-level language, RML, to express STM algorithms with hardware-
level atomicity on relaxed memory models. The key idea behind the design of RML is to
have a semantics parametrized by the underlying memory model. To capture a relaxed mem-
ory model, RML defers a statement until the statement is forced to execute due to a fence,
and RML reorders or eliminates deferred statements according to the memory model. We de-
scribe below the syntax and semantics of RML.

2.2 Syntax

To describe STM algorithms in RML, we use local and global integer-valued locations, which
are either variables or arrays. We also have a set of array index variables. The syntax of
RML is given in Fig. 2. A memory statement (denoted by mem_stmt) in RML models an
instruction that executes atomically on the hardware. It can, for instance, be a store or a load
of a global variable. Moreover, the STM specific statements are denoted by tm_stmt, and
fence statements are denoted by fence. Let SM be the set of memory statements, Stm be the
set of STM specific statements, and SF be the set of fence statements in RML. Let P be the
set of RML programs.

2.3 Transactional programs

Let V be a set of transactional variables. Let T be a set of threads. Let the set C of com-
mands be ({read,write} × V ) ∪ {xend}. These commands correspond to a read or write of
a transactional variable, and to a transaction end. Depending upon the underlying STM, the
execution of these commands may correspond to a sequence of hardware memory instruc-
tions. For example, a read of a transactional variable may require to check the consistency
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l ::= lv | la[idx]
g ::= gv | ga[idx]
e ::= f (l, . . . , l, idx, . . . , idx)
c ::= f (idx, . . . , idx)
tm_stmt ::= rfin | commit | abort
mem_stmt ::= g := e | l := g | l := e | idx := c | l := cas(g, e, e)

| rollback g := e
fence ::= stfence | ldfence
p ::= mem_stmt | tm_stmt | fence | p ;p

| if e then p else p | while e do p

Fig. 2 The syntax of the language RML

of the variable by first reading a version number. Similarly, a transaction end may require
to copy many variables from a thread-local buffer to global memory. Moreover, the seman-
tics of the write and the xend commands depend on the underlying STM. For example, a
(write, v) command does not alter the value of v in a deferred-update STM, whereas it does
in a direct-update STM.

We restrict ourselves to purely transactional code, that is, every operation is part of some
transaction. We consider transactional programs as our basic sequential unit of computa-
tion. We express transactional programs as infinite binary trees on commands, which makes
the representation independent of specific control flow statements, such as exceptions for
handling aborts of transactions. For every command of a thread, we define two successor
commands, one if the command is successfully executed, and another if the command fails
due to an abort of the transaction. Note that this definition allows us to capture different
retry mechanisms of STMs, e.g., retry the same transaction until it succeeds, or try another
transaction after an abort. We use a set of transactional programs to define a multithreaded
transactional program. A transactional program θ on V is an infinite binary tree θ : B

∗ → C.
A multithreaded transactional program prog = 〈θ1 . . . θn〉 on V is a tuple of transactional
programs on V . Let Progs be the set of all multithreaded transactional programs.

2.4 STM correctness

An STM is characterized by the set of histories (sequences of memory instructions) the
STM produces for a given transactional program. In order to reason about the correctness of
STMs, the history must contain, apart from the sequence of memory instructions that capture
the loads and stores to transactional variables in the program, the following information:
(i) when transactions finish (captured with commit and abort instructions), (ii) when a read
command finishes (captured with rfin instruction), and (iii) rollback of stores to transactional
variables in V (captured with rollback a). The commit and abort instructions are needed to
reason about the serialization of transactions. The rfin instruction is needed in formalizing
opacity. For example, rfin allows to distinguish the point in time where a variable is loaded
from the point where the value loaded is used. The rollback instruction is used in direct
update STM to undo a store to a variable.

2.4.1 Histories

We define ˆInst = InstV ∪ (rollback × V ) ∪ {rfin, commit,abort}, where InstV ⊆ Inst is the set
of memory instructions to the transactional variables V . There are two important things to
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note here. The instructions {rfin, commit,abort} have no physical representation in the mem-
ory instruction sequence, but are needed to punctuate transactional reads, writes, and ends
in order to check correctness. The instruction rollback is physically a store instruction, but
needs to be distinguished from a store in order to check correctness. Essentially, a rollback
undoes the effect of a previous store instruction.

Let Op = ˆInst × T be the set of operations. A history h ∈ Op∗ is a finite sequence of
operations. An STM takes as input a transactional program and, depending upon the memory
model, produces a set of histories. Formally, a software transactional memory is a function
Γ : Progs × M → 2Op∗

.
A correctness property π is a subset of Op∗. It is natural to require that an STM is

correct for all programs on a specific memory model. This is because an STM may be
optimized for performance for a specific memory model, while it could be incorrect on
weaker models. That is, different implementation versions may be designed for different
memory models. An STM Γ is correct for a property π under a memory model M if for all
programs prog ∈ Progs, we have Γ (prog,M) ⊆ π .

Given a history h ∈ Op∗, we define the thread projection h|t of h on thread t ∈ T as the
subsequence of h consisting of all operations op in h such that op ∈ ˆInst×{t}. Given a thread
projection h|t = op0 . . .opm of a history h on thread t , an operation opi is finishing in h|t if
opi is a commit or an abort. An operation opi is initiating in h|t if opi is the first operation
in h|t , or the previous operation opi−1 is a finishing statement. Given a thread projection h|t
of a history h on thread t , a consecutive subsequence x = op0 . . .opm of h|t is a transaction
of thread t in h if (i) op0 is initiating in h|t , and (ii) opm is either finishing in h|t , or opm is
the last operation in h|t , and (iii) no other operation in x is finishing in h|t . The transaction
x is committing in h if opm is a commit. The transaction x is aborting in h if opm is an
abort. Otherwise, the transaction x is unfinished in h. We say that a load of a transaction
variable by thread t is used in a history h if the load is immediately succeeded by an rfin
statement in h|t . Given a history h, we define usedloads(h) as the longest subsequence of h

such that all loads of transaction variables in usedloads(h) are used. Given a history h and
two transactions x and y in h (possibly of different threads), we say that x precedes y in
h, written as x <h y, if the last operation of x occurs before the first operation of y in h.
A history h is sequential if for every pair x, y of transactions in h, either x <h y or y <h x.

2.4.2 Opacity

We consider opacity [22] as the correctness (safety) requirement of transactional memories.
Opacity builds upon the property of strict serializability [31], which requires that the order
of conflicting operations from committing transactions is preserved, and the order of non-
overlapping transactions is preserved. Opacity, in addition to strict serializability, requires
that even aborting transactions do not read inconsistent values. The motivation behind the
stricter requirement for aborting transactions in opacity is that in STMs, inconsistent reads
may have unexpected side effects, like infinite loops, or array bound violations. Most of the
STMs [11, 24, 34] in the literature are designed to satisfy opacity. However, there do exist
STMs that ensure just strict serializability (for example, a variant to McRT STM), and use
exception handling to deal with inconsistent reads.

For the feasibility of the verification problem, we restrict the notion of opacity with two
assumptions. We describe the assumptions and justify them below. Both assumptions restrict
the scope of direct update STM allowed by our formalism. However, our assumptions do not
restrict the deferred update STM.

Firstly, we assume that if a store of a transactional variable rolls back some time later,
then the store should not be observed by a load and should not be overwritten by another
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store. In other words, we assume that a direct update STM algorithm uses exclusive locks
for the variables being written. If a STM does not satisfy this assumption, we cannot verify
whether the STM is correct. Moreover, a rollback instruction does not precede a store in-
struction, as a rollback instruction undoes the effect of a store instruction. We enforce our
assumption by defining a notion of well-formedness of histories. Given a transactional vari-
able v, we define the variable projection h|v of a history h on v as the longest subsequence
of loads, stores, rollbacks, and compare-and-swaps to the variable v.

We say that a store or a compare-and-swap instruction inst to variable v in transaction x

is final in a history h if there does not exist a rollback instruction to v after inst in x.
We say that a history h is well-formed if for all transactions x, (i) if x consists of a rollback

instruction inst to a variable v, then x consists of a store instruction to v before inst, (ii) if
x is an aborted transaction, then x does not consist of any final stores, and (iii) a non-final
store to some variable v in x in h|v is not immediately followed by a compare-and-swap, a
used load, or a store to v. This assumption is valid as all direct update STM algorithms we
know of rely on locking protocols.

Secondly, we consider a prefix closed subset of opacity as our correctness notion. The
justification is that all prefixes of a history produced by a STM should be correct. For
example, the history h = ((read, v1),1), (rfin,1), ((read, v2),2), (rfin,2), ((write, v2),1),
((write, v1),1) is not opaque by the standard definition of opacity. Now let h be suffixed by
((rollback, v2),1) ((rollback, v1),2) to get history h′. We note that h′ is opaque, as all opera-
tions of thread 1 may precede all operations of thread 2. Note that the reason that opacity is
not prefix closed are the rollback instructions. Intuitively, a rollback operation may remove
conflicts from a conflict graph, and thus remove a cycle which might exist in a prefix of the
history.

An operation op1 = (inst1, t) of transaction x and an operation op2 = (inst2, u) of trans-
action y (where x is different from y) conflict in a history h if

– inst1 is a load, a final compare-and-swap, or a final store instruction to some transactional
variable v and inst2 is a final store instruction to v in h

– inst1 and inst2 are final store instructions to some transactional variable v

A history h = op0 . . .opm is strictly equivalent to a history h′ if (i) for every thread t ∈ T ,
we have h|t = h′|t , and (ii) for every pair opi ,opj of operations in h, if opi and opj conflict
and i < j , then opi occurs before opj in h′, and (iii) for every pair x, y of transactions
in h, where x is a finished transaction, if x <h y, then it is not the case that y <h′ x. We
define opacity as the set of histories h such that there exists a sequential history h′, where
h′ is strictly equivalent to usedloads(h). We specify correctness properties using transition
systems called STM specifications [20].

2.5 TM specifications

A TM specification is a 3-tuple 〈Q,qinit, δ〉, where Q is a set of states, qinit is the initial
state, and δ : Q × Op → Q is a transition function. A history op0 . . .opm is a run of the
TM specification if there exist states q0 . . . qm+1 in Q such that q0 = qinit and for all i such
that 0 ≤ i ≤ m, we have (qi,opi , qi+1) ∈ δ. The language L of a TM specification is the set
of all runs of the TM specification. A TM specification Spec defines a correctness property
π if L(Spec) = π . A TM specification for opacity at a coarse-grained alphabet of read,
write, commit, and abort statements was developed [20]. To verify the STM algorithms
at the hardware level of atomicity, we build a new TM specification for opacity with the
alphabet Op.
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3 TM Specifications for opacity

Developing a TM specification at the hardware level atomicity is challenging due to the
following reasons:

– A commit may consist of multiple store instructions. As soon as a transaction stores, and
some other transaction loads the value or overwrites the value, the first transaction cannot
abort anymore.

– There is a distinction between the point when a variable is read and when the read is
declared as finished. Although a transaction reads an inconsistent value, the history may
still be opaque. But, if a transaction finishes the read of an inconsistent value, the history
is not opaque.

– Stores may roll back in direct update systems. For example, if a transaction has rolled
back its store, then it could appear as if the store was never performed.

We use our specification to automatically prove the correctness of STM for two threads
and two variables. Later, we manually extend our proofs of correctness to an arbitrary num-
ber of threads and variables using structural properties of STM. Thus, we develop the TM
specification for opacity for only two threads, which keeps the TM specification simple. We
first develop a nondeterministic TM specification for opacity.

3.1 A nondeterministic TM specification

We define the nondeterministic TM specification for opacity Spec for two threads as the
tuple 〈Q,qinit, δ〉. A state q ∈ Q is a 10-tuple 〈Status, SerStatus, rs, ws, urs, prs, pws, wp, rp,
serp〉, where Status : T → {finished, abortsure, commitsure} is the status, SerStatus : T →
{true, false} is the serialization status, rs : T → 2V is the read set, ws : T → 2V is the write
set, urs : T → {⊥} ∪ V is the unfinished read variable, prs : T → 2V is the prohibited read
set, pws : T → 2V is the prohibited write set, wp : T → {true, false} is the write predecessor
flag, rp : T → {true, false} is the read predecessor flag, and serp : T → {true, false} is the
serialization predecessor flag for the threads. The initial state qinit = 〈Status0, SerStatus0, rs0,
ws0, urs0, prs0, pws0, wp0, rp0, serp0〉, where Status0(t) = finished, SerStatus0(t) = false,
urs0(t) =⊥, wp0(t) = rp0(t) = serp0(t) = false, and rs0(t) = ws0(t) = prs0(t) = pws0(t) =
∅ for both threads. The transition relation is obtained using Algorithm 1. The thread t refers
to the thread taking the step, and the thread u refers to the other thread. Given a state q , the
procedure ResetState(q, t) makes the following updates: (i) sets Status(t) to finished, (ii)
sets SerStatus(t) to false, (iii) sets urs(t) to ⊥, (iv) sets rs(t), ws(t), prs(t), and pws(t) to ∅,
and (v) sets rp(t), wp(t), rp(u), wp(u), and serp(u) to false.

3.1.1 Construction

We describe the rules that govern the set of runs that are produced by the nondeterministic
TM specification. Let r be a run of the TM specification Spec. Let x be the unfinished
transaction of a thread, and let y be the unfinished transaction of the other thread in the
run r . The nondeterministic TM specification ensures the following:

1. A variable v is in the prohibited write set of x if there is a committed transaction z in r

such that z serializes after x and z has a final store or a finished read of v

2. A variable v is in the prohibited read set of x if there is a committed transaction z in r

such that z serializes after x and z has a final store of v
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Algorithm 1 The nondeterministic STM specification for opacity

nondetTMSpec(〈Status,SerStatus, rs,ws,urs,prs,pws,wp, rp, serp〉,op)

if op = ((store, v), t) then
if Status(t) = abortsure then return ⊥
if urs(t) =⊥ then return ⊥
if v ∈ pws(t) then return ⊥
ws(t) := ws(t) ∪ {v}
if v ∈ ws(u) then

if serp(u) then return ⊥ else serp(t) := true
if Status(u) = abortsure then return ⊥
if wp(u) then return ⊥
if Status(u) = finished then

Status(u) := commitsure
if urs(u) = v for some variable v ∈ V then

rs(u) := rs(u) ∪ {v}
if v ∈ rs(u) then

if serp(u) then return ⊥ else serp(t) := true
if v ∈ urs(u) then

if serp(u) then
Status(u) := abortsure; urs(u) :=⊥

rp(t) := true

if op = ((load, v), t) then
if Status(t) = abortsure then return ⊥
if urs(t) =⊥ then return ⊥
if v ∈ prs(t) then

if Status(t) = commitsure then return ⊥
Status(t) := abortsure

urs(t) := v

if Status(t) = commitsure then rs(t) := rs(t) ∪ {v}
if v ∈ ws(u) then

if Status(t) = commitsure then
if serp(u) then return ⊥ else serp(t) := true
if Status(u) = abortsure then return ⊥
if wp(u) then return ⊥
if Status(u) = finished then

Status(u) := commitsure
if urs(u) = v for some variable v ∈ V then

rs(u) := rs(u) ∪ {v}
else

wp(t) := true
if serp(u) then

Status(t) := abortsure; urs(t) :=⊥
if op = (rollback, v), t) then

if Status(t) = commitsure then return ⊥
if v /∈ ws(t) then return ⊥
if wp(u) then

Status(u) := abortsure; urs(u) :=⊥
ws(t) := ws(t) \ {v}
Status(t) := abortsure; urs(t) :=⊥
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Algorithm 1 Continued.

nondetTMSpec(〈Status,SerStatus, rs,ws,urs,prs,pws,wp, rp, serp〉,op)

if op = (rfin, t) then
if urs(t) =⊥ then return ⊥ else v := urs(t)
if Status(t) = abortsure then return ⊥
rs(t) := rs(t) ∪ {v}; urs(t) :=⊥
if wp(t) then

if serp(u) then return ⊥ else serp(t) := true
if Status(u) = abortsure then return ⊥
if wp(u) then return ⊥
if Status(u) = finished then

Status(u) := commitsure
if urs(u) = v for some variable v ∈ V then

rs(u) := rs(u) ∪ {v}
if rp(u) then

if serp(t) then return ⊥ else serp(u) := true

if op = (ε, t) then
if SerStatus(t) = true then return ⊥
SerStatus(t) := true
if SerStatus(u) = false then

if serp(t) then return ⊥
serp(u) := true
if wp(t) = true then

Status(t) := abortsure; urs(t) :=⊥
if op = (commit, t) then

if SerStatus(t) = true then return ⊥
if Status(t) = abortsure then return ⊥
if urs(t) =⊥ then return ⊥
if rp(t) then

if serp(u) = true then
Status(u) := abortsure; urs(u) :=⊥

if serp(t) then
prs(u) := prs(u) ∪ ws(t) ∪ prs(t)
pws(u) := pws(u) ∪ ws(t) ∪ rs(t) ∪ pws(t)

ResetState(t)
if SerStatus(u) then serp(t) := true

if op = (abort, t) then
if SerStatus(t) = false then return ⊥
if ws(t) = ∅ then return ⊥
ResetState(t)
if SerStatus(u) = true then serp(t) := true

return 〈Status,SerStatus, rs,ws,urs,prs,pws,wp, rp, serp〉

3. The serialization status of x is true in a run r ′ = r · op if
a. the serialization status of x in r is true, and op is not a commit or an abort of x, or
b. op is a serialize of transaction x
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4. The status of x is commitsure in a run r ′ = r · op if
a. the status of x is commitsure in r and op is not a commit
b. the status of x is finished in r and op is a store to v by y and x stores to v in r

c. the status of x is finished in r and the status of y is commitsure and x stores to v in r

and op is a load of v by y

d. the status of x is finished in r and x stores to v and later y loads v in r and op is a
finish of the load of v by y

5. The status of x is abortsure in a run r ′ = r · op if the status of x is not commitsure in r

and one of the following holds:
a. op is a store of a variable v by y and y serializes before x and x has an unused load

of v in r

b. op is a load of a variable v by x such that y stores to v in the run r and y serializes
after x

c. op is a rollback of v by y and x loads v after y stores to v in r

d. op is a rollback of v by x and x stores to v in r

e. op is a serialize of x and y is unserialized and there exists a variable v such that y

stores to v and x loads v after y stores to v

f. op is a load of a variable v by x and v is in the prohibited read set of x

6. The serialization predecessor serp of x is true in run r ′ = r · op if:
a. the serialization predecessor of x is true in r and op is not a commit or an abort of

transaction y

b. op is a store of v by transaction x and y stores to v in r

c. op is a store of v by x and y has a used load of v in r

d. op is a store of v by x and the status of y is commitsure and y loads v

e. op is a load of v by x and the status of x is commitsure in r and y stores to v in r

f. op is a serialize of transaction y and the serialization status of x is false
g. op is a finish of a read by transaction x and y stores to v in r , and later x loads v in r

h. op is a finish of a read by transaction y and y loads v in r , and later x stores to v in r

7. The serialization predecessor of the transaction following x in the thread of x is true in
a run r ′ = r · op if op is a commit or abort of x and the serialization status of y is true

8. Given a run r produced by Spec and an operation op of transaction x, the run r ′ = r · op
is produced by Spec if the following hold:
a. if the status of x is abortsure, then op is an abort, a rollback, or a serialize
b. if op is a store of v, then x has no unused load in r and v is not in the prohibited write

set of x

c. if op is a rollback of v, then the status of x is not commitsure and x stores to v in r

d. if op is a load of v, then x has no unused load in r

e. if op is a load of v and v is in the prohibited read set of x, then status of x is not
commitsure

f. if op is a finish of a read, then there is an unused load by x and the status of x is not
abortsure in r

g. if op is a commit, then the serialization status of x is true and all loads by x in r are
used

h. if op is an abort, then there does not exist a variable v such that x stores to v and x

does not rollback v in r

i. if op is an abort, then the serialization status of x is true
j. if op is a serialize, then the serialization status of x is false
k. if the serialization predecessor of x is true, then the serialization predecessor of y is

false in r ′
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Fig. 3 The operations inside ovals are disallowed by the TM specification for opacity. An arrow represents
different possible positions for a command to occur in a given condition. We write s for store, l for load,
c for commit, b for rollback, and f for rfin. We write the operation ((s, v), t) as (s, v)t . Thread t executes
transaction x and thread u executes transaction y. For conditions C1–C5, the transaction y must serialize
before x. For condition C6, the transaction x must serialize before y. For condition C3, y must commit in
every extension of the run. For condition C4, x must commit in every extension of the run. Conditions C3a
and C4a pertain to the nondeterministic TM specification for opacity without rollbacks, as described in the
appendix

Using the above rules of construction, we now prove the correctness of the nondetermin-
istic TM specification for opacity.

3.1.2 Correctness

Theorem 1 Given a history h on 2 threads and k variables, h is opaque if and only if
h ∈ L(Spec).

Proof We say that a transaction x must serialize before a transaction y in a run r if one of
the following holds:

– x and y have final stores to a variable v and y stores to v after x stores to v

– the serialize of x occurs before the serialize of y in r

– x stores to v and y has a used load of v, where y loads v after x stores to v

– x has a used load of v and y stores v, where x loads v before y stores to v

Note that from rule 4, 8.c, and 8.h, a transaction x that stores to a variable v must commit
in every extension of r if one of the following holds:

– there exists a transaction y such that y stores to v after x stores to v and before x rolls
back

– there exists a transaction y such that y loads v after x stores to v, and the read of v is
finished by y

– there exists a transaction y such that y must commit, and y loads v after x stores to v

Note that for two unfinished transactions x, y in a run r , if y must serialize before x, then
the serialization predecessor of x is true in r .

Now, we note that the TM specification Spec for opacity gives the largest set R of runs
such that for every run r produced by the TM specification, for every transaction x in r , the
following conditions hold (conditions C1–C6 are graphically shown in Fig. 3):

C1. x does not store to a variable v if there exists a transaction y such that y must serialize
after x and y stores to v and y does not rollback its store to v (from rules 1, 6.b,
and 8.k)

C2. x does not store to a variable v if there exists a transaction y such that y must serialize
after x and y has a used load of v (from rules 1, 6.c, and 8.k)
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C3. x does not store to a variable v if there exists a transaction y such that y must serialize
after x and y has a load of v and y must commit in every extension of r (from rules 1,
6.d, and 8.k)

C4. x does not load a variable v if there exists a transaction y such that y must serialize
after x and y stores to v and x must serialize in every extension of r (from rules 2,
6.e, 8.e, and 8.k)

C5. x does not finish the read of a variable v if there exists a transaction y such that y

must serialize after x and y stores to v before x loads v (from rules 2, 5.b, 5.f, 6.g, 8.f,
and 8.k)

C6. x does not finish the read of a variable v if there exists a transaction y such that y must
serialize before x and y stores to v after x loads v (from rules 5.a, 6.h, and 8.f)

C7. x serializes at most once (from rules 3 and 8.j)
C8. if x is a finished transaction, then x serializes exactly once (from rules 3, 8.g, 8.i,

and 8.j)
C9. x contains a rollback of v only if the transaction consists of a store to v before the

rollback (from rule 8.c)
C10. after a rollback of a variable v in x, the only possible instruction in x is a rollback of

another variable or a serialize or an abort (from rules 5.d and 8.a)
C11. if x is an aborting transaction, then every aborted transaction rollbacks all the stores

before aborting (from rule 8.h)
C12. x does not serialize if there exists a transaction y such that y is unserialized and y

must serialize before x (from rules 6.f and 8.k)

Let h be an opaque history on 2 threads and k variables. As h is opaque, there is a
sequential history hs such that hs is strictly equivalent to h. Let the transactions in the
sequential history hs be given by the sequence x1 . . . xn of transactions. We claim that there
exists a run r of the TM specification Spec such that h is the corresponding history of r . As
hs is strictly equivalent to h, we know that for every pair xi, xj of transactions in h such that
i < j , the following are not true:

– xi loads v after a final store to v by xj , and xi finishes the read
– xi is a committing transaction and xi loads v after a final store by xj to v

– xi and xj have a final store to v and xi stores to v after xj stores to v

– xi stores to v and xj loads v before the store to v, and the read of v is finished by xj

These conditions are equivalent to the conditions C1–C6. Moreover, h is well-formed.
This is equivalent to the conditions C9–C11. Thus, we know that there exists a run r of
the TM specification Spec, where the order of serialization of transactions is the same as
x1 . . . xn.

Conversely, let r be a run produced by the nondeterministic TM specification Spec. Let
h be the corresponding history to the run r . We know from conditions C7 and C8 that every
transaction serializes at most once in the run, and every finished transaction serializes exactly
once in the run. Let hs be a sequential history such that (i) a transaction x appears before a
transaction y in hs if x must serialize before y in r , (ii) all other transactions appear in an
arbitrary order later in r , and (iii) for all threads, the thread projection of hs is equivalent to
the thread projection of h. The conditions C1–C6 guarantee that for every pair opi ,opj of
operations in h if opi and opj conflict and i < j , then opi occurs before opj in hs . Note that
the order of serialization in r respects the real time order of the transactions in h, that is, if
a transaction x finishes before a transaction y starts, then x serializes before y in r . Thus,
hs is strictly equivalent to h. Hence, every history in L(Spec) is opaque. �
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Algorithm 2 The deterministic STM specification for opacity

detTMSpec(〈Status, rs,ws,urs,prs,pws,hp,wp, rp, sp〉,op)

if op = ((store, v), t) then
if Status(t) = abortsure then return ⊥
if urs(t) =⊥ then return ⊥
if v ∈ pws(t) then return ⊥
ws(t) := ws(t) ∪ {v}
if Status(t) = finished then

if Status(u) = pending then hp(t) := true
if Status(u) = commitsurepending then sp(t) := true
Status(t) := started

if v ∈ ws(u) then
if wp(u) or hp(u) then return ⊥
if Status(u) = abortsure then return ⊥
if Status(u) = commitimpossible then return ⊥
if Status(u) = pending then

Status(u) := commitsurepending
if urs(u) = v for some variable v ∈ V then rs(u) := rs(u) ∪ {v}
if wp(u) or rp(u) then sp(u) := true

if Status(u) = started then
Status(u) := commitsure
if urs(u) = v for some variable v ∈ V then rs(u) := rs(u) ∪ {v}
if wp(u) or rp(u) then sp(u) := true

sp(t) := true
if v ∈ rs(u) then

sp(t) := true
if wp(u) then Status(u) := abortsure; urs(u) := ∅

if v ∈ urs(u) then
rp(t) := true
if sp(u) or hp(u) or wp(u) then

Status(u) := abortsure; urs(u) :=⊥
if sp(u) and sp(t) then return ⊥

3.2 A deterministic TM specification

We define the deterministic TM specification for opacity Specd for two threads as the tu-
ple 〈Q,qinit, δ〉. A state q ∈ Q is a 10-tuple 〈Status, rs, ws, urs, prs, pws, hp, wp, rp, sp〉,
where Status : T → {finished, pending, commitsurepending, abortsure, commitsure} is the
status, rs : T → 2V is the read set, ws : T → 2V is the write set, urs : T → {⊥} ∪ V is
the unfinished read set, prs : T → 2V is the prohibited read set, pws : T → 2V is the pro-
hibited write set, hp : T → {true, false} is the hidden predecessor (to due a transaction
already committed) flag, wp : T → {true, false} is the write predecessor flag, rp : T →
{true, false} is the read predecessor flag, and sp : T → {true, false} is the strong prede-
cessor flag for the threads. The initial state qinit = 〈Status0, rs0, ws0, urs0, prs0, pws0,
hp0, wp0, rp0, sp0〉, where Status0(t) = finished, urs0(t) =⊥, hp0(t) = wp0(t) = rp0(t) =
sp0(t) = false, and rs0(t) = ws0(t) = prs0(t) = pws0(t) = ∅ for both threads. The transi-
tion relation of the deterministic TM specification is obtained using Algorithm 2. Given
a state q , the procedure ResetState(q, t) makes the following updates: (i) sets Status(t)
to finished, (ii) sets urs(t) to ⊥, (iii) sets rs(t), ws(t), prs(t), and pws(t) to ∅, (iv) sets
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Algorithm 2 Continued.

detTMSpec(〈Status, rs,ws,urs,prs,pws,hp,wp, rp, sp〉,op)

if op = (rollback, v), t) then
if Status(t) ∈ {commitsure, commitsurepending} then return ⊥
if v /∈ ws(t) then return ⊥
if wp(u) then

Status(u) := abortsure; urs(u) :=⊥
ws(t) := ws(t) \ {v}
Status(t) := abortsure; urs(t) :=⊥

if op = (rfin, t) then
if urs(t) =⊥ then return ⊥
v := urs(t)
if v ∈ prs(t) and Status(t) = commitimpossible then return ⊥
rs(t) := rs(t) ∪ {v}; urs(t) =⊥
if rp(u) then sp(u) := true
if Status(t) = pending or Status(t) = commitsurepending then

sp(u) := true
if wp(t) then

if Status(u) ∈ {abortsure, commitimpossible} then return ⊥
if Status(u) = pending then

Status(u) := commitsurepending
if urs(u) = v for some variable v ∈ V then rs(u) := rs(u) ∪ {v}
if wp(u) or rp(u) then sp(u) := true

if Status(u) = started then
Status(u) := commitsure
if urs(u) = v for some variable v ∈ V then rs(u) := rs(u) ∪ {v}
if wp(u) or rp(u) then sp(u) := true

sp(t) := true
if sp(u) and sp(t) then return ⊥

if op = ((load, v), t) then
if Status(t) = abortsure then return ⊥
if urs(t) =⊥ then return ⊥
if Status(t) = finished then

if Status(u) = pending then hp(t) := true
if Status(u) = commitsurepending then sp(t) := true
Status(t) := started

if v ∈ prs(t) then
if Status(t) ∈ {commitsure, commitsurepending} then return ⊥
Status(t) := commitimpossible

urs(t) := v

if Status(t) ∈ {commitsure, commitsurepending} then rs(t) := rs(t) ∪ {v}
if v ∈ ws(u) then

if Status(t) ∈ {commitsure, commitsurepending} then
rs(t) := rs(t) ∪ {v}
if Status(u) ∈ {abortsure, commitimpossible} then return ⊥

if Status(u) = pending then
Status(u) := commitsurepending
if urs(u) = v for some variable v ∈ V then rs(u) := rs(u) ∪ {v}
if wp(u) or rp(u) then sp(u) := true



312 Form Methods Syst Des (2011) 39:297–331

Algorithm 2 Continued.

detTMSpec(〈Status, rs,ws,urs,prs,pws,hp,wp, rp, sp〉,op)

if Status(u) = started then
Status(u) := commitsure
if urs(u) = v for some variable v ∈ V then rs(u) := rs(u) ∪ {v}
if wp(u) or rp(u) then sp(u) := true

sp(t) := true
else

wp(t) := true
if sp(u) then

Status(t) := abortsure; urs(t) :=⊥
if sp(u) and sp(t) then return ⊥

if op = (commit, t) then
if Status(t) ∈ {abortsure, commitimpossible} then return ⊥
if urs(t) =⊥ then return ⊥
if hp(t) then

if sp(u) then
if urs(u) =⊥ then

Status(u) := abortsure; urs(u) := ∅
else Status(u) = commitimpossible

if hp(t) or rp(t) or sp(t) then
if Status(u) = started then Status(u) = pending
if Status(u) = commitsure then Status(u) = commitsurepending
prs(u) := prs(u) ∪ ws(t) ∪ prs(t)
pws(u) := pws(u) ∪ ws(t) ∪ rs(t) ∪ pws(t)

if sp(u) and sp(t) then return ⊥
ResetState(t)

if op = (abort, t) then
if ws(t) = ∅ then return ⊥
ResetState(t)

return 〈Status, rs,ws,urs,prs,pws,hp,wp, rp, sp〉

hp(t), rp(t), wp(t), hp(u), rp(u), wp(u), and sp(u) to false. As in the nondeterminis-
tic TM specification, t refers to the thread taking the step, and u refers to the other
thread.

Correctness We use an antichain based tool [10] to prove that for two threads and two
variables, the language of the deterministic TM specification is equivalent to the language of
the nondeterministic TM specification. The nondeterministic TM specification has 155,000
states, while the deterministic TM specification has 46,000 states. The execution time for
checking equivalence of the two specifications using the antichain based tool [10] on an
Opteron machine with 2.66 GHz processors and 16 GB RAM is around two hours. This
high execution time is mostly due to the high memory consumption. The check consumes
around 15 GB RAM, and thus most of the time is spent in swapping memory. The process
execution time is around ten minutes.
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The manual proof for the intuitive nondeterministic TM specification and the automated
language equivalence check with the deterministic TM specification allow us to claim that
the deterministic TM specification accepts exactly the set of opaque histories.

4 Memory models

A memory model is a function M : Inst × Inst → {N,E,Y}. For all instructions inst1,

inst2 ∈ Inst, when inst1 is immediately followed by inst2, we have: (i) if M(inst1, inst2) = N,
then M imposes a strict order between inst1 and inst2, (ii) if M(inst1, inst2) = E, then M
allows to eliminate the instruction inst2, and (iii) if M(inst1, inst2) = Y, then M allows to re-
order inst1 and inst2. The case (ii) allows us to model store load forwarding using store
buffers, and the case (iii) allows us to model reordering of instructions. Our formalism
can capture many hardware memory models. But, our formalism cannot capture some com-
mon compiler optimizations like irrelevant read elimination, and thus disallows many soft-
ware memory models (like the Java memory model [29]). We specify different memory
models in our framework. These memory models are chosen to illustrate different lev-
els of relaxations generally provided by the hardware. Let M be the set of all memory
models.

Sequential consistency Sequential consistency does not allow any pair of instructions to
be reordered. Sequential consistency [26] is specified by the memory model Msc. We have
Msc(inst1, inst2) = N for all instructions inst1, inst2 ∈ Inst.

Total store order Total store order (TSO) relaxes the order of a store followed by a load
to a different address. But, TSO enforces a strict order on the stores (and hence the name).
TSO allows a load which follows a store to the same address to be eliminated. TSO [42]
is given by the memory model Mtso such that for all memory instructions inst1, inst2 ∈ Inst,
(i) if inst1 = 〈store a〉 and inst2 = 〈load a′〉 such that a = a′, then Mtso(inst1, inst2) = Y,
(ii) if inst1 ∈ {〈store a〉, 〈cas a〉} and inst2 = 〈load a〉, then Mtso(inst1, inst2) = E, (iii) else
Mtso(inst1, inst2) = N.

Partial store order Partial store order (PSO) is similar to TSO, but further relaxes the
order of stores. PSO [42] is specified by Mpso, such that for all memory instructions
inst1, inst2 ∈ Inst, (i) if inst1 = 〈store a〉 and inst2 ∈ {〈load a′〉, 〈store a′〉, 〈cas a′〉} such that
a = a′, then Mpso(inst1, inst2) = Y, (ii) if inst1 ∈ {〈store a〉, 〈cas a〉} and inst2 = 〈load a〉,
then Mpso(inst1, inst2) = E, (iii) else Mpso(inst1, inst2) = N.

Relaxed memory order Relaxed memory order (RMO) relaxes the order of instructions
even more than PSO. RMO allows to reorder a load with a following load or a fol-
lowing store to a different address. RMO [42] is specified by Mrmo, such that for all
memory instructions inst1, inst2 ∈ Inst, (i) if inst1 ∈ {〈load a〉, 〈store a〉, 〈cas a〉} and
inst2 ∈ {〈load a′′〉, 〈store a′〉, 〈cas a′〉} such that a = a′ (note that a′′ can be same as a),
then Mrmo(inst1, inst2) = Y, (ii) if inst1 ∈ {〈store a〉, 〈cas a〉} and inst2 = 〈load a〉, then
Mrmo(inst1, inst2) = E, (iii) else Mrmo(inst1, inst2) = N. Note that at the level of instruction
streams, we do not capture control/data dependence. Rather, we allow RMO to reorder any
pair of instructions.

4.1 Memory-model sensitive semantics

Intuitively, capturing a relaxed memory model requires us to defer statements across fol-
lowing statements, unless the memory model guarantees an ordering. So, RML maintains
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as part of the state, a queue of statements whose execution has been deferred. When a state-
ment with a memory instruction is encountered, RML inserts the statement in the queue of
deferred statements. However, the relaxations allowed by the memory model allow to insert
the statement at multiple places in the queue. Thus, we obtain multiple transitions from the
original state on a statement with a memory instruction, where each destination state differs
only in the queue of deferred statements. When RML encounters a store (resp. load) fence,
RML dequeues statements for execution, until the queue has no store (resp. load) instruc-
tions. We now formalize the semantics of RML.

Let G and L be the set of global and local addresses respectively. Let Idx ⊆ L be the set
of local index addresses. Consider a particular thread t . Let σ : G∪L → N be a valuation of
the global addresses, and the local addresses of thread t . Let Σ be the set of all valuations.
Note that the syntax of RML is defined in a way that the value of an index variable idx may
not depend on the queue of deferred statements. Given a global location g and a valuation σ ,
we write [[g]]σ ∈ G to denote the global address represented by g in valuation σ . Similarly,
we write [[l]]σ ∈ L \ Idx (resp. [[idx]]σ ∈ Idx) to denote the local address (resp. local index
address) represented by a local location l (resp. index variable idx) in valuation σ .

Let γ : SM × Σ → Inst ∪ {skip} be a mapping function for memory statements, that
for a given memory statement and a valuation, gives the generated hardware instruction
or the skip instruction if no hardware instruction is generated. For example, we have
γ (g := e, σ ) = 〈store [[g]]σ 〉 in valuation σ , as the statement g := e causes a store to the
global address represented by g in valuation σ . The statement rollback g := e is physically
a store instruction, as a rollback undoes the effect of a previous store instruction. We de-
fine a local-variables function lvars such that given an expression e and a valuation σ ,
we have lvars(e, σ ) as the smallest set of local addresses in L such that if the location l

(resp. index variable idx) appears in e, then the address [[l]]σ is in lvars(e, σ ) (resp. [[idx]]σ
is in lvars(e, σ )). We define a write-locals function lw : SM × Σ → 2L and a read-locals
function lr : SM × Σ → 2L to obtain the written and read local addresses in a statement
respectively. Table 1 gives the formal definitions of the functions γ , lw, and lr.

We now describe when two memory statements can be reordered in a given valuation un-
der a given memory model. Let M be the set of all memory models. Let R : SM ×SM ×Σ ×
M → {true, false} be a reordering function such that R(s1, s2, σ,M) = true if the following
conditions hold: (i) either γ (s1, σ ) = skip or γ (s2, σ ) = skip, or M(γ (s1, σ ), γ (s2, σ )) = Y,
(ii) lw(s1, σ )∩ lr(s2, σ ) = ∅, (iii) lw(s1, σ )∩ lw(s2, σ ) = ∅, and (iv) lr(s1, σ )∩ lw(s2, σ ) = ∅.
Here, the first condition restricts reorderings to those allowed by the memory model, and the
remaining conditions check for data dependence between the statements. To defer memory
statements and execute them in all different ways as allowed by the relaxed memory model,
we define a model-dependent enqueue function. This function takes as input the current
valuation, the current sequence of deferred statements, a statement to defer, and a memory
model, and produces the set of new possible sequences of deferred statements. We define the
enqueue function Enq : S∗

M × SM × Σ × M → 2S∗
M such that given a sequence d = s1 . . . sn

of memory statements, a statement s, a valuation σ , and a memory model M, the function
Enq(d, s, σ,M) is the largest set such that (i) s1 . . . sk · s · sk+1 . . . sn ∈ Enq(d, s, σ,M) if for
all i such that k < i ≤ n, we have R(si, s, σ,M) = true, and (ii) if s is of the form l := g,
then s1 . . . sk · (l := e) · sk+1 . . . sn ∈ Enq(d, s, σ,M) if for all i with k < i ≤ n, we have
R(si, s, σ,M) = true, and M(γ (sk, σ ), γ (s, σ )) = E where (a) if sk is g := f , then e = f , (b)
if sk is m := g or m := cas(g, e1, e2), then e = m. Note that the definition of the reordering
function restricts the reordering of control and data-dependent statements. Thus, our model
of RMO slightly differs from the definition of the RMO model in the sense that we impose
an order on control dependent load instructions. Similarly, the enqueue function restricts
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Table 1 The formal definitions of the functions γ , lw, and lr for a statement s in a valuation σ

Statement s γ (s, σ ) lw(s, σ ) lr(s, σ )

g := e 〈store [[g]]σ 〉 ∅ lvars(e, σ )

l := g 〈load [[g]]σ 〉 {[[l]]σ } ∅
l := e skip {[[l]]σ } lvars(e, σ )

l := cas(g, e1, e2) 〈cas [[g]]σ 〉 {[[l]]σ } lvars(e1, σ ) ∪ lvars(e2, σ )

rollback g := e 〈store [[g]]σ 〉 ∅ lvars(e, σ )

idx := c skip {[[idx]]σ } lvars(c, σ )

the elimination of only load instructions. While this is sufficient to model many hardware
memory models, we cannot capture coalesced stores or redundant store elimination.

Given a valuation σ , a program p, and a sequence d of deferred statements, we define
a predicate allowDequeue(σ, d,p) to be true if (i) p is of the form (while e do p1;p′) or
(if e then p1 else p2;p′) for some programs p1,p2,p

′ ∈ P , and there exists a memory
statement s in d such that lw(s, σ ) ∩ lvars(e, σ ) = ∅, or (ii) p is a store fence and there
exists a statement s of the form g := l or l := cas(g, e, e) in d , or (iii) p is a load fence and
there exists a statement s of the form l := g or l := cas(g, e, e) in d .

Conditionals and loops When an RML program reaches a condition or a loop, it requires
the condition to be evaluated. RML first checks whether the local variables appearing in the
condition are modified in any deferred statement in the queue. If this is not the case, the
execution is governed by the following rules.

σ [e] = 0 allowDequeue(σ, d,p) = false
p = if e then p1 else p2; p′

〈p, σ, d〉 ε−→ 〈p1;p′, σ, d〉 (IF TRUE)

σ [e] = 0 allowDequeue(σ, d,p) = false
p = if e then p1 else p2; p′

〈p, σ, d〉 ε−→ 〈p2;p, σ, d〉 (IF FALSE)

σ [e] = 0 allowDequeue(σ, d,p) = false
p = while e do p1; p′

〈p, σ, d〉 ε−→ 〈p1;p, σ, d〉 (WHILE TRUE)

σ [e] = 0 allowDequeue(σ, d,p) = false
p = while e do p1; p′

〈p, σ, d〉 ε−→ 〈p′, σ, d〉 (WHILE FALSE)

Index variable update As the value of an index variable does not depend on the deferred
statements, it is straightforward to modify the valuation according to the variable update.

〈idx := c;p, σ, d〉 ε−→ 〈p, σ [idx/c], d〉 (INDEX)
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Fences When an RML program encounters a store (resp. load) fence, we ensure that there
is no store or cas (resp. load or cas) instruction in the queue of deferred statements.

allowDequeue(σ, d, stfence) = false

〈stfence;p, σ, d〉 ε−→ 〈p, σ, d〉 (STORE FENCE)

allowDequeue(σ, d, ldfence) = false

〈ldfence;p, σ, d〉 ε−→ 〈p, σ, d〉 (LOAD FENCE)

TM specific A commit and an abort instruction behave like store fences. This is to avoid
instructions of two transactions from the same thread to interleave with each other. More-
over, an rfin instruction behaves like a load fence. This ensures that during the transactional
read of a variable, the variable is loaded before the read is declared as finished.

s ∈ {commit,abort}
allowDequeue(σ, d, stfence) = false

〈s;p, σ, d〉 s−→ 〈p, σ, d〉 (TRANSACTION END)

allowDequeue(σ, d, ldfence) = false

〈rfin;p, σ, d〉 rfin−→ 〈p, σ, d〉 (READ FINISH)

Enqueue When RML encounters a memory instruction in the form of a load, store,
compare-and-swap, or rollback instruction, RML enqueues the statement into the queue of
deferred statements. Then, RML nondeterministically shuffles the statement in the queue
according to the relaxations allowed by the underlying memory model M.

d ′ ∈ Enq(d, s, σ,M)

s ∈ {g := e, l := g, l := e, l := cas(g, e1, e2), rollback g := e}
〈s;p, σ, d〉 ε−→ 〈p, σ, d ′〉 (ENQUEUE)

Dequeue A statement is executed by RML only under the circumstances that the value of
the conditional variable depends on the contents on the queue, or RML reaches a store (resp.
load) fence, and there is a store (resp. load) instruction in the queue. In this case, the first
statement in the queue is dequeued, and the effect of the statement is made to the global and
local variables as required.

allowDequeue(σ, d,p1) = true
σ [g] = c d = (l := g) · d ′

〈p1;p, σ, d〉 〈load [[g]]σ 〉−−−−−−→ 〈p1;p, σ [l/c], d ′〉
(DEQUEUE LOAD)

allowDequeue(σ, d,p1) = true
σ [e] = c d = (g := e) · d ′

〈p1;p, σ, d〉 〈store [[g]]σ 〉−−−−−−→ 〈p1;p, σ [g/c], d ′〉
(DEQUEUE STORE)
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Fig. 4 An example of an RML
program

initially, X1 := 0, X2 := 0, Y1 := 0, Y2 := 0
r1 := 0, r2 := 0, r3 := 0, r4 := 0

if id = 0 if id = 1
X1 := 0 X2 := 0
Y1 := 0 Y2 := 0

r1 := Y2 ‖ r2 := Y1
r3 := X2 r4 := X1
X1 := 2 X2 := 2

allowDequeue(σ, d,p1) = true
σ [g] = c σ [e1] = c d = (l := cas(g, e1, e2)) · d ′

〈p1;p, σ, d〉 〈load [[g]]σ 〉−−−−−−→ 〈p1;p, σ [l/c], d ′〉
(DEQUEUE CAS FAILURE)

allowDequeue(σ, d,p1) = true
σ [g] = σ [e1] = c σ [e2] = c′ d = (l := cas(g, e1, e2)) · d ′

〈p1;p, σ, d〉 〈cas [[g]]σ 〉−−−−−→ 〈p1;p, σ [g/c′][l/c], d ′〉

(DEQUEUE CAS SUCCESS)

allowDequeue(σ, d,p1) = true
σ [e] = c d = (l := e) · d ′

〈p1;p, σ, d〉 ε−→ 〈p1;p, σ [l/c], d ′〉 (DEQUEUE LOCAL)

allowDequeue(σ, d,p1) = true
σ [e] = c d = (rollback g := e) · d ′

〈p1;p, σ, d〉 rollback[[g]]σ−−−−−−→ 〈p1;p, σ [g/c], d ′〉
(DEQUEUE ROLLBACK)

4.2 Example execution in RML

Consider the RML program shown in Fig. 4. We discuss the operation of RML on this pro-
gram under different memory models.

– Sequential consistency does not allow any reorderings. The example generates 247
states.1

There are seven possible valuations for the tuple 〈r1, r2, r3, r4〉 of variables: 〈1,0,2,0〉,
〈1,0,1,0〉, 〈1,1,2,1〉, 〈1,1,1,1〉, 〈1,1,1,2〉, 〈0,1,0,1〉, 〈0,1,0,2〉.

– Total store order allows to reorder a store followed by a read of a different variable, and
also allows to eliminate a read of a variable following a store to the same variable. The ex-
ample generates 943 states. Apart from the valuations allowed in sequential consistency,
TSO allows one more valuation for 〈r1, r2, r3, r4〉: 〈0,0,0,0〉.

1In this example, we define a state as a valuation of the global and local variables, the program counters, and
the deferred statements for each thread.
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– Partial store order further allows to reorder stores of different variables. The example
generates 3382 states. Apart from the valuations allowed in TSO, PSO allows seven more
valuation for 〈r1, r2, r3, r4〉: 〈1,0,0,0〉, 〈1,1,0,1〉, 〈1,1,0,2〉, 〈1,1,2,0〉, 〈1,1,1,0〉,
〈1,1,0,0〉, 〈0,1,0,0〉.

– Relaxed memory order further allows to reorder loads and a load followed by a store to a
different variable. The example generates 26596 states. Apart from the valuations allowed
in PSO, RMO allows one more valuation: 〈1,1,2,2〉.
We indeed produce these outcomes using our automated tool FOIL which we present in

the next chapter. Some of the outcomes in the above examples are hard to reason about
manually. That shows the importance of automated tools to reason about outcomes under
relaxed memory models.

5 STM algorithms in RML

A state of a thread carries the information of the program currently being executed, the
valuation of the local variables, the deferred statements of the thread, and the location of
the transactional program. A thread-local state zt

l of thread t is the tuple 〈pt , σ t
L,Dt , loct 〉,

where pt is the current RML program being executed by thread t , σ t
L : L ∪ Idx → N is

the valuation of the local and index variables of thread t , Dt is the deferred statements of
thread t , and loct ∈ B

∗ is the location of the transactional program θ t . A state z of an STM
algorithm with T threads is given by 〈σG, z1

l . . . zT
l 〉, where σG : G → N is the valuation

of the global variables of the STM algorithm, and zt
l is the thread-local state of thread t

for 1 ≤ t ≤ T . An STM algorithm A is a 4-tuple 〈pr,pw,pe, zinit〉, where pr , pw , and pe

are RML programs, and zinit is the initial state of the STM algorithm. Moreover, we define
a function α : C → P that maps a transactional command to an RML program, such that
α((read, k)) = (v := k;pr), α((write, k)) = (v := k;pw), and α(xend) = pe .

5.1 Language of an STM algorithm

Let a scheduler σ on T be a function σ : N → T . Given a scheduler σ , a transactional
program prog, and a memory model M, a run of an STM algorithm A is a sequence
〈z0, i0〉, . . . 〈zn, in〉 such that z0 = zinit, and for all j such that 0 ≤ j < n, if zj = 〈σG, z1

l . . . zT
l 〉

and zj+1 = 〈σ ′
G, z′1

l . . . z′T
l 〉, then (i) 〈p,σG ∪ σL,D〉 ij+1−−→ 〈p′, σ ′

G ∪ σ ′
L,D′〉 is a step of

RML with memory model M, and (ii) for all threads t = σ(j), we have z′t
l = zt

l , and
(iii) for thread t = σ(j), we have z′t

l = 〈p′′, σ ′
L,D′〉, where (a) if ij+1 ∈ {rfin, commit}, then

p′′ = α(θ(loc · 1)), (b) else if ij+1 = abort, then p′′ = α(θ(loc · 0)), (c) else p′′ = p′. A run
〈zinit, i0〉, . . . , 〈zn, in〉 of an STM algorithm A produces a history h such that h is the longest
subsequence of operations in i1 . . . in. The language L(A,M) of an STM algorithm A under
a memory model M is the set of all histories h where there exists a multi-threaded transac-
tional program prog and a scheduler σ such that h can be produced by A on prog with σ

under M. An STM algorithm A is safe for property π under a memory model M if every
history in the language of A under M is included in π .

5.2 Examples

We now describe three STM algorithms, DSTM, TL2, and McRT-STM in RML. We present
the RML programs pr , pw , and pe for each STM algorithm. We also give the initial valuation
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Algorithm 3 The TL2 algorithm in RML

01 program pa :
02 u := 0
03 while u< V do
04 u := u+ 1;
05 if owner[u] = self then
06 owner[u] := 0;
07 rs[u] := 0; ws[u] := 0
08 lclock := 0
09 abort

01 program pw :
02 if lclock= 0 then
03 lclock := clk;
04 ws[v] := 1;

01 program pr :
02 if lclock= 0 then
03 lclock := clk;
04 if ws[v] = 0 then
05 l := owner[v];
06 if l = 0 then pa
07 l := g[v];
08 lver[v] := version[v];
09 if lclock = lver[v] then pa
10 rs[v] := 1;
11 rfin

01 program pe :
02 u := 0;
03 while u< V do
04 u := u+ 1;
05 if (ws[u] = 1) then
06 l := cas(owner[u],0,self);
07 if l = self then pa
08 l := 0;
09 while l = lclock+ 1 do
10 lclock := clk
11 l := cas(clk,lclock,lclock+ 1);
12 u := 0;
13 while u< V do
14 u := u+ 1;
15 if rs[u] = 1 then
16 rs[u] := 0;
17 l := owner[u];
18 c := version[u];
19 if c = lver[u] then pa
20 if l = 0 then pa
21 u := 0;
22 while u< V do
23 u := u+ 1;
24 if ws[u] = 1 then
25 version[u] := lclock;
26 g[u] := l;
27 u := 0;
28 while u< V do
29 u := u+ 1;
30 if ws[u] = 1 then
31 owner[u] := 0;
32 ws[u] := 0;
33 lclock := 0;
34 commit

of the variables of the STM algorithm. We use the notation owner[V] to denote that owner
is an array of size V . All STM algorithms also consist of a program pa which corresponds
to the abort of the transaction.

TL2 Algorithm 3 shows four RML programs: pr (read), pw (write), pe (end), and pa (abort).
The program pa can be called from within pr , pw , and pe . The global variables are lock[V],
version[V], g[V], and clk. The local variables are rs[V], ws[V], lver[V], lclock,
c, and l. The index variables are u and v. self denotes the thread number of the exe-
cuting thread. The initial valuation of all variables is 0. The array g[V] of global variables
corresponds to the addresses of the transactional variables V .
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Algorithm 4 The DSTM algorithm in RML

01 program pa :
02 u := 0;
03 while u< V do
04 u := u+ 1;
05 l := cas(txr[v].tid,self,aborTx)

06 abort

01 program pr :
02 pw
03 rfin

01 program pe :
02 u := 0;
03 while u< V do
04 u := u+ 1;
05 l := cas(txr.tid[v],self,commTx)

06 commit

01 program pw :
02 k := 0
03 l := txr[v]; t := l.tid
04 if t = self then
05 while k = l do
06 k := 0
07 m.tid := self
08 if t.status= 1 then
09 m.oldv := l.newv
10 m.newv := l.newv
11 if t.status= 2 then
12 m.oldv := l.oldv
13 m.newv := l.oldv
14 if t.status= 0 then
15 k := cas(t.status,0,2)

16 if k= 0 then
17 m.oldv := l.oldv
18 m.newv := l.oldv
19 k := cas(txr[v],l,m)

DSTM The global variables are txr[V]. The local variables are rs[V], v, k, l, m, t, and u.
All variables are initialized to 0. DSTM consists of structures which can be implemented
using a sequence of addresses. We use these structures and slightly modify the DSTM al-
gorithm to avoid dynamic memory allocation. We express the programs pr , pw , and pe of
DSTM in RML in Algorithm 4.

McRT STM McRT STM [34] is an STM proposal from Intel. It significantly differs from
the previous two STM algorithms we discussed, due to the fact that McRT STM is a di-
rect update STM. McRT STM updates the global memory during the write command. The
global variables are owner[V] and g[V]. The local variables are rs[V], l, m, u, and v. All
variables are initialized to 0. The array g[V] of global variables corresponds to the addresses
of the transactional variables V . McRT STM is presented in RML in Algorithm 5.

6 The FOIL tool

We developed a stateful explicit-state model checker, FOIL, that takes as input the RML
description of an STM algorithm A, a memory model M, and a correctness property π ,
and checks whether A is correct with two threads and two variables for π under the memory
model M. FOIL uses the RML semantics with respect to the memory model M to compute the
state space of the STM algorithm A, and checks inclusion within the correctness property π .
FOIL builds on the fly, the product of the transition system for A and the TM specification
for π . In our case, we let the correctness criterion be opacity. If an STM algorithm A is not
opaque for a memory model M, FOIL automatically inserts fences within the RML repre-
sentation of A in order to make A opaque. FOIL succeeds if it is indeed possible to make
A opaque solely with the use of fences. In this case, FOIL reports a possible set of missing
fences. FOIL fails if inserting fences cannot make A opaque. In this case, FOIL produces a
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Algorithm 5 The McRT-STM algorithm in RML

01 program pa :
02 u := 0;
03 while u< V do
04 u := u+ 1;
05 l := owner[u];
06 if l= self then
07 rollback[v];
08 owner[v] := 0;
09 rs[v] := 0
10 abort

01 program pw :
02 l := owner[v];
03 if l = self then
04 if l = 0 then pa
05 l := cas(owner[v],0,self);
06 if l = self then pa
07 g[v] := l

01 program pr :
02 if (rs[v] = 1) then
03 l := owner[v];
04 if l = self and l = 0 then
05 if l< R then pa
06 else
07 m := cas(owner[v],l,l+ 1);
08 if m = l+ 1 then pa
09 rs[v] := 1
10 l := g[v]
11 rfin

01 procedure pe :
02 v := 0;
03 while v< V do
04 v := v+ 1;
05 if rs[v] = 1 then
06 l := 0;m := 0
07 while (l− 1 = m)

08 l := owner[v];
09 m := cas(owner[v],l,l− 1);
10 rs[v] := 0
11 else
12 if owner[v] = self then
13 owner[v] := 0
14 commit

Fig. 5 Inputs and examples of possible outputs of FOIL

shortest counterexample to opacity under sequential consistency.2 This is shown in Fig. 5.
We used FOIL to check the opacity of DSTM, TL2, and McRT STM under different memory
models.

6.1 Results

We first present the results we obtained from FOIL. Then, we provide some implementation
details which make FOIL work.

2Note that if an STM algorithm A cannot be made opaque with fences under some memory model M , then
A is not opaque even under sequential consistency.
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Table 2 Time for checking the opacity of STM algorithms under sequential consistency on a 2.8 GHz PC
with 2 GB RAM. The time is divided into time tg needed to generate the language of the STM algorithm
from the RML description, and time ti needed to check inclusion within the property of opacity

STM algorithm A Number of states A is opaque? tg ti

TL2 1888674 Yes 581 s 1.1 s

DSTM 3060158 Yes 1327 s 2.3 s

McRT STM 479234 Yes 265 s 0.9 s

Table 3 Counterexamples generated for opacity, and the type and location of fences required to remove all
counterexamples on different relaxed memory models. We list the statement number after which the fence
has to be inserted in the RML program

STM TSO PSO RMO

TL2 No fences w1, stfence: pe,26 w1, stfence: pe,26

w3, ldfence: pe,17

w4, ldfence: pr ,07

DSTM No fences No fences No fences

McRT STM No fences w2, stfence: pa,07 w2, stfence: pa,07

Counterexamples

w1 : (〈load v1〉, t1), (〈rfin〉, t1), (〈store v1〉, t2), (〈store v1〉, t1)

w2 : (〈store v1〉, t1), (〈load v2〉, t2), (〈rfin〉, t2), (〈load v1〉, t2), (〈rfin〉, t2), (〈rollback v1〉, t1)

w3 : (〈load v1〉, t1), (〈rfin〉, t1), (〈load v2〉, t2), (〈rfin〉, t2), (〈store v1〉, t2), (〈store v2〉, t1)

w4 : (〈load v1〉, t1), (〈rfin〉, t1), (〈store v1〉, t2), (〈load v1〉, t1), (〈rfin〉, t1)

Sequential consistency We first model check the STM algorithms for opacity on a se-
quentially consistent memory model. We find that all of DSTM, TL2, and McRT STM are
opaque. The state space obtained for these STM algorithms is large as it covers every pos-
sible interleaving, where the level of atomicity is that of the hardware. Table 2 lists the
number of states of different STM algorithms with the verification results under sequential
consistency. The usefulness of FOIL is demonstrated by the size of the state spaces it can
handle.

