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Serge Vaudenay2

1 University College London, UK
2 EPFL, Lausanne, Switzerland

n.courtois@ucl.ac.uk,

{pouyan.sepehrdad, petr.susil, serge.vaudenay}@epfl.ch

Abstract. ElimLin is a simple algorithm for solving polynomial systems of multivariate equations
over small finite fields. It was initially proposed as a single tool by Courtois to attack DES. It
can reveal some hidden linear equations existing in the ideal generated by the system. We report
a number of key theorems on ElimLin. Our main result is to characterize ElimLin in terms of a
sequence of intersections of vector spaces. It implies that the linear space generated by ElimLin is
invariant with respect to any variable ordering during elimination and substitution. This can be
seen as surprising given the fact that it eliminates variables. On the contrary, monomial ordering is a
crucial factor in Gröbner basis algorithms such as F4. Moreover, we prove that the result of ElimLin
is invariant with respect to any affine bijective variable change. Analyzing an overdefined dense
system of equations, we argue that to obtain more linear equations in the succeeding iteration in
ElimLin some restrictions should be satisfied. Finally, we compare the security of LBlock and MIBS
block ciphers with respect to algebraic attacks and propose several attacks on Courtois Toy Cipher
version 2 (CTC2) with distinct parameters using ElimLin.
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degree

[Breaking a good cipher should require]
“as much work as solving a system of simultaneous equations

in a large number of unknowns of a complex type.”

Claude Elwood Shannon [46]

1 Introduction

Various techniques exist in cryptanalysis of symmetric ciphers. Some involve statistical analysis
and some are purely deterministic. One of the latter methods is algebraic attack recognized as
early as 1949 by Shannon [46]. Any algebraic attack consists of two distinct stages:

– Writing the cipher as a system of polynomial equations of low degree often over GF(2) or
GF(2k), which is feasible for any cipher [49, 21, 43].

– Recovering the secret key by solving such a large system of polynomial equations.

Algebraic attacks have been successful in breaking several stream ciphers (see [1, 19, 12, 25,
20, 15, 24, 11] for instance) and a few block ciphers such as Keeloq [38] and GOST [16], but they
are not often as successful as statistical attacks. On the other hand, they often require low data
complexity. This is not the case for statistical attacks.

General purpose algebraic attack techniques were developed in the last few years by Courtois,
Bard, Meier, Faugère, Raddum, Semaev, Vielhaber, Dinur and Shamir to solve these systems [17,
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22, 21, 19, 12, 31, 32, 45, 48, 24, 25]. The problem of solving such polynomial systems of multivari-
ate equations is called MQ problem and is known to be NP hard for a random system. Currently,
for a random system in which the number of equations is equal to the number of unknowns, there
exists no technique faster than an exhaustive key search which can solve such systems. On the
other hand, the equations derived from symmetric ciphers turn out to be overdefined and sparse
for most ciphers. So, they might be easier to solve. This sparsity is coming from the fact that due
to the limitations in hardware and the need for lightweight algorithms, simple operations arise
in the definition of cryptosystems. They are also overdefined due to the non-linear operations.

The traditional method for solving overdefined polynomial systems of equations are known
to be various Gröbner basis algorithms such as Buchberger algorithm [10], F4 and F5 [31, 32] and
XL [22]. The most critical drawback of the Gröbner basis approach is the elimination step where
the degree of the system increases. This leads to an explosion in memory space and even the
most current efficient implementations of Faugère algorithm [31, 32] under PolyBoRi framework
[8] or Magma [41] are not capable of handling large systems of equations efficiently. On the other
hand, they are faster than other methods for overdefined dense systems or when the equations
are over GF(q) where q > 2. In fact, together with SAT solvers, they are currently the most
successful methods for solving polynomial systems.

Nevertheless, due to the technical reasons mentioned above, the system of equations extracted
from symmetric ciphers turns out to be sparse. Unfortunately, the Gröbner basis algorithms can
not exploit this property. In such cases, algorithms such as XSL [21], SAT solving techniques [4,
28, 3], Raddum-Semaev algorithm [45] and ElimLin [17] are of interest.

In this paper, we study the elimination algorithm ElimLin that falls within the remit of
Gröbner basis algorithms, though it is conceptually much simpler and is based on a mix of
simple linear algebra and substitution. It maintains the degree of the equations and it does
not require any fixed ordering on the set of all monomials. On the contrary, we need to work
with ad-hoc monomial orderings to preserve the sparsity and make it run faster. This simple
algorithm reveals some hidden linear equations existing in the ideal generated by the system.
We show in Sec. 7 that ElimLin does not find all such linear equations.

As far as the authors are aware, no clue has been found yet which demonstrates that Elim-
Lin at some stage stops working. This does not mean that ElimLin can break any system. As
mentioned earlier, for a random system this problem is NP hard and Gröbner basis algorithms
behave much better for such dense random systems. But, the equations derived from cryptosys-
tems are often not random (see [33] for the huge difference between a random system and the
algebraic representation of cryptographic protocols). What we mean here is that if for some
small number of rounds ElimLin performs well but then it stops working for more rounds, we
can increase the number of samples and it will become effective again. The bottleneck is having
an efficient data structure for implementing ElimLin together with a rigorous theory behind it
to anticipate its behaviour. These two factors are currently missing in the literature.

Except two simple theorems by Bard (see Chapter 12, Section 5 of [4]), almost nothing has
been done regarding the theory behind ElimLin. As ElimLin can also be used as a pre-processing
step in any algebraic attack, building a proper theory is vital for improving the state of the art
algebraic attacks. We are going to shed some lights on the way this ad-hoc algorithm works and
the theory behind it.

In this paper, we show that the output of ElimLin is invariant with respect to any variable
ordering. This is a surprising result, i.e., while the spaces generated are different depending on
how substitution is performed, we prove that their intersection is exactly the same. Furthermore,
we prove that no affine bijective variable change can modify the output of ElimLin. Then, we
prove a theorem on how the number of linear equations evolves in each iteration of ElimLin.
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An unannounced competition is currently running for designing lightweight cryptographic
primitives. This includes several designs which have appeared in the last few years (see [7,
23, 40, 35, 30, 37, 47, 2, 36, 6]). These designs mainly compete over the gate equivalent (GE) and
throughput. This might not be a fair comparison of efficiency, since they do not provide the
same level of security with respect to distinct types of attacks. In this paper, we compare the
two lightweight Feistel-based block ciphers MIBS [39] and LBlock [50] and show that with the
same number of rounds, LBlock provides a much lower level of security compared to MIBS
with respect to algebraic attacks. In fact, we attack both ciphers with ElimLin and F4 algorithm.
Finally, we provide several algebraic attacks against Courtois Toy Cipher version 2 (CTC2) with
distinct parameters using ElimLin.

In Sec. 2, we elaborate the ElimLin algorithm. Then, we remind some basic theorems on
ElimLin in Sec. 3. As our main contribution (Theorem 7), we prove in Sec. 4 that ElimLin can be
formulated as an intersection of vector spaces. We also discuss its consequences in Sec. 4.2 and
prove a theorem regarding the evolution of linear equations in Sec. 4.3. We perform some attacks
simulations on CTC2, LBlock and MIBS block ciphers in Sec. 5.2, 5.3 and 5.4 respectively. In
Sec. 6, we compare ElimLin and F4. We mention some open problems and a conjecture in Sec. 7
and we conclude. Finally, in the Appendix we give a toy example on ElimLin and discuss the
effect of multiple samples.

2 ElimLin Algorithm

ElimLin stands for Eliminate Linear and it is a technique for solving polynomial systems of
multivariate equations of low degree d mostly: 2, 3, or 4 over a finite field specifically GF(2).
It is also known as “inter-reduction” step in all major algebra systems. As a single tool, it
was proposed in [17] to attack DES. It broke 5-round DES. Later, it was applied to break 5-
round PRESENT block cipher [44] and to analyze the resistance of Snow 2.0 stream cipher
against algebraic attacks [18]. It is a simple but a powerful algorithm which can be applied to
any symmetric cipher and is capable of breaking their reduced versions. There is no specific
requirement for the system except that there should exist at least one linear term, otherwise
ElimLin trivially fails. The key question for such an algorithm is to predict its behavior. Currently,
very similar to most other types of algebraic attacks such as [48, 24, 25], multiple parts of the
algorithm are heuristic, so it is worthwhile to prove which factors can improve its results, make
it run faster or does not have any influence on its ultimate result. This will yield a better
understanding of how ElimLin works.

ElimLin is composed of two sequential distinct stages, namely:

– Gaussian Elimination: All the linear equations in the linear span of initial equations are
found. They are the intersection between two vector spaces: The vector space spanned by all
monomials of degree 1 and the vector space spanned by all equations.

– Substitution: Variables are iteratively eliminated in the whole system based on linear equa-
tions until there is no linear equation left. Consequently, the remaining system has fewer
variables.

This routine is iterated until no linear equation is obtained in the linear span of the system.
See Fig. 1 for a more precise definition of the algorithm. We also give a toy system of equations
in the Appendix and solve it with ElimLin. Clearly, the algorithm shall depend on ordering
strategies to apply in step 5, 11, and 12 of Fig. 1. We will see that it is not, i.e., the span of the
resulting SL is invariant.

We observe that new linear equations are derived in each iteration of the algorithm that did
not exist in the former spans. This phenomenon is called avalanche effect in ElimLin and is the
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consequence of Theorem 7. At the end, the system is solved linearly (when SL is large enough)
or ElimLin fails. If the latter occurs, we can increase the data complexity 3 and re-run the attack.

1: Input : A system of polynomial equations S0 = {Eq0
1, . . . ,Eq0

m0
} over GF(2).

2: Output : An updated system of equations ST and a system of linear equations SL.
3: Set SL ← ∅ and ST ← S0 and k ← 1.
4: repeat
5: Perform Gaussian elimination Gauss(.) on ST with an arbitrary ordering of equations and monomials to

eliminate non-linear monomials.
6: Set SL′ ← Linear equations from Gauss(ST ).
7: Set ST ← Gauss(ST ) \ SL′ .
8: Set flag.
9: for all ` ∈ SL′ in an arbitrary order do

10: if ` is a trivial equation then
11: if ` is unsolvable then
12: Terminate and output “No Solution”.
13: end if
14: else
15: Unset flag.
16: Let xtk be a monomial from `.
17: Substitute xtk in ST and S ′L using `.
18: Insert ` in SL.
19: k ← k + 1
20: end if
21: end for
22: until flag is set.
23: Output ST and SL.

Fig. 1. ElimLin algorithm.

3 State of the Art Theorems

The only theoretical analysis of ElimLin was done by Bard in [4]. He proved the following theorem
and corollary for one iteration of ElimLin:

Theorem 1 ([4]). All linear equations in the linear span of a polynomial equation system S0
are found in the linear span of linear equations derived by performing the first iteration of ElimLin
algorithm on the system.

The following corollary (also from [4]) is the direct consequence of the above theorem.

Corollary 2. The linear equations generated after performing the first Gaussian elimination in
ElimLin algorithm form a basis for all possible linear equations in the linear span of the system.

This shows that any method to perform Gaussian elimination does not affect the linear space
obtained at an arbitrary iteration of ElimLin. All linear equations derived from one method exist
in the linear span of the equations cumulated from another method. This is trivial to see.

4 Algebraic Representation of ElimLin

4.1 ElimLin as an Intersection of Vector Spaces

We also formalize ElimLin in an algebraic way. This representation is used in proving Theorem 7.
First, we define some notations.

3 For instance, the number of plaintext-ciphertext pairs.
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We call an iteration a Gaussian elimination preceding a substitution; The system of equations
for ElimLin can be stored as a matrixMα of dimension mα×Tα, where each mα rows represents
an equation and each Tα columns represents a monomial at iteration α. Also, rα denotes the
rank of Mα. Let nα be the number of variables at iteration α. We use a reverse lexicographical
ordering of columns during Gaussian elimination to accumulate linear equations in the last rows
of the matrix. Any arbitrary ordering can be used instead. In fact, we use the same matrix
representation as described in [4].

Let K = GF(2) and x = (x1, . . . , xn) be a set of free variables. We denote by K[x] the ring
of multivariate polynomials over K. For S ⊂ K[x], we denote Span (S) the K-vector subspace
of K[x] spanned by S. Let γ = (γ1, γ2, . . . , γn) be a power vector in Nn. The term xγ is defined

as the product xγ = xγ11 × xγ22 × · · · × xγnn . The total degree of xγ is defined as deg(xγ)
def
=

γ1 + γ2 + · · ·+ γn. Let Ideal (S) be the ideal spanned by S and Root (S) be the set of all tuples
m ∈ Kn such that f(m) = 0 for all f ∈ S. Let

Rd = Span (monomials of degree ≤ d) /Ideal
(
x21 − x1, x22 − x2, . . . , x2n − xn

)
Let Sα be ST after the α-th iteration of ElimLin and S0 be the initial system. Moreover, nαL

is the number of non-trivial linear equations in SL′ at the α-th iteration. We denote SαL the SL
after the α-th iteration. Also, Cα

def
= #SαL .

Let assume that S0 has degree bounded by d. We denote by Var(f) the set of variables
xi expressed in f . Let xt1 , . . . , xtk be the sequence of eliminated variables. We define Vk =
{x1, . . . , xn}\{xt1 , . . . , xtk}. Also, let `1, `2, . . . , `k be the sequence of linear equations as they
are used during elimination (step 11 of Fig. 1). Hence, we have xtk ∈ Var(`k) ⊆ Vk−1.

We prove the following crucial lemma which we use later to prove Theorem 7.

Lemma 3. After the α-th iteration of ElimLin, an arbitrary equation Eqαi in the system (Sα∪SαL)
for an arbitrary i can be represented as

Eqαi =

m0∑
t=1

βαti · Eq0t +
Cα∑
t=1

`t(x) · gαti(x) (1)

where βαti ∈ K and gαti(x) is a polynomial in Rd−1 and Var(gαti) ⊆ Vt.

Proof. Let xt1 be one of the monomials existing in the first linear equation `1(x) and this specific
variable is going to be eliminated. Substituting xt1 in an equation xt1 · h(x) + z(x), where h(x)
has degree at most d− 1, xt1 /∈ Var(h) and xt1 /∈ Var(z) is identical to subtracting h(x) · `1(x).
Consequently, the proof follows by induction on α.

ut

Now, we prove the inverse of the above lemma.

Lemma 4. For each i and each α, there exists β′αti ∈ K and g′αti (x) such that

Eq0i =

mα∑
t=1

β′αti · Eqαt +

Cα∑
t=1

`t(x) · g′αti (x) (2)

where g′αti (x) is a polynomial in Rd−1 and Var(g′αti ) ⊆ Vt.

Proof. Gaussian elimination and substitution are invertible operations. We can use a similar
induction as the previous lemma to prove the above equation.

ut
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In the next lemma, we prove that SαL contains all linear equations which can be written in the
form of Eq. (1).

Lemma 5. If there exists ` ∈ R1 and some βt and g′′t (x) such that

`(x) =

m0∑
t=1

βt · Eq0t +
Cα∑
t=1

`t(x) · g′′t (x) (3)

at iteration α, where g′′t (x) is a polynomial in Rd−1, then there exists ut ∈ K and vt ∈ K such
that

`(x) +
Cα∑
t=1

ut · `t(x) =

mα∑
t=1

vt · Eqαt

So, `(x) ∈ Span (SαL).

Proof. We define uk iteratively: uk is the coefficient of xtk in

`(x) +
k−1∑
t=1

ut · `t(x)

for k = 1, . . . , Cα. So, Var(`(x) +
∑k

t=1 ut · `t(x)) ⊆ Vk. By substituting Eq0i from Eq. (2) in
Eq. (3) and integrating ut and g′′t in g′αti , we obtain

`(x) +
Cα∑
t=1

ut · `t(x)︸ ︷︷ ︸
⊆V1

=

mα∑
t=1

vt · Eqαt︸ ︷︷ ︸
⊆V1

+
Cα∑
t=1

`t(x) · g′t(x)︸ ︷︷ ︸
=⇒ ⊆V1

(4)

with g′t(x) ∈ Rd−1. All g′t(x) where t > 1 can be written as ḡt(x) + xt1 · ¯̄gt(x) with Var(ḡt) ⊆ V1,
Var(¯̄gt) ⊆ V1 and ¯̄gt(x) ∈ Rd−2. Since,

`1(x) · g′1(x) + `t(x) · g′t(x) = `1(x) ·
(
g′1(x) + `t(x) · ¯̄gt(x)

)︸ ︷︷ ︸
new g′1(x)

+`t(x)︸ ︷︷ ︸
⊆V1

· (ḡt(x) + ¯̄gt(x) · (xt1 − `1(x)))︸ ︷︷ ︸
(new g′t(x)) ⊆V1

we can re-arrange the sum in Eq. (4) using the above representation and obtain Var(g′t) ⊆ V1

for all t > 1. Also, xt1 only appears in `1(x) and g′1(x). So, the coefficient of xt1 in the expansion
of `1(x) · g′1(x) must be zero. In fact, we have

`1(x) · g′1(x) = (xt1 + (`1(x)− xt1)) · (ḡ1(x) + xt1 · ¯̄gt(x))
= xt1 · (¯̄g1(x) · (1 + `1(x)− xt1) + ḡ1(x)) + ḡ1(x) · (`1(x)− xt1)

So, ḡ1(x) = ¯̄g1(x) · (xt1 − `1(x)− 1) and we deduce,

g′1(x) = ¯̄g1(x) · (`1(x) + 1)

over GF(2). But, then `1(x) · g′1(x) = 0 over R, since `1(x) · (`1(x) + 1) = 0. Finally, we iterate
and obtain

`(x) +
Cα∑
t=1

ut · `t(x) =

mα∑
t=1

vt · Eqαt

ut
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1: Input : A set S0 of polynomial equations in Rd.
2: Output : A system of linear equations SL.
3: Set S̄L := ∅.
4: repeat
5: S̄L ← Span

(
S0 ∪ (Rd−1 × S̄L)

)
∩R1

6: until S̄L unchanged
7: Output SL: a basis of S̄L.

Fig. 2. ElimLin algorithm from another perspective.

From another perspective, ElimLin algorithm can be represented as in Fig. 2. In fact, as a
consequence of Lemma 3 and Lemma 5, Fig. 2 presents a unique characterization of Span (SL)
in terms of a fixed point:

Lemma 6. At the end of ElimLin, Span (SL) is the smallest subset S̄L of R1, such that

S̄L = Span
(
S0 ∪ (Rd−1 × S̄L)

)
∩R1

Proof. By induction, at step α we have S̄L ⊆ Span (SαL), using Lemma 5. Also, SαL ⊆ S̄L using
Lemma 3. So, S̄L = Span (SαL) at step α. Since

S̄L 7→ Span
(
S0 ∪ (Rd−1 × S̄L)

)
∩R1

is increasing, we obtain the above equation.
ut

ElimLin eliminates variables, thus it looks very unexpected that the number of linear equa-
tions in each step of the algorithm is invariant with respect to any variable ordering in the sub-
stitution step and the Gaussian elimination. We finally prove this important invariant property.
Concretely, we formalize ElimLin as a sequence of intersection of vector spaces. Such intersection
in each iteration is between the vector space spanned by the equations and the vector space
generated by all monomials of degree 1 in the system. This implies that if ElimLin runs for α
iterations (finally succeeds or fails), it can be formalized as a sequence of intersections of α pairs
of vector spaces. These intersections of vector spaces only depend on the vector space of the
initial system.

Theorem 7. The following relations exist after running ElimLin on a polynomial system of
equations Q:

1. Root
(
S0
)

= Root(ST ∪ SL)
2. There is no linear equation in Span

(
ST
)
.

3. Span (SL) is uniquely defined by S0.
4. SL consists of linearly independent linear equations.

5. The complexity is O
(
nd+1
0 m2

0

)
, where d is the degree of the system and n0 and m0 are the

initial number of variables and equations, respectively.

Proof (1). Due to Lemma 3 and Lemma 4, S0 and (ST ∪ SL) are equivalent. So, a solution of
S0 is also a solution of (ST ∪ SL) and vice versa.

Proof (2). Since ElimLin stops on ST , the Gaussian reduction did not find any linear polynomial.

Proof (3). Due to Lemma 6.

Proof (4). SL includes a basis for S̄L. So, it consists of linearly independent equations.
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Proof (5). n0 is an upper bound on #SL due to the fact that SL consists of linearly independent
linear equations. So, the number of iterations is bounded by n0. The total number of monomials
is bounded by

T0 ≤
d∑
i=0

(
n0
i

)
= O

(
nd0

)
The complexity of Gaussian elimination is O(m2

0T0), since we have T0 columns and m0 equations.

Therefore, overall, the complexity of ElimLin is O
(
nd+1
0 m2

0

)
.

ut

4.2 Affine Bijective Variable Change

In the next theorem, we prove that the result of ElimLin algorithm does not change for any
affine bijective variable change. It is an open problem to find an appropriate non-linear variable
change which improves the result of the ElimLin algorithm.

Theorem 8. Any affine bijective variable change A : GF(2)n0 → GF(2)n0 on a n0-variable
system of equations S0 does not affect the result of ElimLin algorithm, implying that the number
of linear equations generated at each iteration is invariant with respect to an affine bijective
variable change.

Proof. In Lemma 6, we showed that Span (SL) is the output of the algorithm in Fig. 2, iterating

S̄L ← Span
(
S0 ∪ (Rd−1 × S̄L)

)
∩R1

We represent the composition of a polynomial f1 with respect to A by Com(f1). We then show
that there is a commutative diagram

S0 Com(S0)

S̄L Com(S̄L)

Com

ElimLin

Com

ElimLin

We consider two parallel executions of the algorithm in Fig. 2, one with S0 and the other with
Com(S0).
If we compose the polynomials in S0 with respect to A, in the above relation Rd−1 remains the
same. Since the transformation A is affine,

Com(Span
(
S0 ∪ (Rd−1 × S̄L)

)
∩R1) = Span

(
Com(S0) ∪ (Rd−1 × Com(S̄L))

)
∩R1

So, at each iteration, the second execution has the result of applying Com to the result of the
first one.

ut
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4.3 Linear Equations Evolution

An open problem regarding ElimLin is to predict how the number of linear equations evolves
in the preceding iterations. In the following theorem, we give a necessary (but not sufficient)
condition for a dense overdefined system of equations to have an additional linear equation in
the next iteration of ElimLin. Proving a similar result for a sparse system is not straightforward.

Theorem 9. If we apply ElimLin to an overdefined dense system of quadratic equations over
GF(2), for nα+1

L > nαL to hold, it is necessary to have

bα
2
− aα < nαL <

bα
2

+ aα

where bα = 2nα − 1 and aα =

√
b2α−8nαL

2 .

Proof. For the system to generate linear equations, it is necessary that the sufficient rank condi-
tion [4] is satisfied. More clearly, we must have rα > Tα − 1− nα, otherwise no linear equations
will be generated. This is true if the system of equations is overdefined. Hence, we obtain,

nαL = rα + nα + 1− Tα (5)

If some columns of the matrix Mα are pivotless, it will shift the diagonal strand of ones to
the right. Therefore, nαL will be more than what the above equation expresses. Assuming the
system of equations is dense, this phenomenon happens with a very low probability. Suppose
the above equation is true with high probability, then we get

nα+1
L = rα+1 + nα+1 + 1− Tα+1 (6)

In the (α+ 1)-th iteration, the number of variables is reduced by nαL. Thus, nα+1 = nα − nαL. If
the system of equations is dense, in a quadratic system,

Tα =

(
nα
2

)
+ nα + 1

and so,

Tα+1 =

(
nα − nαL

2

)
+ nα − nαL + 1

Consequently, we have

Tα − Tα+1 = nαL

(
nα −

1

2
(nαL − 1)

)
(7)

Therefore, using Eq. (5), Eq. (6) and Eq. (7), we obtain,

nα+1
L = (rα+1 − rα) + (rα + nα − Tα + 1) + nαL(−1

2n
α
L + nα − 1

2)

= nαL(−1
2n

α
L + nα + 1

2)− (rα − rα+1)

If nα+1
L > nαL, then nαL(−1

2n
α
L + nα + 1

2)− (rα − rα+1) > nαL and this leads to

nαL
2 + (1− 2nα)nαL + 2(rα − rα+1) < 0

∆ = (1 − 2nα)2 − 8(rα − rα+1), and if the above inequality holds, ∆ should be positive and
assuming bα = 2nα − 1, then, bα −

√
∆ < 2nαL < bα +

√
∆.
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Considering ∆ is positive, nα >
√

2(rα − rα+1) + 1
2 . We also know that rα+1 ≤ rα − nαL,

which together lead to nα > 1
2 +

√
2nαL. Therefore, for nα+1

L > nαL, it is necessary to have

nα > 1
2 +

√
2nαL, but not visa versa. Simplifying bα −

√
∆ < 2nαL < bα +

√
∆ and deploying

rα − rα+1 ≥ nαL results in

bα − 2aα < 2nαL < bα + 2aα

where bα = 2nα − 1 and 2aα =
√
b2α − 8nαL.

