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Ignacio Rojas∗, Hesam Sagha‡, José del R. Millán‡,
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Abstract

We propose a method to automatically translate a pre-
existing activity recognition system, devised for a source
sensor domain S, so that it can operate on a newly discov-
ered target sensor domain T , possibly of different modality.
First, we use MIMO system identification techniques to
obtain a function that maps the signals of S to T . This
mapping is then used to translate the recognition system
across the sensor domains. We demonstrate the approach in
a 5-class gesture recognition problem translating between a
vision-based skeleton tracking system (Kinect), and inertial
measurement units (IMUs). An adequate mapping can be
learned in as few as a single gesture (3 seconds) in this
scenario. The accuracy after Kinect → IMU or IMU →
Kinect translation is 4% below the baseline for the same
limb. Translating across modalities and also to an adjacent
limb yields an accuracy 8% below baseline. We discuss
the sources of errors and means for improvement. The
approach is independent of the sensor modalities. It supports
multimodal activity recognition and more flexible real-world
activity recognition system deployments.

1. Introduction

There is a tendency towards an increased availability
of sensors readily deployed by users by themselves, with
smartphones, sensor-equipped gadgets, smart objects and
smart clothing. Living environments are also equipped with
more and more sensors for climate control, security, or
entertainment. Therefore an important feature of activity
recognition systems is to provide a continuity of context-
awareness across different sensing environments, as the
user changes location or carry-on devices. As the user
performs their daily activities, various sensor systems will
be discovered. These sensor systems may not necessarily
be capable of activity recognition, as they may also be

deployed for other purposes [1]. For instance, a user relies
on a smartphone for activity awareness (e.g. for energy
expenditure analysis). S/he enters a room with an activity-
aware gaming system and leaves the smartphone on a desk.
The smartphone now cannot recognize the user’s activities.
The gaming system can sense their movements, but may not
be devised to recognize the same activities as the smartphone
did. Thus, in principle, even if the gaming system sensors
deliver relevant data, these data cannot be used to substitute
the phone sensors, unless some “translation” occurs.

The question we address is: how can an activity recogni-
tion system devised for one modality (e.g. hand coordinate
sensed by a Kinect) be automatically “translated” at run-
time to use another modality (e.g. on-body acceleration),
and vice-versa?1

1.1. Contributions

• A dataset comprising synchronized 3D coordinates of
15 body joints, measured by a vision-based skeleton
tracking system (Microsoft Kinect), and the readings
of 5 body-worn inertial measurement units (IMUs):
acceleration, rate of turn, magnetic field and orientation.
The data is recorded in a 5-class gesture recognition
scenario, and for “idle” movements (sec. 3).

• A MIMO system identification technique to learn a
function that maps a source signal S (e.g. position) to
a target signal T (e.g. acceleration) using data sensed
at run-time (sec. 4).

• Two architectures to translate activity recognition sys-
tems based on the MIMO mapping (sec. 4):

1. The Kinect libraries can recognize simple gestures, however we only
use the Kinect as a sensor that provides 3D joint coordinates. The results
are presented with our own recognition system operating on the Kinect
coordinates or on acceleration, and trained in a user-specific manner in
both cases. The method to substitute sensor modalities could be equally
applied to a user-independent scenario.



1) Kinect→ IMU: a system devised for the 3D coor-
dinate of a body joint (wrist) sensed by the Kinect
is translated to operate on the 3D acceleration
sensed by a wrist-worn IMU.

2) IMU → Kinect: a system devised for the 3D
acceleration sensed by a wrist-worn IMU is trans-
lated to operate on the 3D coordinate of a body
joint (wrist) sensed by the Kinect.

• The fit of the MIMO mapping according to the learning
parameters, duration of learning and types of user
movements (sec. 5).

• The recognition accuracy after Kinect→ IMU and IMU
→ Kinect translation (sec. 5).

• A discussion of the choice of the translation archi-
tecture depending on the nature of the sensors. An
analysis of the sources of errors and a discussion of
the generality of the method and its potential to tap into
rich existing multimedia sources for activity recognition
(sec. 6, sec. 7).

2. Related Work

Several approaches improve the substitution of the sensing
environment foreseen at design-time by the one effectively
encountered at runtime. Sensor-placement-independent ac-
tivity recognition can be achieved by using datasets collected
from multiple on-body locations [2]. This requires train-
ing data provided by the user. Self-calibration approaches
require no user intervention, but were demonstrated only
for specific cases (e.g. displacement of accelerometers [3],
[4]). Combinations of multiple sensor modalities also al-
low to tolerate on-body displacement [5], or to substitute
sensor modalities [6]. These combinations must however be
predesigned for selected kinds of variations. Alternatively,
sensors can self-characterize their on-body placement [7]
and orientation [8] to select the appropriate activity models
at runtime, but this requires to predefine these models. Trans-
fer learning principles allowing a trained system to transfer
activity recognition capabilities to another system have been
proposed for body-worn sensors [9] and ambient sensors
[10]. These approaches operate on long time scales as they
require all the relevant activities to be observed several times
(e.g. timescale of days or more). A more exhaustive review
and taxonomy of approaches is available in [11]. Overall,
these approaches do not fulfill the characteristics desired in
this work: they either need to predefine allowed run-time
variations, or cannot operate on short time scales, or were
not defined for adaptation across sensor modalities.

3. Kinect ↔ IMU Translation Setup

The test bench for this work is a gesture recognition setup
(fig. 1) with five body-worn IMUs and a consumer vision-
based skeleton tracking system (Microsoft Kinect). These

sensors are commonly deployed for activity recognition.
IMUs are available on smartphones and can be highly
miniaturized. The Kinect allows activity-aware gaming on
the XBox console2. It has been used for the recognition of
activities of daily living [12] and gait analysis [13].

The Kinect contains an 8-bit 640×480 RGB camera, an
infrared (IR) LED projecting structured light and an IR
camera. It computes on-the-fly an 11-bit 640x480 depth
map in a range of 0.7-6m from the reflected IR light. The
drivers fit a 15-joint skeleton on the depth map (proprietary
algorithm similar to [14]) in real time and deliver 3D joint
coordinates in millimeters measured from the Kinect center.
Tracking is specified in a range of 1.2-3.5m [15]. The Kinect
is interfaced over USB to a PC. We use [16] to record the
RGB and depth map videos and the joint coordinates at
30Hz.

Five IMUs (XSens [17]) wired to a PC sense the upper
body orientation. We use [18] to acquire the raw sensor data
and the device orientation at 30Hz. We only use the 3D
acceleration measured by the IMUs.

The Kinect and IMU data are independently recorded
and resampled offline to the regular Kinect sampling comb
to obtain a synchronized dataset comprising acceleration,
position and labels. A single subject performs five kinds
of geometric gestures with the right hand in alternation 48
times. These gestures were selected because similar ones
can be recognized with wearable sensors [3] or with the
Kinect [15]. We also recorded a five minutes long “idle”
dataset, where the user performs infrequent low-amplitude
arm movements and moves around, without any specific
task. The user faces the Kinect within ±30◦ to avoid
occlusions.

4. Translation Method

The translation method works in two steps (fig. 2). First,
a system identification technique finds a function that maps
the signals of one sensor modality to the signals of another
sensor modality. Based on this mapping, the activity recog-
nition system is then translated.

4.1. System Identification (Kinect ∼ IMU)

We define xS(t) as an nS-by-1 vector of sensor data
from the source domain S at time t and xT(t) as an nT -
by-1 vector of data of the sensors of the target domain. A
mapping relating the sensor signals in different domains is
first identified. This may be from source to target signals, or
target to source signals, whichever can be best identified. We
denote with ΨS→T the function that maps the source to the

2. The Kinect sold 10 millions units between its release on November
4th, 2010 and March 2011, earning it the Guinness World Record of the
“Fastest selling consumer electronic device”. Its low cost (150$) puts it in
the reach of many households.



Figure 1: IMUs and a Kinect capture the user’s movements
(top). The Kinect delivers a depth map, a color image and
a 15-joint skeleton of the user (middle). The right hand
position and limb acceleration are synchronously recorded
for five gesture kinds (bottom).

target signal: ΨS→T : xS(t) → x̂T(t) ≈ xT(t). We define
ΨT→S as the function that maps the target to the source
signal: ΨT→S : xT(t) → x̂S(t) ≈ xS(t). The ˆ is used to
indicate that the signal is predicted in a given domain from
the known signal of another domain.

The field of system identification provides techniques to
build models3 of dynamical systems from data [19]. The
system identification model should allow for transforma-
tions between the typical sensing modalities that are used
for activity recognition. Some typical static transformations
include scaling (sensors with different sensitivity or units),
offset (different zero value), non-linearity (compression of
the dynamic range), or rotation. Dynamic transformations

3. Note the distinction between models used for activity recognition (“ac-
tivity models” in this paper) and models resulting from system identification
(“system identification model” or “mapping”). The latter is meant here. It is
a mathematical description of the relation between quantities of a physical
system, such as the readings delivered by multiple sensors.

may include multiple differentiation or integration opera-
tions (e.g. between position or angle and linear or angular
velocity), or hysteresis.

Here we use a linear MIMO mapping for system iden-
tification [20]. Such mappings can be learned from data.
This allows to learn mappings in a wide range of sensing
environments without designer involvement or bias. A linear
MIMO mapping is defined as follows:

xT(t) = B(l)xS(t) (1)

where B(l) is the nT -by-nS polynomial matrix in the delay
operator l−1 (i.e. each entry of the matrix is a polynomial
in l−1). The operator l−k introduces a delay of k samples
in the signal to which it is applied: l−kx(t) = x(t−k). The
source and target sensor signals are the inputs and outputs
of the model. The matrix B(l) contains elements bik(l) of
the form:

bik(l) = b
(0)
ik l−sik + b

(1)
ik l−sik−1 + . . . + b

(q)
ik l−sik−q (2)

where q is the number of past input samples that are used
for the computation of the current output sample and sik are
the static delays from the k-th input to the i-th output. We
identify the (q + 1) ·nT ·nS coefficients of the polynomials
and the nT · nS static delays with a least squares approach.

The linear MIMO mapping allows for combinations of
subsets of the transformations mentioned above:
• Scaling. This is obtained by setting b

(0)
ik to the scaling

factor and b
(s)
ik to zero ∀s > 0,∀i = k. Furthermore,

all the coefficients b
(s)
ik , i 6= k of the off-diagonal

polynomials will be zero, yielding a diagonal matrix.
• Rotation. This is obtained by setting b

(0)
ik to the corre-

sponding element at position ik in the rotation matrix
and by setting b

(s)
ik to zero ∀s > 0.

• Differentiation of order h. This is obtained by setting
b
(s)
ik ,∀s ≤ h,∀i = k to the corresponding coefficients

of the transfer function of the derivative. All the other
coefficients are set to zero.

Specific to this work with Kinect and IMUs:
• We learn a MIMO mapping ΨK→I from the 3D Kinect

joint coordinate, to the 3D acceleration (intuitively we
see that this requires the MIMO mapping to realize at
least a 2nd order differentiation).4

• This model can be used both to translate from Kinect
to acceleration, and from acceleration to Kinect, thanks
to the two translation architectures presented next. The
reverse MIMO mapping is not needed.

4.2. Translation Architectures

Two architectures are presented to translate the activity
recognition systems. One uses ΨS→T , the other uses ΨT→S .

4. We use I or K instead of the S or T subscripts in Ψ or x to be specific
about whether the signals come from the IMUs or the Kinect.



They require the source and target system to exchange either
activity models M or activity templates T .

Template translation architecture (Kinect → IMU)
The recognition system devised for the source domain also
stores the activity templates TS that were used for its
training. TS consists thus of raw sensor signals xS(t) and
the corresponding class labels. ΨS→T is used to translate
the templates TS into templates TT containing the pre-
dicted sensor signals x̂T(t) in the target domain, and the
corresponding class labels. System T then runs a feature
extraction and selection process, trains a classifier based on
TT , and eventually operates on the data of domain T .

Specific to the Kinect → IMU translation, assuming that
ΨK→I has been identified:

• The source domain recognition system works on the 3D
hand coordinates. It also stores the activity templates TS
that are the 3D hand coordinates for each gesture.

• xS = xK is the 3D hand position measured by the
Kinect (source)

• xT = xI is the 3D acceleration measured on the body
(target)

• x̂T = x̂I = ΨK→I(xK) is the acceleration predicted
on the body from the known hand position.

• After template translation, TT are the predicted 3D on-
body acceleration and the corresponding class labels.

• The target recognition system is automatically trained
at run-time on the templates TT , and finally operates
on the acceleration sensed by the IMUs.

Signal translation architecture (IMU → Kinect)
The recognition system devised for the source domain relies
on activity models MS (i.e. the parameters of the recogni-
tion system, including the selected set of features, the trained
classifiers, etc.). After translation, the target recognition
system uses the exact same activity models. However, the
target system uses ΨT→S to translate the sensor signals of
domain T to domain S prior to applying the recognition
model MT =MS .

Specific to the IMU → Kinect translation, assuming that
ΨK→I has been identified:

• The source domain recognition system works on the 3D
acceleration sensed by an IMU. It uses modelsMS for
the recognition.

• xS = xI is the 3D acceleration measured on the body
(source)

• xT = xK is the 3D hand position measured by the
Kinect (target)

• x̂S = x̂I = ΨK→I(xK) is the acceleration predicted
on the body from the hand position.

• After translation, the 3D hand coordinates of the Kinect
are mapped to “look like” an acceleration. The recog-
nition models devised for the IMU are used as-is by
the target system that now operates on the Kinect data.

5. Results and Analysis

System identification performance. The translation be-
tween Kinect and IMU relies on the identification of ΨK→I

which we first characterize. ΨK→I is a 3-input (3D position)
3-output (3D acceleration) MIMO mapping with 10 tap
delays (q = 10, 108 parameters to learn). The fit between the
measured on-body acceleration xT = xI and the predicted
acceleration x̂T = x̂I, obtained by mapping the source
signals (position) xK to the target domain is calculated for
each channel i:

BestF iti = 1−

(∑N
t=1

(
x
(i)
T (t)− x̂T

(i)(t)
)2) 1

2

(∑N
t=1

(
x
(i)
T (t)− x̄T

(i)
)2) 1

2

(3)

with N the number of signal samples, and x̄T
(i) the mean

over time of x(i)
T (t). We average BestF iti on all channels.

A BestFit of 1 indicates a perfect fit. Values above zero
qualitatively indicate a good fit (fig. 3). The MIMO map-
pings are learned on a subset of the dataset and evaluated
on the rest. The learning subset is obtained by aggregat-
ing multiple activity instances, or obtained from the idle
dataset. The selection is randomly repeated 20 times in an
outer cross-validation process. We evaluate three kinds of
MIMO mappings. Problem-domain mapping (PDM): This
is a generic mapping learned on instances of all classes in
equal proportions. Gesture-specific mapping (GSM): This is
a mapping learned on instances of a single class. It is used
to analyze whether specific movements are more suited to
identify the system dynamics. Unrelated-domain mapping
(UDM): This is a mapping learned from a sequence of
samples from the idle dataset. It is used to assess mapping
generalization across scenarios. Learning is done with a
minimum of data corresponding to roughly the duration of
a gesture. Thus GSM and UDM are learned on 100 samples
and PDM on 500.

The best fit tends to be obtained with PDM (figure 4a).
This may be expected, as the mappings are learned on
the dynamics of all gestures. Learning can also occur on
one gesture of a given class (figure 4b). The best unique
gesture to learn a mapping tends to be the circle. Thus,
one gesture may be sufficient for the mapping to capture
the dynamics of the physical system and extrapolate to a
wider range of body movements. UDM does not achieve
an adequate mapping (Figure 4c). The idle dataset has only
rare occurrences of larger amplitude limb movements and is
insufficient to represent the dynamics of the physical system.
The fit worsens for mappings between less related body
regions. Nevertheless, the fit between hand position and
upper arm acceleration is close to that of the hand position to
lower arm acceleration. This suggests that translation may
be feasible between close-by and related limbs. The back



Figure 2: Two architectures allow us to translate a source activity recognition system to operate on a different target sensor
domain. The process consists of two steps. First a function ΨS→T or ΨT→S mapping between the source and target sensor
signals is obtained (represented by the gray box). Then the actual translation is performed. AR is an operational recognition
system (i.e. trained). It recognizes activities (act) from the data of a sensor (encircled S). a) The source system stores activity
templates TS that are translated by ΨS→T to the target domain TT ; the target system trains its recognition system based on
TT and is ready to operate. b) The activity models MS represent the parameter of the source recognition system; the target
system uses these same activity models (MT =MS), and it uses the mapping ΨT→S to translate the sensor signals of the
target domain to the source domain prior to classification.
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Figure 3: Acceleration at the lower-arm predicted by PDM
from the hand position sensed by the Kinect compared to the
measured acceleration, for a circle (left) and a slider (right).
Visually, a good match between predicted and measured
signal is obtained for BestFit values above 0.

acceleration is hardly predictable from the hand position.
Translation accuracy. We characterize the Kinect →

IMU translation from the hand position to the acceleration
at the lower arm, upper arm, and back, with the template
translation architecture. We assess the reverse IMU →
Kinect translation to the hand position, from the lower-arm,
upper-arm or back acceleration, with the signal translation
architecture.

Three non-overlapping parts of the dataset are used to
learn the MIMO mapping, to train the source recognition
system, and to test the translated target recognition system.
The classifier training and testing sets are defined by an
instance-based random-seed 5-fold inner cross-validation
process, repeated 100 times. The data used to learn the
MIMO mapping is selected as indicated previously in an
outer cross-validation process. Source and target baseline
classification accuracies are assessed by training and testing
on data from the same domain (position or acceleration).
The Kinect → IMU translation is evaluated by training

the recognition system on the predicted acceleration x̂I =
ΨK→I(xK) and testing it on the measured acceleration xI.
The IMU → Kinect translation is evaluated by training the
recognition system on the measured acceleration xI and
testing on the predicted acceleration x̂I = ΨK→I(xK).

Two feature sets are used. Each instance is subdivided
into 4 subwindows that capture the temporal dynamics and
features are computed on them. FS1 is the mean of each axis
(12 features), FS2 is the maximum and minimum of each
axis (24 features). We report the accuracy for segmented
gestures recognition with a k-NN classifier (k=3).

Classification accuracy baselines in the source (BS) and
target domain (BT), and those after transfer to the target
domain are presented in fig. 5 for FS2 (this set is used
because it is more sensitive to inaccurate signal mapping).
The GSM mapping is learned on the “circle” gesture. The
baselines indicate that the gestures can be classified with an
accuracy of 98% or more with the lower-arm acceleration,
the upper-arm acceleration, or the hand position. The high
accuracy obtained with the back acceleration (BT of about
88%) indicates that torso movements are correlated with
the execution of the gestures. This is a particular charac-
teristic of this scenario, that likely does not generalize to
other scenarios. The results after transfer must be assessed
according to the performance drop from the baselines. The
performance drop from BS indicates how much worse the
system becomes after transfer. The drop from BT indicates
how much better would be a system devised specifically for
the target domain.

In the translation between hand position and lower or
upper arm acceleration, the PDM and GSM models tend
to perform equally well. The best results are obtained when



translating from hand position to lower-arm acceleration or
vice-versa, with less than 4% drop from BS. The drop in
performance from BS is less than 8% for the translation
from hand position to upper-arm acceleration and vice-versa.
The direction of the transfer does not affect the results
much. The GSM results show that executing a single “circle”
is sufficient to identify a mapping model that leads to a
transfer with performance drop between 1% to 7% from
BS. The transfer between the hand position and the back
acceleration shows a large drop from BS with all mappings
(30% to 70%). UDM appear unsuitable for the transfer. This
is consistent with the analysis of BestFit.

The UDM mapping improves when learned on more
“idle” data (fig. 6). With 2000 samples (67 seconds), the
performance is about 15% to 30% below the corresponding
baselines for FS1 and FS2 respectively. This indicates that,
with sufficient data, a dataset from an unrelated domain
allows the MIMO mappings to capture the dynamics of
the physical system. The difference between FS1 and FS2
highlight that an automatic selection of better features by the
source or target system may lead to improved results. Thus,
the reported results are a lower bound on the performance.

6. Discussion

Challenges and limitations. Accelerometers measure
data in a local frame of reference and the Kinect uses a
fixed one. Thus, the signal mapping would have to include
not only a second derivative, but also a rotation which
is depending nonlinearly on the body posture. The linear
MIMO model can only approximate the second derivative
and a fixed rotation, which would be an average rotation.
This may become an issue with more ample movements, but
in our dataset the relative rotation of the frames of reference
was limited for most gestures (±30-40◦). Only for the slider
gesture the lower arm rotates by almost 90◦ at the extreme
of the movement, compared to the starting position.

The Kinect and other video-based tracking systems are
affected by occlusions. Since only a small amount of data are
needed to learn the mapping, this process is likely feasible
in-between occlusions. Furthermore, during an occlusion the
BestFit decreases, so it may be enough to let the system learn
only when BestFit is higher than a certain threshold.

Another limitation is that some movements may not be
sensed by certain modalities. The Kinect cannot detect
torsions of hand and forearm (e.g. in gestures like turning
a knob or tightening a screw), but this is easily sensed by
gyroscopes and accelerometers, meaning that the expected
performance is modality- and gesture-dependent.

Advantages. The approach itself is generic and can be
applied to other sensing systems, or to systems of identical
modality translated or rotated with respect to each other.
The method should scale well with the number of classes,
since a mapping learned with one instance of a single class

(GSM) performed well on the prediction of the signals of
other gestures. This indicates that the mapping approximated
the physical relations between the sensing systems, indepen-
dently of the gestures. We evaluated isolated activity recog-
nition, but the approach is also applicable for continuous
recognition (spotting).

Low-variance data unrelated to the activities of interest
can be used to learn a mapping (UDM), albeit with more
data. This has practical benefits, since “unrelated” domain
data can easily be acquired “in the background”, whenever
the user is in the sensing range of the source and target sen-
sor systems. Learning, however, benefits from the execution
of movements highlighting the physical relation between the
sensor systems.

This approach may be useful in crowd-sourcing scenarios
[21] to translate generic activity models to the specific sensor
modalities that one user has.

The approach was evaluated in simulation. It is however
entirely suitable for online, real-time implementation, for
instance in sensor nodes.

System identification. For specific and tractable cases, a
white-box mapping may be devised. Nevertheless, that ap-
proach would not generalize to modalities or configurations
not foreseen by the system designer. The approach that we
propose allows to take advantage of additional sensors as
they become available and to learn the mapping without
expert intervention.

The approach may be improved by nonlinear or time-
varying models, e.g. with time-delay neural networks [22]
or nonlinear ARMA [23], or by modeling the transforma-
tions between multiple sensors (e.g. two joint coordinates
and one acceleration). More complex transformations likely
need longer coexistence time between source and target to
estimate the model parameters.

BestFit. The BestFit indicates the quality of the mapping
and to some extent the quality of the resulting translation.
This may be an indicator guiding the self-organization of
an ecology of sensor systems for opportunistic activity
recognition [24].

Since the BestFit tends to be highest when sensors mea-
sure the movement of a same limb, further investigation
may evaluate whether this could be used to automatically
localize on-body IMU placement when in range of a skeleton
tracking system.

Template translation vs. signal translation. The trans-
lation architectures differ in their complexity and memory
needs. Template translation does not add computational load
on the target system after translation but it requires the
source system to store activity templates. This however does
not demand large amount of space (47kBytes in floats here).
This is well suited for an ambient source and a wearable
target system. In contrast, signal translation requires that
the target sensor signals are continuously translated. This
increases the computational load on the target, but the
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Figure 4: Logarithmic box plot of 1 − BestF it between the acceleration measured at the lower arm, upper arm and back
(first, second and third box within each gesture group) and the acceleration predicted at that location from the position of
the hand measured by the Kinect. a) The mapping is trained on all gestures and the fit computed on the indicated gestures.
b) The mapping is trained on the indicated gesture and the fit computed on all of them. c) The mapping is trained on data
from another domain, and the fit is computed on the indicated gestures.

Figure 5: Classification accuracy for the translation between
an ambient and wearable system with FS2. Left half: transfer
from a system trained on the Kinect hand position to a sys-
tem operating on the acceleration measured at the indicated
positions. Right half: transfer from a system trained on the
acceleration signals measured at the indicated positions to a
system using the Kinect hand position. BS and BT indicate
the baseline accuracies obtained with a system trained and
tested on the source and target domain.
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Figure 6: Effect of the amount of idle data used to learn the
UDM mapping on the translation accuracy from Kinect hand
position to acceleration at the lower arm (left) and vice-versa
(right) for features set 1 an 2 (FS1T, FS2T). BS, BT are the
source and target baselines.

mapping complexity is low and easily benefits from SIMD
instructions. The storage requirement is lower, since only
the activity models need to be stored. This is well suited
for a wearable source and an ambient target system. The
architectures also differ in whether the source signal is
mapped to the target, or vice versa. If a mapping model
exist both ways, then the choice of the architecture is based
on computational and memory requirements. If the mapping
model is more accurate in one way, then the architecture that
uses this mapping is favored. In this work the mapping from
position to acceleration influenced the architecture choice.

7. Conclusion

System identification techniques can be used to learn a
linear MIMO model that maps 3D positions sensed by a
Kinect to the 3D acceleration measured on-body by IMUs.

As few as a single gesture (3 seconds) of data is required
to learn the mapping. When the user is idle, more data is
required to learn this mapping.

The Kinect → IMU and IMU → Kinect translation
achieves a recognition accuracy of 95%, and is less than
4% below the accuracy of the initial system.

When translating across sensor modalities and also to an
adjacent limb (e.g. Kinect hand to IMU on the upper-arm),
the accuracy after translation is 8% below baseline.

The approach is generic and could be applied to other
sensors, e.g. between a gyroscope and an angle sensor such
as a stretch sensor integrated in clothing.

The MIMO models can be replaced by nonlinear ARMA
models [23] or time-delay neural networks [22], that may
help capture more complex dynamics of the physical system,
for instance for combinations of sensors.

This work contributes to activity recognition in open-
ended environments. It supports the multi-modal recognition



of activities by allowing e.g. to combine video and motion
information. In the future, this may be used to learn activity
models from existing annotated video sources (e.g. from
YouTube), and apply them to movement data sensed on the
body (e.g. with a smartphone).

Future work needs to evaluate the approach when frequent
occlusions or data loss occur.
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able computing: Designing and sharing activity-recognition
systems across platforms,” IEEE Robotics and Automation
Magazine, vol. 18, no. 2, 2011.

[12] J. Sung, C. Ponce, B. Selman, and A. Saxena, “Human
activity detection from rgbd images,” in AAAI Workshop:
Plan, Activity, and Intent Recognition, 2011.

[13] E. Stone and M. Skubic, “Evaluation of an inexpensive depth
camera for passive in-home fall risk assessment,” in Proc
Pervasive Health Conference, 2011, pp. 71–77.

[14] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio,
R. Moore, A. Kipman, and A. Blake, “Real-time human pose
recognition in parts from a single depth image,” in Proc
of IEEE Conf on Computer Vision and Pattern Recognition,
2011, pp. 1297–1304.

[15] “Prime sensor NITE 1.3 algorithms notes, version 1.0,”
PrimeSense Inc., 2010, http://www.primesense.com.

[16] http://code.google.com/p/qtkinectwrapper/.

[17] XM-B Technical Documentation, Xsens Technologies B.V.,
May 2009, http://www.xsens.com.

[18] D. Bannach, O. Amft, and P. Lukowicz, “Rapid prototyping of
activity recognition applications,” IEEE Pervasive Computing,
vol. 7, no. 2, pp. 22–31, 2008.

[19] O. Nelles, Nonlinear System Identification. Springer, 2000.

[20] H. Pota, “Mimo systems-transfer function to state-space,”
Education, IEEE Transactions on, vol. 39, no. 1, pp. 97 –
99, feb 1996.

[21] M. Berchtold, M. Budde, D. Gordon, H. Schmidtke, and
M. Beigl, “Actiserv: Activity recognition service for mobile
phones,” in Proc. 14th Int. Symp. on Wearable Computers
(ISWC), 2010.

[22] A. Yazdizadeh and K. Khorasani, “Adaptive time delay neural
network structures for nonlinear system identification,” Neu-
rocomputing, vol. 47, no. 1–4, pp. 207–240, 2002.
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