Relaxed memory models Next, we model check the STM algorithms on the following
relaxed memory models: TSO, PSO, and RMO. We find that TL2 and McRT STM are
not opaque for PSO and RMO. FOIL gives counterexamples to opacity. We let FOIL insert
fences automatically until the STM algorithms are opaque under different memory models.
Table 3 lists the number and location of fences inserted by FOIL to make the various STM
algorithms opaque under various memory models. Note that the counterexamples shown
in the table are projected to the loads, stores, and rollbacks of the transactional variables,
and rfin instructions. We omit the original long counterexamples (containing for example, a
sequence of loads and stores of locks and version numbers) for brevity.

Currently, STM designers use intuition to place fences, as lack of fences risks correctness,
and too many fences hamper performance. As FOIL takes as input a memory model, it makes
it easy to customize an STM implementation according to the relaxations allowed by the
memory model. Although FOIL is not guaranteed to put the minimal number of fences, we
found that FOIL indeed inserts the same fences as those in the official STM implementations.
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Algorithm 6 Obtaining the transition system of an STM algorithm

generateTransitionSystem(A)

frontier := {qinit}
Q := frontier
while frontier = ∅

pick and remove a state q from frontier
T := findnext(A,q)

δ := δ ∪ T

let Q′ be the set of destination states in T

add the set Q \ Q′ of states to frontier
Q := Q ∪ Q′

output δ

6.2 Analysis

We note that reordering a store followed by a load, and reading own write early (due to
store buffers) does not create a problem in the STMs we have studied. This is evident from
the fact that all STMs are correct under the TSO memory model without any fences. On
the other hand, relaxing the order of stores or loads can be disastrous for the correctness
of an STM. This is because most STMs use version numbers or locks to control access.
For example, a reading thread first checks that the variable is unlocked and then reads the
variable. A writing thread first updates the variable and then unlocks it. Reversing the order
of writes or reads renders the STM incorrect.

7 Implementation details

We implemented FOIL in OCaml. FOIL supports two modes: generating the state space of
an STM algorithm and finding a counterexample history on-the-fly. We found it important
to allow both modes in FOIL due to the following reason. The state spaces of the STM
algorithms are very large. Checking for a counterexample on the fly requires to build the
product automaton. The state space of the product automaton could be as large as the product
of the state spaces of the STM algorithm and the TM specification. The size of the transition
system of the STM algorithms is, on average, a million states under sequential consistency.
The size is much bigger under highly relaxed memory models. The size of the deterministic
TM specification is around 46,000 states. We found it impossible, with modest computing
resources, to construct the whole product automaton or the transition system of an STM
algorithm under a highly relaxed memory model using FOIL. However, FOIL could construct
the transition system of the STM algorithms under sequential consistency. We then use a
lightweight language inclusion tool to check whether the language of the STM algorithm is
included in the language of the TM specification.

7.1 Generating the state space

We obtain the transition relation of an STM algorithm using Algorithm 6. Intuitively, the
algorithm finds all states reachable from the initial state, and outputs the transition system.
How FOIL handles relaxed memory models, is hidden beneath the findnext procedure. The
findnext procedure takes as input an STM algorithm and a state q of the STM algorithm, and
gives all transitions in the STM algorithm from the state q .
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Algorithm 7 Obtaining a counterexample to opacity on-the-fly

findCounterexample(A,Spec)

frontier := {(qinit,pinit)}
path(qinit,pinit) := ε

Q := frontier
while frontier = ∅

pick and remove a state (q,p) from frontier
T := findnext(A,q)

for each transition (q,op, q ′) ∈ T do
if op ∈ Ôp then

if there exists a state p1 ∈ P such that (p,op,p1) ∈ δp then
p′ := p1 such that (p,op,p1) ∈ δp

else
report counterexample path(q,p) · op

else p′ := p

if (q ′,p′) /∈ Q then
add (q ′,p′) to Q

add (q ′,p′) to frontier
path(q ′,p′) = path(q,p) · op

report no counterexample found

7.2 Finding a counterexample

Although the state space generation mode of FOIL gives the transition system for the STM
algorithms under sequential consistency, the mode cannot produce the transition system for
the STM algorithms under relaxed memory models. This is because the state space of an
STM algorithm under a relaxed memory model can be too large to explore with modest
computation speed and memory. However, many histories produced under these memory
models may not even satisfy opacity. To handle this situation, we use on-the-fly verification.
FOIL maintains the product automaton of the transition system of the STM algorithm and
the TM specification, and tries to find counterexamples early. FOIL uses Algorithm 7 to
construct the product automaton and find a counterexample to opacity. We represent the
deterministic TM specification for opacity as Spec = 〈P,pinit, δp〉.

We find this procedure highly successful, because counterexamples of opacity tend to be
short. On observing a counterexample, FOIL suggests the location of a fence which might
make the STM algorithm correct under the given relaxed memory model. On inserting the
fence, the number of interleavings decreases, and thus the size of the state space decreases.
We run FOIL in this mode until it takes a few minutes to find a counterexample. After that,
we run FOIL in the state space generation mode. Once we obtain the state space of the STM
algorithm, we can use our lightweight language inclusion tool to check whether the language
of the STM algorithm is included in the specification. The interesting part is how the two
modes help each other. It is not possible to reach our goal with either of the modes. The state
space generation mode fails to generate the state space of an STM algorithm under a highly
relaxed memory model due to the large number of interleavings. The counterexample finder
mode fails to finish due to the large size of the product automaton even under sequential
consistency.
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7.3 Counterexample analysis

Our tool FOIL automatically inserts fences. However, FOIL does not ensure that the number
of fences it inserts is minimal. We describe how FOIL chooses the place where the fence
needs to be inserted.

Recall that when FOIL encounters a statement s with a memory instruction inst of
thread t , FOIL adds the instruction in the queue d = s0 . . . sn of deferred statements of thread
t according to the given memory model. If FOIL inserts the memory instruction in the mid-
dle of the queue to obtain d ′ = s0 . . . si · s · si+1 . . . sn, FOIL tags the statement s in the queue
with the string sn · sn−1 . . . si+1. When FOIL reports a counterexample, we search for the last
statement with a reordering tag in the counterexample. Let the tag be s1 . . . sk . We attribute
the error to the reordering allowed by sk . So, we insert a fence after the statement sk . The
inserted fence is a store (resp. load) fence if sk is a store (resp. load) instruction.

8 Extending the verification results

We now extend the verification results for two threads and two variables to an arbitrary
number of threads and variables.

8.1 Structural properties of STM algorithms

In earlier work [19], we presented a set of structural properties for STMs on a high level
alphabet. These properties are hard to directly prove with hardware level atomicity. So, we
present sufficient conditions for these structural properties to hold. For the sake of complete-
ness, we present the structural properties again in this paper.

To reduce the verification problem of STM algorithms to a finite number of threads and
variables, we reason about STM algorithms in terms of the following properties. We assume
a memory model M .

– An STM algorithm A is abort isolated if for every history h ∈ L(A,M), for every aborted
transaction x in h, if an instruction inst of x changes the value of a global variable g

and a transaction y observes the value of g before x aborts, then y aborts in the step of
observing g.

– An STM algorithm is pending isolated if for every history h, for every pending transaction
x in h, if an instruction inst of x changes the value of a global variable g and a transaction
y observes the value of g before x finishes, then y aborts.
These two properties restrict the aborting and pending transactions in an STM. These
properties require that if an aborting or a pending transaction changes the global state, then
that change is not visible to committing transactions. We shall later use these properties
to remove the aborting and pending transactions from a history.

– A STM algorithm is conflict commutative if for every history h where the execution of
a transactional command c1 by thread t overlaps with the execution of a transactional
command c2 by thread u, if c1 consists of an instructions inst1 and inst3, and c2 consists
of instructions inst2 and inst4 such that inst1 occurs before inst2 in h and they conflict,
and h = h1inst4inst3h2, then h′ = h1inst3inst4h2 is also a history in the language of the
STM algorithm.

We now present four structural properties of STM algorithms. We then use these proper-
ties to prove the reduction theorem for opacity. We use the above definitions to show that the
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STM algorithms, DSTM and TL2, satisfy these structural properties. Note that the proper-
ties are sufficient (and not necessary) conditions for the reduction theorem to hold. Let Γ be
a transactional memory and let A be the corresponding STM algorithm. Let h be a history
in Γ .

P1 Transaction projection We define the transaction projection of h on X′ ⊆ X as the
subsequence of h that contains every statement of all transactions in X′. The property P1
states that the transaction projection of h on X′ is in Γ , where X′ contains all committed
transactions and no aborted transactions.

We should note that, however, we cannot project away a subset of the aborted transac-
tions. This is because removing an aborted transaction may allow another aborted transac-
tion to commit.

Lemma 1 If an STM algorithm A is abort isolated and pending isolated, then the STM Γ

satisfies transaction projection.

