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Abstract

In this paper, we propose an “arbitrarily varying channel” (AVC) approach to study the capacity of non-coherent

transmission in a network that employs randomized linear network coding. The network operation is modeled by a

matrix channel over a finite field where the transfer matrix changes arbitrarily from time-slot to time-slot but up to

a known distribution over its rank. By extending the AVC results to this setup, we characterize the capacity of such

a non-coherent transmission scheme and show that subspace coding is optimal for achieving the capacity.

By imposing a probability distribution over the state spaceof an AVC, we obtain a channel which we called

“partially arbitrarily varying channel” (PAVC). In this work, we characterize the “randomized”, “stochastic” as well

as the “deterministic” code capacity of a PAVC under the average error probability criterion. Although we introduce

the PAVC to model the non-coherent network coding, this extension to an AVC might be of its own interest as well.

I. I NTRODUCTION

Randomized linear network coding [1] is an efficient and practical approach to implement network coding [2],

[3] in large dynamically changing networks because it does not require a priori the knowledge of the network

topology. However, in order to enable the receivers to decode, to each packet a coding vectors is appended to learn

the channel while the packet passes through the network. So in other words, use of coding vectors is akin to use

of training symbols to learn the transformation induced by anetwork.

A different approach, than using coding vectors, is to assume a non-coherent scenario for communication, as

proposed in [4], where neither the source(s) nor the receiver(s) have any knowledge of the network topology or the

network nodes operations. Non-coherent communication allows creation of end-to-end systems that are completely

oblivious to the network state. In that work, the authors propose communication via choosing subspaces and they

introduce a subspace channel called “operator channel” (a channel which has subspaces as input and output symbols).

Then, they focused on algebraic subspace code constructions over a Grassmannian for the operator channel.

Following [4], different probabilistic models have been proposed so far to model the non-coherent randomized

linear network coding channel where these models enable us to define and characterize the capacity for such a

channel. In all of these works, when there is no error in the network, the non-coherent linear network coding

channel is modeled by a multiplicative matrix channel.

Montanari et al. [5] introduced a probabilistic model to capture the end-to-end functionality of non-coherent

network coding operation, with a focus on the case of error correction capabilities. Their model does not examine
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coding schemes defined over multiple blocks, but instead, allows the packets length to increases to infinity, with

the result that in the large packet length limit the scheme essentially becomes coherent.

Jafariet al. [6], [7], [8] modeled the non-coherent network coding channel by assuming that the transfer matrix

has i.i.d. entries selected uniformly at random in every time-slot. They showed that coding over subspace is sufficient

to achieve the capacity for all range of channel parameters.Then, they obtained the channel capacity as a solution

of a convex optimization problem overO(min[M,N ]) variables. Moreover, when the field size is greater than a

threshold, they characterize the capacity by solving the optimization problem.

Silva et al. [9] derived the capacity of the multiplicative finite field matrix channel under the assumption that

the transfer matrix is square and chosen uniformly at randomamong all full-rank matrices. Similarly, in this model

they obtained that coding over subspaces is sufficient to achieve the capacity.

Yang et al. [12], [13] (see also [10], [11]) considered a completely general scenario, making no assumption on

the distribution of the transfer matrix. They obtained upper and lower bounds on the channel capacity, and give a

sufficient condition on the distribution of the transfer matrix such that coding over subspaces is capacity achieving.

They also studied the achievable rates of coding over subspaces.

Nobregaet al. [14] considered the case where the probability distribution of the rank of the transfer matrix is

arbitrary; however all matrices with the same rank are equiprobable. Then, they followed a similar approach to

[8] to write the capacity as a solution of a convex optimization problem overO(min[M,N ]) variables. They also

observed that by using subspace codes we do not loose anything in terms of rate optimality and finally they provided

some upper and lower bounds for the capacity.

In most of the previous works, only certain probability models for the channel transfer matrix have been discussed.

However, in practice a complete probabilistic characterization of the matrix channel is difficult and the network

may not follow a given probability model. Instead of assuming a complete probability model, we consider in this

paper that only a partial knowledge about the probabilisticmodel of the channel is known.