Notice that nα >
1
2 +

√
2nαL, which was obtained in the first stage of the proof, has been

originated from the fact that b2α − 8nαL should be non-negative.

ut

5 Attacks Simulations

In this section, we present our experimental results against CTC2, LBlock and MIBS block
ciphers. The simulations for CTC2 were run on an ordinary PC with a 1.8 Ghz CPU and 2 GB
RAM. All the other simulations were run on an ordinary PC with a 2.8 Ghz CPU and 4 GB
RAM. The amount of RAM required by our implementation is negligible.

In our attacks, we build a system of quadratic equations with variables representing plaintext,
ciphertext, key and state bits, which allows to express the system of equations of high degree as
quadratic equations. Afterwards, for each sample we set the plaintext and ciphertext according
to the result of the input/output of the cipher. In order to test the efficiency of the algebraic
attack, we guess some bits of the key and set the key variables corresponding to the guess. Then,
we run the solver (ElimLin, F4 or SAT solver) to recover the remaining key bits and test whether
the guess was correct. Therefore, the complexity of our algebraic attack can be bounded by
2g · C(solver), where C(solver) represents the running time of the solver and g is the number of
bits we guess. C(solver) is represented as the the “Running Time” in all the following tables.

For a comparison with a brute force attack, we consider a fair implementation of the cipher,
which requires 10 CPU cycles per round. This implies that the algebraic attack against t rounds
of the cipher is faster than an exhaustive search for the 1.8 Ghz and 2.8 Ghz CPU iff recovering
c bits of the key is faster than 5.55 ·t ·2c−31 and 3.57 ·t ·2c−31 seconds respectively. This is already
twice faster than the complexity of exhaustive search. All the attacks reported in the following
tables are faster than exhaustive search with the former argument. In fact, we consider the
cipher to be broken for some number of rounds if the algebraic attack that recovers (#key − g)
key bits is faster than an exhaustive key search over (#key − g) bits of the key.

5.1 Simulations Using F4 Algorithm under PolyBoRi Framework

The most efficient implementation of the F4 algorithm is available under PolyBoRi framework [9]
running alone or under SAGE algebra system. PolyBoRi is a C++ library designed to compute
Gröbner basis of an ideal applied to Boolean polynomials. A Python interface is used, surround-
ing the C++ core. It uses zero-suppressed binary decision diagrams (ZDDs) [34] as a high level
data structure for storing Boolean polynomials. This representation stores the monomials more
efficiently in memory and it makes the Gröbner basis computation faster compared to other
algebra systems.

We use polybori-0.8.0 for our attacks. Together with ElimLin, we also attack LBlock and
MIBS with F4 algorithm and then compare PolyBoRi’s efficiency with our implementation of
ElimLin.
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5.2 Simulations on CTC2

Courtois Toy Cipher (CTC) is an SPN-based block cipher devised by Courtois [14] as a toy
cipher to evaluate algebraic attacks on smaller variants of cryptosystems. It was designed to
show that it is possible to break a cipher using an ordinary PC deploying a small number of
known or chosen plaintext-ciphertext pairs.

Since the system of equations of well-known ciphers such as AES is often large, it is not
feasible by the current algorithms and computer capacities to solve them in a reasonable time,
therefore smaller but similar versions such as CTC can be exploited to evaluate the resistance of
ciphers against algebraic cryptanalysis. This turns out to yield a benchmark on understanding
the algebraic structure of ciphers. Ultimately, this might lead to break of a larger system later.

CTC was not designed to be resistant against all known types of attacks like linear and differ-
ential cryptanalysis. Nevertheless, in [26], it was attacked by linear cryptanalysis. Subsequently,
CTC Version 2 or CTC2 was proposed [13] to resolve the flaw exists in CTC structure. CTC2
is very similar to CTC with a few changes. It is an SPN-based network with scalable number of
rounds, block and key size. For the full specification, refer to [13]. In CT-RSA 2009, differential
and differential-linear attacks could reach up to 8 rounds of CTC2 [27], but as stated before, the
objective of the CTC designer was not applying statistical attacks to his design. Finally, there
is a cube attack on 4 rounds of one variant of this cipher in [42].

Since block size and key size are flexible in CTC2 cipher, we break various versions with
distinct parameters (see Table 1) using ElimLin. The block size is specified by a parameter B,
which specifies the number of parallel S-boxes per round. CTC2 S-box is 3× 3, hence the block
size is computed as 3B. We guess some LSB bits of the key and we show that recovering the
remaining is faster than exhaustive search.

It might be possible that during the intermediate steps of ElimLin, a quadratic equation
in only key bits (possibly linear) appears. In such cases, approximately O(#key2) samples are
enough to break the system. This is due to the fact that we can simply change the plaintext-
ciphertext pair and generate a new linearly independent equation in the key. Finally, when we
have enough such equations, we solve a system of quadratic equations in only key bits using
the linearization technique. When such phenomenon occurs, intuitively the cipher is close to be
broken but not yet. We can increase the number of samples and most often it makes the cipher
thoroughly collapse.

5.3 Simulations on LBlock

LBlock is a new lightweight Feistel-based block cipher, aimed at constrained environments, such
as RFID tags and sensor networks [50] proposed at ACNS 2011. It operates on 64-bit blocks,
uses a key of 80 bits and iterates 32 rounds. For a detailed specification of the cipher, refer to
[50]. As far as the authors are aware, there is currently no cryptanalysis results published on
this cipher.

We break 8 rounds of LBlock using 6 samples deploying an ordinary PC by ElimLin. Our
results are summarized in Table 2. In the same scenario, PolyBoRi crashes due to running out
of memory.

5.4 Simulations on MIBS

Similar to the LBlock block cipher, MIBS is also a lightweight Feistel-based block cipher, aimed
at constrained environments, such as RFID tags and sensor networks [39]. It operates on 64-bit
blocks, uses keys of 64 or 80 bits and iterates 32 rounds. For a detailed specification of the cipher,
see [39].
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Table 1. CTC2 simulations using ElimLin up to 6 rounds with distinct parameters.

B Nr #key g Running Time1 Running Time2 Data Attack
(in hours) (in hours) notes

16 3 48 0 0.03 5 KP ElimLin
16 3 48 0 0.12 14 KP ElimLin
64 3 192 155 0.03 1 KP ElimLin
85 3 255 210 0.04 1 KP ElimLin

16 4 48 0 0.01 2 CP ElimLin
16 4 48 0 0.05 4 CP ElimLin
40 4 120 85 0.00 1 KP ElimLin
40 4 120 85 0.84 16 KP ElimLin
48 4 144 100 0.12 4 KP ElimLin
64 4 192 148 0.05 1 KP ElimLin
64 4 192 155 2.21 5 KP ElimLin
85 4 255 220 0.29 1 KP ElimLin
85 4 255 215 0.64 1 KP ElimLin
85 4 255 220 0.26 2 KP ElimLin
85 4 255 215 0.90 3 KP ElimLin
85 4 255 210 1.33 4 KP ElimLin

16 5 48 0 3 8 CP ElimLin
40 5 120 85 0.03 2 CP ElimLin

32 6 96 60 2.5 16 CP ElimLin
40 6 120 80 1 8 CP ElimLin
64 6 192 155 2.4 4 CP ElimLin
85 6 255 210 3 2 CP ElimLin
85 6 255 220 3 16 CP ElimLin
85 6 255 210 180.5 64 CP ElimLin
128 6 384 344 4.5 2 CP ElimLin

B : Number of S-boxes per round. To obtain the block size, B is multiplied by 3.
Nr : Number of rounds
g: Number of guessed LSB of the key
Running Time1: Running time until we achieve equations only in key variables (no other internal variables). When
this is achieved, the cipher is close to be broken, but not yet (see Sec. 5.2).
Running Time2: Attack running time for recovering (#key − g) bits of the key.
KP: Known plaintext
CP: Chosen plaintext

Table 2. Algebraic attack complexities on reduced-round LBlock using ElimLin and PolyBoRi.

Nr #key g Running Time Data Attack
(in hours) notes

8 80 32 0.252 6 KP ElimLin
8 80 32 crashed 6 KP PolyBoRi

Nr : Number of rounds
g: Number of guessed LSB of the key
KP: Known plaintext
CP: Chosen plaintext

Currently, the best cryptanalysis results is a linear attack reaching 18-round MIBS with data
complexity 261 and time complexity of 276 [5]. In fact, statistical attacks often require very large
number of samples. This is not always achievable in practice.

We break 4 and 3 rounds of MIBS80 and MIBS64 using 32 and 2 samples deploying an
ordinary PC by ElimLin. Our results are summarized in Table 3. In 2 out of 3 experiments,
PolyBoRi crashes due to running out of memory. This is the first algebraic analysis of the cipher.
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The designers in [39] have evaluated the security of their cipher with respect to algebraic
attacks. They used the complexity of XSL algorithm for this evaluation, which is not a precise
measurement for evaluating resistance of a cipher against algebraic attacks, since effectiveness of
XSL is still controversial and under speculation. There are better methods such as SAT solvers
[3] which solve MQ problem faster than expected due to the system being overdefined and sparse.

Let assume XSL can be precise enough to evaluate the security of a cipher with respect to
algebraic attacks. According to [21, 39], the complexity of XSL can be evaluated with the work
factor. For MIBS, work factor is computed as:

WF = Γω
(
(Block Size) ·N2

r

)ωdT
r
e

where Γ is a parameter which depends only on the S-box. For MIBS, Γ = 85.56. The value
r = 21 is the number of equations the S-box can be represented with. T = 37 is the number
of monomials in that representation. ω = 2.37 is the exponent of the Gaussian elimination
complexity. The work factor for attacking 5-round MIBS is WF = 265.65 which is worse than
an exhaustive key search for MIBS64. Deploying SAT solving techniques using MiniSAT 2.0
[29], we can break 5 rounds of MIBS64 (see Table 3). Our strategy is exactly the same as [3].
Table 3 already shows that we can do better than 265.65 for MIBS64. We can perform a very
similar attack on MIBS80. This already shows that considering the complexity of XSL is not a
precise measure to evaluate the security of a cipher against algebraic cryptanalysis. Complexity
of attacking such system with XL is extremely high.

We believe that due to the similarity between the structure of MIBS and LBlock, we can
compare them with respect to algebraic attacks. As can be seen from the table of attacks, LBlock
is much weaker. This is not surprising though, since the linear layer of LBlock is much weaker
than MIBS, since it is nibble-wise instead of bit-wise. So, we could attack twice more rounds of
LBlock. Thus, although LBlock is lighter with respect to the number of gates, but it provides a
lower level of security with respect to algebraic attacks.

Table 3. Algebraic attack complexities on reduced-round MIBS using ElimLin, PolyBoRi and MiniSAT 2.0.

Nr #key g Running Time Data Attack
(in hours) notes

4 80 20 0.137 32 KP ElimLin
4 80 20 crashed 32 KP PolyBoRi

5 64 16 0.395 6 KP MiniSAT 2.0
5 64 16 crashed 6 KP PolyBoRi
3 64 0 0.006 2 KP ElimLin
3 64 0 0.002 2 KP PolyBoRi

Nr : Number of rounds
g: Number of guessed LSB of the key
KP: Known plaintext
CP: Chosen plaintext

6 A Comparison Between ElimLin and PolyBoRi

Gröbner basis is currently one of the most successful methods for solving polynomial systems
of equations. However, it has its own restrictions. The main bottleneck of the Gröbner basis
techniques is the memory requirement and therefore most of the Gröbner basis attacks use
relatively small number of samples. It is worthwhile to mention that ElimLin is a subroutine is
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Gröbner basis computations. But, ElimLin algorithm as a single tool requires a large number of
samples to work.

The Gröbner basis solve the system by reductions according to a pre-selected ordering, which
can lead to high degree dense polynomials. ElimLin uses the fact that multiple samples provide
an additional information to the solver, and therefore the key might be found even if when we
restrict the reduction to degree 2.

Next, we compare the current state of the art implementation of F4 algorithm PolyBoRi and
our implementation of ElimLin. In the cases where ElimLin behaves better than PolyBoRi, it does
not mean that ElimLin is superior to F4 algorithm. In fact, it just means that there exists a
better implementation for ElimLin than for F4 for some particular systems of equations. F4 uses
a fixed ordering for monomials and therefore it does not preserve the sparsity in its intermediate
steps. On the other hand, our implementation of ElimLin performs several sparsity preserving
techniques by changing the ordering. This drops the total number of monomials and makes it
memory efficient.

Table 2 and Table 3 show that PolyBoRi requires too much memory and crashes for a large
number of samples. At the same time, our implementation of ElimLin is slightly slower than Poly-
BoRi implementation attacking 2 samples of 3-round MIBS64 as in Table 3. This demonstrates
that our implementation of ElimLin can be more effective than PolyBoRi and vice versa, de-
pending on memory requirements of PolyBoRi. However, whenever the system is solvable by our
implementation of ElimLin, our experiments revealed that PolyBoRi does not give a significant
advantage over ElimLin because the memory requirements are too high.

While PolyBoRi may yield a solution for a few samples, the success of ElimLin is determined
by the number of samples provided to the algorithm. The evaluation of the number of sufficient
samples in ElimLin is still an open problem.

We see that often preserving the degree by simple linear algebra techniques can outperform
the more sophisticated Gröbner basis algorithms, mainly due to the structural properties of the
system of equations of a cryptographic primitive (such as sparsity). ElimLin takes advantage of
such structural properties and uncovers some hidden linear equations using multiple samples.
According to our experiments, PolyBoRi does not seem to be able to take advantage of these
structural properties as would be expected which results in higher memory requirements than
would be necessary and ultimately their failure for large systems, even though it is clearly
possible for the algorithm to find the solution in reasonable time. Finally, we need more efficient
implementations and data structures for both ElimLin and Gröbner basis algorithms.

7 Further Work and Some Conjectures

An interesting area of research is to estimate the number of linear equations in ElimLin or
anticipate how this number evolves in the succeeding iterations or evaluate after how many
iterations ElimLin finishes. Also, to anticipate how many samples is enough to make the system
collapse by ElimLin. Last but not least, it is prominent to find a very efficient method for
implementing ElimLin and to find the most appropriate data structure to choose.

There are some evidence which illustrate that ElimLin does not reveal all hidden linear equa-
tions in the structure of the cipher up to a specific degree. We give an example, demonstrating
such an evidence:

Assume there exists an equation in the system which can be represented as `(x)g(x) + 1 = 0
over GF(2), where `(x) is a polynomial of degree one and g(x) is a polynomial of degree at most
d − 1. Running ElimLin on this single equation trivially fails. But, if we multiply both sides of
the equation by `(x), we obtain `(x)g(x) + `(x) = 0. Summing these two equations, we derive
`(x) = 1. This hidden linear equation can be simply captured by the XL algorithm, but can not
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be captured by ElimLin. There exist multiple other examples which demonstrate that ElimLin
does not generate all the hidden linear equations. To generate all such linear equations, the
degree-bounded Gröbner basis can be used.

For big ciphers, for example the full AES, it is also plausible that:

Conjecture 1 For each number of rounds X, there exists Y such that AES is broken by ElimLin
given Y Chosen or Known Plaintext-Ciphertext pairs.

Disproving the above conjecture leads to the statement that “AES can not be broken by
algebraic attack at degree 2”. But maybe this conjecture is true, then the capacities of the
ElimLin attack are considerable and it works for any number of rounds X. As a consequence,
if for X = 14 this Y is not too large, say less than 264, the AES-256 will be broken faster
than brute force by ElimLin at degree 2, which is much simpler than Gröbner basis objective of
breaking it at degree 3 or 4 with 1 KP.

ElimLin is a polynomial time algorithm. If it can be shown that a polynomial number of
samples is enough to gain a high success rate for ElimLin, this can already be considered a
breakthrough in cryptography. Unfortunately, the correctness of this statement is not clear.

Conclusion

In this paper, we proved that ElimLin can be formulated in terms of a sequence of intersections
of vector spaces. We showed that different monomial orderings and any affine bijective variable
change do not influence the result of the algorithm. We did some predictions on the evolution of
linear equations in the succeeding iterations in ElimLin. We presented multiple attacks deploying
ElimLin against CTC2, LBlock and MIBS block ciphers.
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A A Toy Example of ElimLin

Let assume that we have the following overdefined system of multivariate equations over GF(2)
with 5 variables x1, . . . , x5 and 6 equations,

x1x2 + x1x3 + x2x5 + x3x5 + x2 + x4 + x5 + 1 = 0

x1x3 + x1x4 + x2x3 + x2x4 = 0

x1x4 + x2x3 + x3 + 1 = 0

x1x4 + x1x5 + x2x5 + x1 = 0

x1x5 + x2x3 + x3x5 + x1 + x3 + x4 = 0

x1x5 + x2x3 + x3x5 + x5 + x4 + x2 + 1 = 0

We perform Gaussian elimination on the system, and obtain,

x1x2 + x2x4 + x2x5 + x3x5 + x2 + x3 + x4 + x5 = 0

x1x3 + x2x4 + x3 + 1 = 0

x1x4 + x2x3 + x3 + 1 = 0

x1x5 + x2x3 + x3x5 + x1 + x3 + x4 = 0

x2x5 + x3x5 + x4 + 1 = 0

x1 + x2 + x3 + x5 + 1 = 0

The linear equation we obtain is used for the substitution of variable x5 = x1 + x2 + x3 + 1.
Then, we perform Gaussian elimination on the system again. We derive

x2x4 + x1 = 0

x1x4 + x2x3 + x3 + 1 = 0

x1x2 + x1 + x3 + x4 = 0

x1x3 + x1 + x3 + 1 = 0

x4 + x3 + x1 = 0

The new linear equation is used for the substitution of the variable x4 = x3 + x1. After the
substitution, we perform the Gaussian elimination again and obtain,

x2x3 + x1 = 0

x1x3 + x3 + 1 = 0

x1x2 = 0

x1 = 0
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We derive a new linear equation x1 = 0. Consequently, we perform substitution and Gaussian
elimination, which yields, {

x2x3 = 0

x3 + 1 = 0

The new linear equation we obtain is x3 = 1. After the substitution of this variable, we obtain
x2 = 0. Hence, we have gathered 5 linear equations in 5 variables as follows, which can be simply
solved by 

x1 + x2 + x3 + x5 + 1 = 0

x1 + x3 + x4 = 0

x1 = 0

x3 + 1 = 0

x2 = 0

leading to x1 = x2 = x5 = 0 and x3 = x4 = 1.

B Multiple Samples Effect on ElimLin

A prominent question regarding ElimLin is that how we can extract more linear equations from
the structure of the cipher. One approach is to use more samples. On one hand, having multiple
instances increases the number of variables, since the state bits are totally distinct, on the other
hand all the instances share the same key bits. The speed in which the number of equations
increases is higher than which of the number of variables. Consequently, we expect that at one
moment the system is solved. We have performed many experiments using ElimLin. In some
cases, we would expect it to fail, since the number of linear equations at some stage dropped
significantly, but those few equations could cause the system to collapse at the consequent
iterations and the system is finally solved. We give an example to be more clear:

We attacked 8-round LBlock [50] block cipher with 32 LSB key bits fixed starting from 1
pair to 8 pairs (see Sec. 5.3 for details). As can be observed from Tables 4 to Table 11, the cipher
is unbroken for 5 plaintext-ciphertext pairs, but then 6 pairs is enough to break the system. We
use the following legend in those tables.

Legend
I : iteration number in ElimLin.
n : number of variables.
m0 : number of initial equations.
AvS : the average number of monomials per equation (It represents the sparsity).
T : number of monomials.
nL : number of linear equations.
nc : cumulative number of linear equations.

For instance, in Table 9 we start with n0 = 8 784 variables and m0 = 27 758 equations. We
then eliminate n1L = 7 528 variables at iteration 1. The variable elimination is repeated until the
iteration 15, when we finish with 2 variables and n15L = 2 linear equations. As can be observed,
at the last iteration the number of cumulative linear equations nc is the same as the initial
number of variables n0. This implies that we only need to solve a linear system of equations in
8 784 variables and the system is solved. This is not the case for smaller number of samples. For
instance, in Table 8, at the last iteration we finish with 499 variables and no linear equations.
This implies that all 499 variables should be guessed.
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Table 4. Attacking 8-round LBlock with 1 pair
and 32 LSB key bits guessed.

I n m0 AvS T nL nc

1 2064 5174 3 4249 1768 1768
2 296 5174 7 5678 42 1810
3 254 5174 6 5035 16 1826
4 238 5174 7 4868 3 1829
5 235 5174 7 5178 0 1829

Table 5. Attacking 8-round LBlock with 2 pairs
and 32 LSB key bits guessed.

I n m0 AvS T nL nc

1 3408 8822 3 7385 2920 2920
2 488 8822 8 10855 85 3005
3 403 8822 9 11545 48 3053
4 355 8822 11 11955 22 3027
5 333 8822 15 13779 8 3035
6 325 8822 16 13729 0 3035

Table 6. Attacking 8-round LBlock with 3 pairs
and 32 LSB key bits guessed.

I n m0 AvS T nL nc

1 4752 13110 3 10521 4072 4072
2 680 13110 8 16032 128 4200
3 552 13110 9 17495 83 4283
4 469 13110 13 18190 40 4323
5 429 13110 17 19913 21 4344
6 408 13110 20 20547 5 4349
7 403 13110 22 20843 1 4350
8 402 13110 21 20725 1 4351
9 401 13110 21 20561 0 4351

Table 7. Attacking 8-round LBlock with 4 pairs
and 32 LSB key bits guessed.

I n m0 AvS T nL nc

1 6096 17839 3 13657 5224 5224
2 872 17839 8 21209 171 5395
3 701 17839 10 24035 118 5511
4 583 17839 14 25396 66 5577
5 517 17839 20 27955 40 5617
6 477 17839 26 31106 21 5638
7 456 17839 31 31611 16 5654
8 440 17839 28 28934 1 5655
9 439 17839 28 28717 0 5655

Table 8. Attacking 8-round LBlock with 5 pairs
and 32 LSB key bits guessed.

I n m0 AvS T nL nc

1 7440 22730 3 16793 6376 6376
2 1064 22730 8 26386 214 6590
3 850 22730 10 30368 151 6741
4 699 22730 15 33097 91 6832
5 608 22730 23 37005 55 6887
6 553 22730 32 39058 35 6922
7 518 22730 35 37629 16 6938
8 502 22730 34 35748 1 6939
9 501 22730 35 35709 1 6940
10 500 22730 34 35509 1 6941
11 499 22730 34 34649 0 6941

Table 9. Attacking 8-round LBlock with 6 pairs
and 32 LSB key bits guessed.

I n m0 AvS T nL nc

1 8784 27758 3 19929 7528 7528
2 1256 27758 7 31563 257 7785
3 999 27758 10 36607 189 7974
4 810 27758 17 41351 123 8097
5 687 27758 26 48066 83 8180
6 604 27758 34 46540 41 8221
7 563 27758 36 42910 15 8236
8 548 27758 37 41469 8 8244
9 540 27758 32 39312 24 8268
10 516 27758 16 29409 126 8394
11 390 27758 19 23370 108 8502
12 282 27758 20 14889 87 8589
13 195 27758 15 9157 122 8711
14 73 27758 4 1454 71 8782
15 2 27758 0 3 2 8784

Table 10. Attacking 8-round LBlock with 7 pairs
and 32 LSB key bits guessed.

I n m0 AvS T nL nc

1 10128 32815 3 23065 8680 8680
2 1448 32815 7 36740 300 8980
3 1148 32815 10 42889 228 9208
4 920 32815 17 48974 157 9365
5 763 32815 30 58471 111 9476
6 652 32815 40 55476 47 9523
7 605 32815 42 51967 20 9543
8 585 32815 37 47625 25 9568
9 560 32815 19 36163 141 9709
10 419 32815 21 27254 126 9835
11 293 32815 20 16116 145 9980
12 148 32815 8 4960 142 10122
13 6 32815 0 8 6 10128

Table 11. Attacking 8-round LBlock with 8 pairs
and 32 LSB key bits guessed.

I n m0 AvS T nL nc

1 11472 37945 3 26201 9832 9832
2 1640 37945 7 41917 343 10175
3 1297 37945 9 47974 268 10443
4 1029 37945 17 55084 186 10629
5 843 37945 30 65625 129 10758
6 714 37945 39 63385 57 10815
7 657 37945 41 57671 22 10837
8 635 37945 34 50898 21 10858
9 614 37945 20 40883 161 11019
10 453 37945 23 30905 144 11163
11 309 37945 22 19850 160 11323
12 149 37945 8 5108 145 11468
13 4 37945 0 6 4 11472
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