Proof Consider an arbitrary history h ∈ L(A,M). We can divide the history h into subse-
quences h1 . . . hn, where for all i, all statements in hi are committing, aborting, or pending.
As the STM algorithm is abort isolated, we can remove the subsequences from h1 . . . hn

which are aborting. Moreover, as the STM algorithm is pending isolated, we can remove a
subset of the subsequences which are pending. Hence, we get a new history h′ such that all
statements in h′ belong to committed or pending transactions, and h′ ∈ L(A,M). �

P2 Thread renaming For non-overlapping transactions, the STM is oblivious to the iden-
tity of the thread executing the transaction. The property P2 states that if (i) h has no aborting
transactions, and (ii) there exist two threads u and t such that for all committing transactions
x of u and y of v in the history h, either x <w y or y <w x, then the history h′ obtained by
renaming all transactions of thread u to be from thread t is in Γ .

P3 Variable projection If a transaction can commit, then removing all statements that in-
volve some particular variables does not cause the transaction to abort. We define the vari-
able projection of h on V ′ ⊆ V as the subsequence of h that contains all commit and abort
statements, and all read and write statements to variables in V ′. The property P3 states that
if h has no aborting transactions, then for all V ′ ⊆ V , the variable projection of h on V ′ is
in Γ . An STM satisfies variable projection if reading or writing a variable does not remove
a conflict on other variables.

P4 Monotonicity The most important property which allows to reduce the verification
property is the monotonicity in STM. Monotonicity states that if a history is allowed by
the STM, then more sequential forms of the history are also allowed. Formally, let F ⊆ Ôp

∗

be the set of opaque histories with all committed and exactly one unfinished transaction. We
define a function seq : F → 2F such that if h2 ∈ seq(h1), then h2 is sequential and strictly
equivalent to h1. The monotonicity property for opacity states that if h = h′ · op, where
h′ ∈ F , and op is not an abort, and op is an operation of the unfinished transaction in h′, then
for every history h2 ∈ seq(h′), the history h2 · op is a finite prefix of a history in Γ .

Lemma 2 If the STM algorithm A is conflict commutative, then the STM Γ is monotonic.
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Proof Consider a history h = h′ · op produced by the STM algorithm. We want to prove
that if h′ is opaque and h′ consists of all committed and exactly one unfinished transaction,
then h′ can be sequentialized. We consider the history h′. For every pair of conflicting op-
erations, we use conflict commutativity to sequentialize the corresponding commands. As
h′ is opaque, sequentializing the commands gives a sequential history such that the state of
the STM algorithm after the sequential version of h′ is equivalent to the state of the STM
algorithm after h′. Thus, h′ ·op is produced by the STM algorithm. Thus, Γ is monotonic. �

The structural properties lead to the reduction theorem [19] which states that if an STM
algorithm satisfies opacity for two threads and two variables, and satisfies the properties
P1–P4, then the STM algorithm satisfies opacity for an arbitrary number of threads and
variables.

8.2 Proving structural properties for STMs

We cannot prove that the STM algorithm McRT STM is abort isolated. This is because
McRT STM is a direct update STM, which writes to memory during the transaction. Thus,
a state change by a thread in the STM algorithm can be observed by other threads.

We note that for DSTM and TL2, the programs pr , pw , and pe and the initial state zinit do
not distinguish between the threads. Thus, the STM algorithms we consider satisfy the thread
renaming P2 property. DSTM and TL2 satisfy P3 as they track every variable accessed by
every thread independently.

8.2.1 DSTM

DSTM relies on a notion of ownership. If a transaction wants to read or write a variable,
it first atomically sets the transaction record of the variable to itself. If another transaction
wants to access the same variable, it first sets the status of the owner transaction to aborted,
and reads the old value of the variable.

Abort and pending isolation An aborting or pending transaction in DSTM changes the
global valuation by changing the status of other transactions to aborted. All other changes
are not observable to committed transactions.

Conflict commutative DSTM uses encounter-time ownership for both reads and writes.
Thus, if a transaction loads a variable before another transaction stores to the same variable,
then all instructions of the txrd command can appear before all instructions of the txwr
command.

8.2.2 TL2

Abort and pending isolation An aborting transaction x in TL2 can hold a lock and change
the value of the global timestamps. If another transaction y observes that x holds the lock
for some variable, y aborts. Similarly, if y observes an increment of the global timestamp
by x during a read, y aborts. A similar argument holds for pending isolation.
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Conflict commutative To prove that TL2 is conflict commutative at hardware level atom-
icity, we need to consider the relaxed memory model. It turns out that the TL2 algorithm
(shown in Algorithm 3) is not conflict-commutative under some relaxed memory models.
This is because if a txend command overlaps with a txrd command, such that the store in-
struction in the txend command appears before the load instruction in the txrd command,
it may not be possible to move all instructions corresponding to the txrd command after
all instructions of the txend command. This problem goes away if we insert some fences
in the RML program of the TL2 algorithm. We observe that once FOIL inserts the required
fences, TL2 is indeed conflict commutative. Consider a txrd command overlapping with a
conflicting txend command. If the transactional variable is loaded in txrd before the vari-
able is stored in txend, then all instructions of the txrd command can be moved above all
instructions of the txend command (otherwise the reading transaction must abort). Similarly,
if the txend commands of two transactions x and y overlap, if x stores to the transactional
variable before y, then all instructions in the txend command of x can be moved above all
instructions of the txend command of y.

9 Related work

We present a brief overview of the related work in the direction of relaxed memory models
and verification tools for relaxed memory models.

9.1 Formalisms for relaxed memory models

Adve et al. [1] provide a detailed description of hardware relaxed memory models. Language
level memory models have been developed for Java [29] and C++ [3]. Various formalisms
for memory models have been proposed in the literature [4, 7, 21, 35, 36]. Most of these for-
malisms provide an axiomatic definition of memory models. Architectural manuals [39, 42]
also describe memory models in an axiomatic style. Operational semantics of relaxed mem-
ory models were developed by Petri et al. [4]. Their formalism captures write-to-read/write
reordering used in memory models like TSO and PSO. Moreover, the formalism allows
thread creation. However, it cannot express read-to-read/write relaxations found in memory
models like RMO.

Verification based on axiomatic memory model specifications relies on constraint solving
(like SAT solvers) to validate execution traces. As our tool is based on explicit state model
checking, we find it more intuitive to define an operational semantics of relaxed memory
models. Our operational semantics handles write-to-read/write and read-to-read/write relax-
ations, but cannot handle thread creation.

9.2 Verification tools

Model checkers like Zing [2], SPIN [25], KISS [33], and CHESS [30, 32] are developed
for verification of concurrent programs. These tools are built to detect races in concurrent
programs. However, STM algorithms, by design, often consist of benign races. Moreover,
these tools assume a sequentially consistent memory model, and miss out a whole range
of interleavings that arise due to the reorderings of the instructions of a thread allowed by
a relaxed memory model. Verification of concurrent data types has been attempted with
theorem proving [9, 41]. These methods require a manual tedious proof construction, and
assume sequential consistency.
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Dynamic tools [13, 15–17] for verifying atomicity and race freedom in concurrent pro-
grams have also been built. Manovit et al. [28] used testing to find errors in STM implemen-
tations. Elmas et al. [12] have built tools for runtime verification of concurrent data types.
The motivation for dynamic tools is to check the correctness of a computation at runtime,
and throw an exception in case of error. Dynamic tools can find errors in an STM algorithm
only when the STM algorithm is used to execute a transactional program. Dynamic tools
cannot be used to establish the correctness of an STM algorithm, that is, to check whether
the STM algorithm is correct for all programs. However, as static analysis is tricky for real
iSTM implementations, we believe that dynamic tools can be useful to check correctness
properties of STM implementations at runtime. Instead of the data race specification, the
specification of opacity constructed in this thesis could be used.

Burckhardt et al. [5, 6] developed CheckFence, a static verification tool for concurrent C
programs under relaxed memory models. The tool requires as input a bounded test program
(a finite sequence of operations) for a concurrent data type and uses a SAT solver to check
the consistency and report if any fences are required. However, CheckFence cannot automat-
ically introduce fences. We use the structural properties of STM, which allow us to consider
a maximal program on two threads and two variables in order to generalize the result to
all programs with any number of threads and variables. We model the correctness problem
as a relation between transition systems. Moreover, our tool, FOIL, automatically inserts
fences. Padua et al. [14, 27] developed mechanisms to ensure sequential consistency under
relaxed memory models. However, conservatively putting fences into STM implementations
to guarantee sequential consistency would badly hurt STM performance. STM programmers
put fences only where necessary. Gopalakrishnan et al. [18] developed a verification tool for
checking memory orderings for small programs.

9.3 STM Verification

Recent work has addressed verification in the context of transactional memories. Tasiran [40]
verified the correctness of the Bartok STM. The author manually proves the correctness of
the Bartok STM algorithm, and uses assertions in the Bartok STM implementation to ensure
that the implementation refines the algorithm. This work is orthogonal to ours, as we focus
on automated techniques to prove the correctness of TM algorithms. Cohen et al. [8] model
checked STM applied to programs with a small number of threads and variables, against
the strong correctness property of Scott [37]. Further, they studied safety properties in situa-
tions where transactional code has to interact with non-transactional accesses. Guerraoui et
al. [19, 20] presented specifications for strict serializability and opacity in STM algorithms
and model checked various STMs. All these verification techniques in STMs assumed se-
quentially consistent execution and the atomicity of STM operations like read, write, and
commit.

10 Conclusion

We address the verification issues related to STM implementations on real multiprocessors.
First of all, we presented a formalism to express STMs and their correctness properties at
the hardware level of atomicity under relaxed memory models. We illustrated our formalism
by specifying common STMs such as DSTM, TL2, and McRT STM; memory models such
as total store order (TSO), partial store order (PSO), and relaxed memory order (RMO); and
correctness criteria such as opacity. We then presented a tool, FOIL, which automatically
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checks the correctness of STMs under fine-grained hardware atomicity and relaxed memory
models. FOIL can automatically insert load and store fences where necessary in the STM
algorithm description, in order to make the STMs correct under various relaxed memory
models. We plan to extend our work to more complicated software memory models, such as
Java [29], which further relax the order of memory instructions.
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