More precisely, we assume that the rank distribution of the transfer matrix is known a priori, but the distribution

of matrices among each rank is unknown and arbitrary. Thoughvery similar to the arbitrarily varying channel

(AVC) model introduced in [15] (refer to [16] and the references therein), but this non-coherent network coding

model is not exactly an AVC. We introduce a “partially arbitrary varying channel” (PAVC) to capture the statistical

property of this non-coherent network coding model.

By extending results for the AVC, we obtain the capacities ofthe PAVC for deterministic, stochastic, and

randomized codes (Theorem 1, Theorem 2, and Theorem 3). We further show that the randomized and the

deterministic code capacities of the non-coherent networkcoding model are the same (Theorem 4), and that subspace

coding is sufficient to achieve the capacity (Corollary 3). This AVC approach to the non-coherent network coding

provides a justification for the optimality of subspace coding in a more general setting.

The paper is organized as follows. In§II, we describe the non-coherent network coding model and introduce the

PAVC. In §III, we state the main results of the paper; the capacity of a PAVC and as a corollary we will state the

capacity of the non-coherent network coding under having constraint over the rank distribution. The proofs of the
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PAVC capacity results are stated in Appendix A, Appendix B and Appendix C.

II. PROBLEM SETUP AND NOTATION

A. Notation

Let Uni(M) denote the uniform distribution over the setM. For example, we useUni(Fℓ
q) to denote the uniform

distribution over vectors of lengthℓ that are defined over finite fieldFq. For m × n matrices overFq, we use

Uni(Fm×n
q , r) to denote the uniform distribution overm× n matrices with rankr.

We use bold letters to denote vectors and matrices. For the convenience of notation, we use[i : j] to denote the

set{i, i+ 1, . . . , j − 1, j} wherei, j ∈ Z.

B. Non-coherent Network Coding Channel Model

Consider a unicast communication over a network where the relay nodes perform random linear network coding

over a finite fieldFq. Suppose that time is slotted and the channel is block time-varying. At every time-slot, the

source injectsM packetsX1[t], . . . ,XM [t] of lengthT symbols fromFq into the network,i.e., Xi[t] ∈ F
T
q . The

receiver collectsN packetsY 1[t], . . . ,Y N [t] and aims to decode the transmitted packets.

We use matricesX[t] andY [t] to denote respectively, the transmitted and received packets, i.e., the ith column

of these matrices represent theith transmitted and received packets, respectively. For a unicast communication, at

time-slot (block)t, the receiver observes

Y [t] = X[t]H[t], (1)

whereX[t] ∈ F
T×M
q , Y [t] ∈ F

T×N
q , andH[t] ∈ F

M×N
q . We assume that the channel transfer matrixH[t] is

unknown to both the transmitter and the receiver and it changes arbitrarily from one block to another block with

a constraint on its rank. More precisely, the ranks ofH[t], t = 1, 2, . . ., are independent and follow the same

distribution of a random variableR. The conditional distribution ofH[t] given rk (H [t]) is unknown and changes

arbitrarily for differentt. However, we assume that the distribution of the random variableR is known. We may

consider the channel transfer matrix as the channel state. For givenh[1 : n] the channel transition probability is

Wn
m (y[1 : n]|x[1 : n];h[1 : n]) =

n∏

t=1

Wm (y[t]|x[t];h[t]) ,

whereWm(y|x;h) , 1{y=xh} is a stochastic matrix.

The above model is very similar to an arbitrarily varying channel (AVC) model (refer to [16] for more information

about AVC) but it does not completely fit into that model. In this work, we will show that it is indeed possible to

extend the AVC concepts and results for the above channel model and characterize its capacity.

C. Partially Arbitrarily Varying Channel (PAVC)

Before defining a partially arbitrarily varying channel (PAVC), let us first consider an AVC model. LetX ∈ X

andY ∈ Y denote the input and output symbol of a channel whereX andY are finite sets denoting the channel
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input and output alphabets, respectively. Let us consider atransmission scenario where the channel parameters vary

arbitrarily from symbol to symbol during the course of a transmission. More precisely, for the channel transition

matrix, we can write

Wn(y|x; s) ,
n∏

t=1

W (yt|xt; st), (2)

wheres = (s1, . . . , sn), si ∈ S, andW : X × S → Y is a given stochastic matrix.S is a finite set, often referred

to as the state space. This model, called a “discrete memoryless arbitrarily varying channel,” will be referred to as

an AVC.

Now, we define a PAVC as an AVC with a probability constraint over the state spaceS. Define a function

q : S → Q whereQ , {0, . . . ,m} and define a random variableQ with alphabetQ whose distribution is known

by the encoder and the decoder. For a PAVC, we haveq(St), t = 1, 2 . . ., are independent and follow the same

distribution ofQ. In other words,

Pq(S)(q1, . . . , qn) =

n∏

t=1

PQ(qt), (3)

whereq(S) , (q(S1), . . . , q(Sn)). We call this model a “discrete memoryless partially arbitrarily varying channel,”

and will refer to it as a PAVC.

In this work, we are interested in characterizing the capacity of a PAVC. However, we first have to define the

capacity. As there are different notions of capacity for an AVC based on different error criteria, the same is true

for a PAVC (for more information refer to [16]).

Suppose that the message set of a code is identified as the setM = {1, . . . ,K}, so that a length-n block code

is given by a pair of mapping(ψ, φ), whereψ : M 7→ Xn is the encoder, andφ : Yn 7→ M∪{0} is the decoder,

where the output0 counts for an error. Let us define

e(i, s, ψ, φ) ,
∑

y: φ(y) 6=i

Wn(y|ψ(i); s). (4)

Then, the error probability for messagei, when this code is used on a PAVC and when the state sequence isgiven

to bes ∈ Sn, equals

ed(i, s) , e(i, s, ψ, φ), (5)

and the average probability of error for a state sequences is

ēd(s) ,
1

K

K∑

i=1

ed(i, s). (6)

Definition 1. A numberR > 0 is called an achievable rate for the given PAVC (for deterministic code and average

error probability criterion) if for everyǫ > 0, δ > 0, and sufficiently largen, there exists length-n block code

(ψ, φ) with
1

n
logK > R− δ, (7)

and

max
PS|q(S)

E [ēd(S)] , max
PS|q(S)

∑

s

ēd(s)PS|q(S) (s|q(s))PQn (q(s)) ≤ ǫ, (8)
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wherePQn(q) ,
∏n

t=1 PQ(qt). The maximum achievable rate is called the capacity of the PAVC and is denoted

by Cd,a
pavc (where superscript “a” denotes for the average error probability criterion givenby (6) and “d” denotes

for the determinist code).

Remark: Note that if there is no probability constraint on the state space in Definition 1 (PS is unknown instead

of PS|q(S)), then by replacing the maximization overPS|q(S) with PS , we recover the average error criterion for

an AVC, namely,maxPS
E [ēd(S)] ≤ ǫ is equivalent tomaxs ēd(s) ≤ ǫ.

In contrast to using deterministic codes, there exists another communication technique calledrandomized coding

which can provide improvement in performance if a common source of randomness is available between the source

and the destination.

Precisely, a randomized code(Ψ,Φ) is a random variable with values in the family of all length-n block codes

(ψ, φ), defined earlier in this section, with the same message setM. Then, the error probability for messagei,

when this code is used on a PAVC and when the state sequence is given to bes ∈ Sn, equals

er(i, s) , EΨ,Φ [e(i, s,Ψ,Φ)], (9)

and the average probability of error for a state sequences is

ēr(s) ,
1

K

K∑

i=1

er(i, s). (10)

Similar to Definition 1, we define the capacityCr,a
pavc by replacing the function̄ed(s) with ēr(s). Here, the superscript

“ r, a” denotes forrandomized codesandaverage error probability.

Yet there is another communication scheme calledcoding with stochastic encoderwhich only allows random-

ization in the transmitter,i.e., there is no shared randomness between the encoder and the decoder. More precisely,

a code with stochastic encoder(Ψ, φ) is a random variable with values in the family of all length-n block codes

(ψ, φ) with the same message setM.

The error probability for messagei, when this code is used on a PAVC and when the state sequence isgiven to

be s ∈ Sn, equals

et(i, s) , EΨ [e(i, s,Ψ, φ)], (11)

and the average probability of error for a state sequences is

ēt(s) ,
1

K

K∑

i=1

et(i, s). (12)

Similar to Definition 1, we define the capacityCt,a
pavc by replacing the function̄ed(s) with ēt(s). Here, the superscript

“ t, a” denotes forcodes with stochastic encoderandaverage error probability.

III. M AIN RESULTS

Our main goal is to characterize the capacity of the non-coherent network coding channel described in§II-B.

Toward this end, we first determine the capacity of a general PAVC.
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A. Capacity of a PAVC

Before stating the deterministic code capacity of a PAVC, weneed the following definition.

Definition 2. A PAVC is calledsymmetrizableif for some channelU : X × Q 7→ S, and for everyx, x′, and y

we have
∑

s

W (y|x; s)U (s|x′, q(s))PQ (q(s)) =
∑

s

W (y|x′; s)U (s|x, q(s))PQ (q(s)) . (13)

LetU(X×Q → S) be the set of all such channel. IfU(X×Q → S) = ∅ then the PAVC is callednon-symmetrizable.

Then, the following theorem characterizes the capacity of aPAVC for deterministiccodes and average error

criterion.

Theorem 1. For the deterministiccode capacityCd,a
pavc we haveCd,a

pavc > 0 if and only if the PAVC is non-

symmetrizable. IfCd,a
pavc > 0, then we have

Cd,a
pavc = max

PX

min
PS|q(S)

I(PX , W̄S) = min
PS|q(S)

max
PX

I(PX , W̄S), (14)

where

W̄S(y|x) , E [W (y|x;S)] =
∑

s

W (y|x; s)PS|q(S) (s|q(s))PQ (q(s)) , (15)

and I(PX , W̄S) , I(X ;Y ) such thatY is connected toX through the channel̄WS .

Proof: For the proof refer to Appendix A.

Theorem 2. For a PAVC, the capacity of codes with stochastic encoder is equal to the deterministic code capacity,

i.e., Ct,a
pavc = Cd,a

pavc.

Proof: For the proof refer to Appendix B.

Remark: Theorem 2 shows that randomization at the encoder does not improve the deterministic code capacity of

a PAVC.

The following theorem characterizes the capacity of a PAVC for randomizedcode.

Theorem 3. The randomizedcode capacity of a PAVC is given by

Cr,a
pavc = max

PX

min
PS|q(S)

I(PX , W̄S) = min
PS|q(S)

max
PX

I(PX , W̄S), (16)

whereW̄S is defined in(15).

Proof: For the proof refer to Appendix C.

Remark: Same as an AVC, the randomized code capacity of a PAVC for the maximum and the average error

probability criteria are the same.

Remark: In a more general scenario, whenq(St), t = 1, 2, . . . are not i.i.d. but still for every timet the marginal

probability P [q(St) = i] = PQ(i), the adversary who controls the channel state has more powerand hence the

capacity in this case is less than or equal to the capacity of i.i.d. case.
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B. Capacity of Non-coherent Network Coding

According to the definition of the PAVC in§II-C, the non-coherent network coding model defined by (1) isa

PAVC for which the deterministic and stochastic code capacities are equal, as stated in Theorem 1 and Theorem 2,

and can be characterized as follows.

Corollary 1. The deterministic and stochastic code capacities of the channel (1) are equal. They are non-zero and

given by

C = max
PX

min
PH| rk(H)

I(X ;Y ) = min
PH| rk(H)

max
PX

I(X ;Y ), (17)

if and only if the channel is non-symmetrizable,i.e., if there is no stochastic matrixU : X × [0 : min[M,N ]] 7→ H

such that we have
min[M,N ]

∑

r=0

∑

h: rk(h)=r

Wm(y|x;h)U(h|x′, r)PR(r) =

min[M,N ]
∑

r=0

∑

h: rk(h)=r

Wm(y|x
′;h)U(h|x, r)PR(r),

for all x ∈ F
T×M
q , x′ ∈ F

T×M
q , andy ∈ F

T×N
q .

Similarly, using Theorem 3, the randomized code capacity ofthe non-coherent network coding defined by (1) is

stated in the following corollary.

Corollary 2. The randomized code capacity of the channel defined by(1) is given by(17).

It is hard to show directly that the channel defined by (1) is non-symmetrizable. Instead, we prove this indirectly

in the next lemma by showing the existence of a (stochastic) coding scheme that gives a non-zero transmission rate

over the channel.

Lemma 1. If E [R] > 0, the channel defined by(1) is non-symmetrizable, and so by Corollary 1, its capacity is

non-zero and is given by(17). If E [R] = 0, then the capacity is zero.

Proof: The case forE [R] = 0 follows becauseH[t] is the zero matrix with probability one. To show the

non-symmetrizability of the channel defined by (1) whenE [R] > 0, we construct a deterministic coding scheme

that can achieve a strictly positive rate. The idea is to degrade the channel defined by (1) to a binary memoryless

Z-channel with a known cross-over probability.

For each time slott, let G[t] be a random matrix overF1×M
q with uniform i.i.d. components. Define a binary-

input binary-output channel as follows. LetB[t] be the input of the channel at timet, which takes the value0 or

1 in Fq. The output of the channel at the timet is Y [t] = rk (B[t]G[t]H[t]). Since the dimension of the matrix

B[t]G[t]H[t] is 1 ×N , Y [t] takes the integer value0 or 1. Let us check the transition matrix of this channel. If

B[t] = 0, thenY [t] = 0. If B[t] = 1, thenY [t] = rk (G[t]H[t]). Note thatrk (G[t]H[t]) is a random variable

whose distribution only depends on the distribution ofrk (H[t]) ∼ R (see the computation in [12, Section IV]).

Sincerk (H[t]), t = 1, 2, . . . are independent, the channel is a binary memorylessZ channel.
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What remains is to check the cross over probability of theZ channel given by

Pr{Y [t] = 0|X [t] = 1} = Pr{rk (G[t]H[t]) = 0}.

SinceE [rk (H [t])] = E [R] > 0, Pr{rk (G[t]H [t]) = 0} < 1, because otherwiseH [t] is the zero matrix with

probability one, a contradiction to the assumption thatE [R] > 0. Hence, the channel has a positive capacity.

Definition 3 ([14]). A random matrix is calledu.g.r. (uniform given rank) if any two matrices with the same rank

are equiprobable.

Lemma 2. For anyM × N random matrixH , AHB is u.g.r. with the same rank distribution as ofH , where

A ∼ Uni(FM×M
q ,M) and B ∼ Uni(FN×N

q , N) are uniform and full-rank random matrices, andA, B, and H

are independent.

Proof: Let G = AHB. Then

PG(g) =
∑

a∈F
M×M
q ,b∈F

N×N
q ,

rk(a)=M,rk(b)=N

PA(a)PB(b)PH (a−1gb−1),

wherePA(a) andPB(b) respectively do not depend ona andb. Now, for another instanceg′ of G with g′ = UgV

for some full rank matricesU and V , we can see thatPG(g) = PG(g′). In the following we show that if

rk (g) = rk (g′), then there exist full rank matricesU andV such thatg′ = UgV .

Fix two decompositionsg = bc andg′ = b′c′ with rk (b) = rk
(
b′
)
= rk (g), which impliesrk (c) = rk (c′) =

rk (g). Then there exist full rank square matricesU andV such thatUb = b′ andcV = c′. Hence,g′ = UgV .

Lemma 3. In the capacity expression(17), the u.g.r. distribution forPH| rk(H) is a minimizer for the expression.

Proof: Let P ∗
H| rk(H) be the distribution that minimizes (17). Now consider a new channel defined byAHB

whereA ∼ Uni(FM×M
q ,M) andB ∼ Uni(FN×N

q , N) are uniform full rank random matrices (note thatA, B, and

H are independent). Then by Lemma 2, the rank distribution ofAHB is the same as that ofH, but AHB has

a u.g.r. distribution.

