Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Journal articles
  4. Three-dimensional phase-field simulation of micropore formation during solidification: Morphological analysis and pinching effect
 
research article

Three-dimensional phase-field simulation of micropore formation during solidification: Morphological analysis and pinching effect

Meidani, H.
•
Desbiolles, J.-L.  
•
Jacot, A.  
Show more
2012
Acta Materialia

A three-dimensional (3-D) multiphase-field model has been developed in order to study the formation of a micropore constrained to grow in a solid network (i.e. pinching effect). The model accounts for the pressure difference due to capillarity between liquid and gas, the equilibrium condition at triple (solid-liquid-pore) lines, and the partitioning and diffusion of dissolved gases such as hydrogen. From the predicted 3-D morphology of the pore, entities such as the interfacial shape distribution are plotted and analyzed. It is shown that the mean curvature of the pore-liquid surface, and thus also the pressure inside the pore, is uniform. The results are then compared with analytical pinching models. While predicting a similar trend, analytical models tend to underestimate the pore curvature at high solid fractions. Despite the complex morphology of pores reconstructed using high-resolution X-ray tomography, the present phase-field results suggest that a simple pinching model based on a spherical tip growing in between remaining liquid channels is a fairly good approximation. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

Meidani - article.pdf

Type

Postprint

Version

http://purl.org/coar/version/c_ab4af688f83e57aa

Access type

openaccess

Size

886.51 KB

Format

Adobe PDF

Checksum (MD5)

c09d014ad0cdaa165fa678fa81b4d4ae

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés