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ABSTRACT

In this paper we propose a novel and efficient model for compressed
sensing of hyperspectral images. A large-size hyperspectral image
can be subsampled by retaining only 3% of its original size, yet ro-
bustly recovered using the new approach we present here. Our re-
construction approach is based on minimizing a convex functional
which penalizes both the trace norm and the TV norm of the data
matrix. Thus, the solution tends to have a simultaneous low-rank
and piecewise smooth structure: the two important priors explaining
the underlying correlation structure of such data. Through simu-
lations we will show our approach significantly enhances the con-
ventional compression rate-distortion tradeoffs. In particular, in the
strong undersampling regimes our method outperforms the standard
TV denoising image recovery scheme by more than 17dB in the re-
construction MSE.

Index Terms— Hyperspectral images, Compressed sensing,
Low rank matrix recovery, TV norm, Trace norm, Convex optimiza-
tion.

1. INTRODUCTION

Over the last decade compressive sampling (CS) theory has been
introduced as an alternative to the Shannon’s sampling theorem,
wherein the main idea consists of combining the two conventional
sampling and compression steps together in order to represent data
with sampling rates much lower than the Nyquist rate [1] [2]. In-
stead of taking n periodic Nyquist samples to discretize data into
the vector x ∈ Rn, m � n linear measurements are collected from
data in a vector y ∈ Rm that can be expressed as y = Ax + z,
where each measurement is the inner product of x and a row of the
sampling matrix A ∈ Rm×n, and z ∈ Rn represents the noise vec-
tor due to the quantization, transmission, etc. It has been shown that,
for signals having compact sparse representations in an orthonormal
basis (i.e., x = Φθ, Φ ∈ Rn×n, θ ∈ Rn with ‖θ‖`0 ≤ k � n),
and for random sampling matrices drawn from certain distributions
(e.g., A being an i.i.d subgaussian matrix), a robust reconstruction
is achievable by taking m & O (k log(n/k)) measurements and
solving the following convex problem, called the Basis Pursuit
Denoising (BPDN):

arg min
θ∈Rn

‖θ‖`1 subject to ‖y −AΦθ‖`2 ≤ ε. (1)

Similar results have been obtained regarding compressed sam-
pling of low-rank matrices. Assume a linear mappingA : Rn1×n2 →
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m applies on a rank r � min(n1, n2) data matrix X ∈ Rn1×n2 to
collect m� n1n2 linear measurements y ∈ Rm i.e.,

y = A(X) + z. (2)

Candés and Plan [3] show that, for an A which is drawn at random
(e.g, i.i.d. subgaussian ensemble), a robust recovery of X is achiev-
able from the following convex trace norm minimization

argmin
X∈Rn1×n2

‖X‖∗ subject to ‖y −A(X)‖`2 ≤ ε, (3)

provided by m & O(rn1 + rn2), that is the same order as the de-
grees of freedom of such low-rank matrix. Note that in (3), ‖.‖∗
stands for the trace norm (equivalently, the nuclear norm) of a ma-
trix that is the sum of its singular values.

Lately, it has been shown in [4] that, if the sparsity and low-rank
assumptions simultaneously hold for data i.e., X being a k-joint-
sparse (few k rows/columns of X are nonzero) and low-rank, then
one can expect a robust recovery by takingm & O

`
rk log(k/n1) +

rn2

´
measurements and solving the following joint trace-`2,1 norm

minimization (for some regularization parameter λ):

argmin
X∈Rn1×n2

‖X‖∗ + λ‖X‖`2,1 (4)

subject to ‖y −A(X)‖`2 ≤ ε

The key observation here is that all these methods aim for a ro-
bust representation of high dimensional data provided by few non-
adaptive linear measurements proportional to the underlying degrees
of freedom.

Throughout these years, a massive amount of research has been
conducted to benefit from the CS theory in varieties of signal pro-
cessing applications. In this regard, a few number of image acquisi-
tion systems have been proposed based on the CS idea, for example
in [5, 6], in order to reduce the number of the photodiodes (some
designs such as the Rice’ Single-pixel camera have been already
implemented and examined). Two standard and popular methods
that are extensively used by the community to reconstruct the orig-
inal image from the CS measurement are i) BPDN using varieties
of wavelet basis for Φ due to the well-established capability of the
wavelet transforms for compact image representations, and ii) the
following Total Variation norm minimization/Denoising (TVDN):

arg min
x∈Rn

‖x‖TV subject to ‖y −Ax‖`2 ≤ ε. (5)

The Total Variation norm ‖.‖TV of a 2-dimensional image x has
been introduced in [7] as an efficient prior to minimize for the stan-
dard image denoising problem.



1.1. Hyperspectral Compressive Imagery

Hyperspectral Images (HSI) are huge collection of images that are
acquired simultaneously from a scene in a few hundred narrow adja-
cent frequency bands. All substances have their own specific spec-
tral signature or frequency absorption features and therefore once
the frequency bands are sampled with highly enough resolution, Hy-
perspectral imagery becomes a very powerful tool for characteriz-
ing the components of the observed scenes. As a result, this type
of images finds a wide variety of applications in remote sensing
such as detection and identification of the ground surface as well
as atmospheric composition, analysis of soil type, agriculture, min-
eral exploration and environmental monitoring. The price to pay for
such high spatio-spectral resolution is to handle extremely large data
size. For example, each instance of the HSI acquired by the NASA’s
Airborne Visible InfraRed Imaging Spectrometer (AVIRIS) contains
224 spectral bands and roughly more than 140 MBytes of data.

Compressive sampling becomes particularly interesting for hy-
perspectral imagery mainly because of two reasons that are both re-
lated to the enormous amount of data in such application: i) the pho-
todiodes sensitive to the light outside the visible range are severely
costly and thus, incorporating a huge number of them into a high-
resolution sensor makes hyperspectral imagers extremely expensive
devices, ii) handling such huge amount of informations, even at the
compression step, brings serious challenges, particularly to embed-
ded systems, such as spacecrafts, where the power consumption,
memory storage, computational complexity and bandwidth are pos-
ing tight constraints on system implementation. Despite their high
dimensionality, hyperspectral images are known to contain massive
correlations along both spatial and spectral domains and with such
inspiration, there has been many works over the past twenty years on
compression of HSI. Considering such enormous redundancy, one
major question would naturally arise; Why do we need to make such
costly effort to entirely acquire data while only a very small amount
of it is kept after yet another computationally-expensive compres-
sion procedure?

In order to address this question, a few number of novel de-
signs have been recently proposed based on the new CS sampling
paradigm, aiming for spectral image acquisition by very few num-
ber of measurements [8] [9]. The main idea is to benefit from the
asymmetric complexity of CS (i.e., low-complex sampling, high-
complex reconstruction) to overcome the aforementioned practical
limitations. For data reconstruction, the authors of [9] apply the
standard TVDN approach in (5) independently on each spectral band
in order to find smooth spatial images with few gradient variations.
This approach clearly neglects the existing correlations in the spec-
tral domain. For joint CS reconstruction, Duarte and Baraniuk [10]
additionally take into account the piecewise smooth variation of HSI
along the spectral domain and reconstruct a sparse representation of
HSI in a 3D wavelet basis using the standard BPDN method i.e., Φ
in (1) would be an orthonormal basis formed by the Kronecker prod-
uct of a 2D spatial and a 1D spectral wavelet basis. Recently, its
has been shown in [11] that incorporating the low-rank structure of
the HSI can better handle the underlying spatial correlations, and to-
gether with the assumption of spatial sparsity in a 2D wavelet basis,
one can achieve a significant enhancement in HSI reconstruction for
severely under-sampled regimes by using the joint trace/`2,1 mini-
mization approach in (4).

1.2. Our Main Contributions

This paper aims to present a novel CS reconstruction method based
on the joint trace/TV norm minimization and with applications in

spectral compressive imaging. Our approach brings two important
priors of HSI into the consideration; (i) sparse gradient variations
along the spatial domain, and (ii) the low-rank structure due to
the high correlations. The recovery problem is relaxed into a con-
vex minimization that is implemented using the proximal splitting
method [12] with the capability of a parallel realization. We show
through simulations that the global minima of the proposed ap-
proach significantly enhances the HSI reconstruction, compared to
the standard TVDN-based scheme. Notably and in contrast with the
conventional decorrelation-based HSI compression techniques such
as [13], the sensor side does not need to compute or transmit any
correlation matrix and its complexity reduces to taking few number
of linear measurements and forward them to the decoder.

2. COMPRESSIVE HYPERSPECTRAL IMAGERS

In order to represent hyperspectral images we define a matrix X ∈
Rn1×n2 whose jth column, say Xj , corresponds to a 2D spatial
image (reshaped in a vector) in the corresponding spectral band j.
Here n2 denotes the number of spectral bands and n1 is the resolu-
tion of the spatial images in each band. In a compressive acquisition
setup, sensors are collecting m � n1n2 linear measurements from
the HSI matrix X in a vector y ∈ Rm following the same sampling
model as in (2). Note that A can be explicitly expressed by a matrix
A ∈ Rm×n1n2 through the equivalent expression

y = AXvec + z,

where the columns of X are stacked into the vector Xvec.
Several camera designs have been so far proposed for the single-

channel image compressive acquisition. A common point among
those is the use of a random pattern to modulate the light prior to
collecting the measurements. As an example, the random convolu-
tion measurement scheme have been proposed by [6], convolves the
image light-field with a random pattern using few optical blocks, and
finally a few number of random pixels have been acquired from the
resulting modulation. All those setups can be easily extended to hy-
perspectral imaging, by repeating the same acquisition scheme for
all spectral bands, however by using an independent random pattern
per channel. In this case the corresponding measurement matrix A,
would be a block diagonal matrix of the form

A =

26664
A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . AJ

37775 , (6)

where Aj ∈ R bm×N is the random measurement matrix that ap-
plies on channel j independently from the other spectral bands, andbm denotes the number of measurements collected per channel i.e.,
m = bmJ . In contrast with the Single-pixel hyperspectral imager in
[8] which uses a unique random pattern for all spectral bands (i.e.,
A1 = A2 = . . . = AJ ), using independent blocks as in (6) leads
the measurements to benefit more efficiently from the existing infor-
mation diversity across multiple spectral channels.

For more real-time acquisitions, another camera design has been
implemented by Wagadarikar et al. The Coded Aperture Snapshot
Spectral Imager (CASSI) captures a few thousands of CS measure-
ments in snapshot. There, by using optical light modulators the
whole spectral information are encoded into a single 2D spatial im-
age, and thus the sampling matrix has a different form than in (6)
(for more details see [9]).



3. CS RECONSTRUCTION BASED ON THE JOINT
TRACE/TV NORM MINIMIZATION

Perhaps the best way to characterize the compressible priors that will
be useful for an efficient CS reconstruction is by looking at the exten-
sive literature of the compression schemes for hyperspectral images.
One of the most efficient approaches [13] consists in 2D wavelet
coding for the spatial domain, as the natural images can be typi-
cally represented by few sparse wavelet coefficients. In addition, a
Karhunen-Loéve transform (KLT) is applied to compress data into
few principal components along the spectral dimension. The KLT-
based approach is data-dependent and in practice costs heavy com-
putations and transmission (to the decoder) of the correlation matrix,
however its high efficiency reveals an important point about the data
structure and that is, HSI are typically piecewise smooth along the
spatial domain and in addition, they contain very few principal com-
ponents implying their low-rank structure.

We propose the following convex optimization for reconstruc-
tion of the original HSI from its CS measurements:

argmin
X∈Rn1×n2

‖X‖∗ + λ
Pn2
j=1 ‖Xj‖TV (7)

subject to ‖y −A(X)‖`2 ≤ ε.

The TV norm of a 2D image is defined as the sum of the magnitude
of the gradient over all image pixels (u, v) i.e., for each spectral band
we have

‖Xj‖TV =

n1X
u,v

˛̨̨
(∇Xj)u,v

˛̨̨
.

As previously mentioned, penalizing the trace norm or the TV norm
has been widely used in the literature to impose the reconstructed
data to have a low-rank or piecewise smooth structure, respectively.
However, by penalizing both terms with a proper regularization fac-
tor λ in (7), we tend to impose the solutions satisfy simultaneously
both properties (penalizing the sum of the TV norms implies a piece-
wise smooth structure along the spatial domain for every spectral
band). As a result, applying this approach can efficiently take ad-
vantage of the limited degrees of freedom of such data structure in
order to economize the number of measurements required for the
HSI reconstruction.

In order to solve (7) we use the Parallel Proximal Algorithm
(PPXA) proposed by [12]. PPXA is an iterative method for solving
convex minimizations with the capability of parallel implementation
and in the case of solving (7), it briefly consists of three main steps
to proceed with the current solution X [t] at iteration t: i) the singu-
lar values soft thresholding ii) multiple TVDN minimizations, each
applies to a certain spectral band (they can be performed in parallel)
and, iii) projection onto the convex set of matrices satisfying the fi-
delity constraint ‖y −A(X)‖`2 ≤ ε. These three steps can run in
parallel and at the end of each iteration their results are averaged to-
gether for updating the solution. The whole procedure repeats up to
a convergence point (for more details see [11, 12]). Note that the or-
thogonal projection onto the `2 ball (the fidelity constraint) in the last
step can be computed iteratively as suggested by [14] (and within a
single iteration, once A is a tight frame). Finally, for the regulariza-
tion parameters in (7), we set ε = ‖z‖`2 that is the estimated noise
power, and we suggest λ ∼

p
r/kn2 which requires a rough esti-

mation of the rank r of the HSI matrix and the sparsity-level k of the
spatial image gradient per spectral band.
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Fig. 1: Reconstruction MSE vs. Subsampling factor, using the joint Trace (Nu-
clear)/TV norm minimization (Nuc/TV) and TV denoising (TVDN) recovery
schemes, and for sampling SNR=∞, 40dB and 20dB.

4. NUMERICAL EXPERIMENTS

We evaluate the performance of our approach on the standard Mof-
fett field hyperspectral dataset1. We crop the corresponding HSI to
have the spatial resolution n1 = 256×256, and in addition we select
n2 = 180 spectral bands after discarding water absorption bands.
The ordered singular values of the HSI matrix have a very fast decay
in their magnitudes (though it is not demonstrated in this note), and
the whole HSI can be constructed with 2 × 10−4 normalized MSE
by considering the first seven principal components. Therefore, such
HSI can be well approximated by a low-rank matrix.

For compressive acquisition, a block diagonal random matrix
similar to (6) has been applied to collect m linear random measure-
ments from data as in (2). An independent random convolution mea-
surement matrix [6] has been used for each spectral band. In this
case, the resulting sampling operator/matrix is a tight frame. Note
that, in our experiments the CS measurements are corrupted by the
additive white Gaussian noise whose power corresponds to the “sam-
pling SNR”.

For the CS reconstruction, we apply two methods namely, the
TVDN approach in (5) separately applied on each spectral band and,
our trace/TV norm minimization in (7) applied on the whole data
for a low-rank and spatially piecewise smooth HSI joint recovery.
Figure 1 compares the performance of both methods in terms of nor-
malized reconstruction MSE (i.e., ‖ bXvec −Xvec‖`2/‖Xvec‖`2 ) for
different subsampling factors ( m

n1n2
) and different sampling SNRs

(i.e., the energy of noise z). There is an evident gap between the
performances of these two methods: the trace/TV norm minimiza-
tion always outperforms TVDN. In particular, for severely under-
sampled regimes (when the number of CS measurements are about
3% of the whole HSI cube size) and for moderate sampling SNRs,
our recovery approach indicates more than 17dB improvement com-
paring to the standard TVDN approach. Figure 2 illustrates the re-
construction quality suggested by both methods. As we can see, the
joint trace/TV norm minimization is able to robustly perform the HSI
reconstruction for severely under-sampling rates for which the other
standard CS recovery methods such as TVDN totally fail.

1Dataset available at http://aviris.jpl.nasa.gov/html/aviris.freedata.html
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Fig. 2: Reconstruction of the Moffett field HSI using the joint Trace (Nuclear)/TV norm minimization (Nuclear/TV) and TVDN, under various subsampling ratios and sampling
SNRs. Results are demonstrated for the spectral band j=50.

5. CONCLUSIONS

In this paper we have proposed a novel convex optimization formu-
lation for recovering the spectral images from very few CS mea-
surements. Our approach penalizes both the trace norm and the TV
norm of the data matrix in order to reconstruct simultaneously the
low-rank and spatially piecewise smooth structure of the data. An
algorithm to solve this convex optimization has been proposed based
on proximal splitting methods. Through simulations we have shown
that, our approach is robust against noise and the number of measure-
ments required for the HSI reconstruction is significantly reduced
comparing to the standard TVDN method.
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