By the data processing inequality, the mutual information between the input and output of the new channel is

less than or equal to the original channel. So ifP ∗
H| rk(H) is a minimizer, then the u.g.r. distribution with the same

rank distribution is also a minimizer.

From Corollary 1, Corollary 2, Lemma 1, and Lemma 3 we obtain the following theorem.

Theorem 4. The randomized and deterministic code capacities of the non-coherent network coding model,i.e., the

matrix channel defined by(1), are the same and are equal to the capacity of the matrix channel Y = H̄X where

H̄ has the same rank distribution asH but has uniform distribution among matrices having the samerank, i.e.,

C = max
PX

min
PH| rk(H)

I(X;Y ) = max
PX

I(X; H̄X).
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Theorem 4 shows that, if only the knowledge of the rank distribution of the transfer matrix is available, the

maximum rate that we can communicate over the channel definedby (1) is equal to the communication rate over

a channel which has the same rank distribution but the channel transfer matrix is u.g.r.

Now, it is shown in [14, Theorem 16] that for a matrix multiplicative channel with u.g.r. distribution over the

transfer matrix, the subspace coding is sufficient to achieve the capacity. So we have the following corollary.

Corollary 3. Subspace coding is sufficient to achieve the capacity (randomized and deterministic) of the non-

coherent network coding channel discussed in§II-B.

Although determining the exact value of the capacity in Theorem 4 is still open, as shown in [14], the capacity

can be expressed as the solution of a convex optimization problem with onlyO (min[M,N ]) parameters which is

computationally tractable.

CONCLUSION

In this work, we proposed an arbitrarily varying channel (AVC) approach to model the non-coherent network

coding by a matrix channel where the channel statistics is known only up to a rank distribution over the transfer

matrix.

The previous works investigate the capacity of non-coherent network coding (modeled by the matrix channel)

for certain probability distributions. In contrast, we relax the problem model by considering that only the rank

distribution of the transfer matrix is known and apart from that the transfer matrix can be changed arbitrarily from

time-slot to time-slot. We believe that this AVC approach better fits to model complex networks where relay nodes

perform randomized network coding.

In order to characterize the capacity of such a channel, we defined a new class of channels, called partially AVC

(PAVC), with a partial probabilistic constraint over the state space. By extending the previous result on AVC to

PAVC, we proved that the subspace coding is optimal to achieve the capacity of non-coherent network coding.
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APPENDIX A

PROOF OFTHEOREM 1

In this section, we prove Theorem 1. The proof goes along similar steps as it goes in [19]. However, for

completeness, we will be going to write the whole steps here.

Let us start with some definitions. Forη ≥ 0, let us define a family of joint distributionPXSY of random

variablesX , S, andY with values from the setsX , S, andY, respectively, by

Dη ,
{
PXSY : D (PXSY ||PX × PS ×W ) ≤ η wherePS(s) = PQ(q(s))× PS|q(S)(s|q(s))

}
, (18)

whereD(·||·) denotes Kullback-Leibler information divergence andPX × PQ × PS|q(S) × W denotes a joint

distribution onX × S × Y with probability mass functionPX(x)PQ(q(s))PS|q(S)(s|q(s))W (y|x; s). Note that in

the above definitions,PQ is known and fix for a particular PAVC. We also define, for any distributionP on X , the

quantity

I(P ) , min
PS|q(S):

PXSY ∈D0, PX=P

I(X ;Y ), (19)

whereD0 denotesDη for η = 0.

From [17], we define thetypeof a sequencex = (x1, . . . , xn) ∈ Xn to be the distributionPx onX wherePx(a)

is the relative frequency ofa ∈ X in x. Similarly, joint typesare distributions on product spaces. Joint types of

length-n sequences will be represented by joint distributions of dummy random variables. For example, ifX,S, Y

represents a joint type,i.e., PXSY = Px,s,y for somex ∈ Xn, s ∈ Sn, andy ∈ Yn, we write

TX , {x : x ∈ Xn, Px = PX} ,

TXY , {(x,y) : x ∈ Xn,y ∈ Yn, Px,y = PXY } ,

TXSY , {(x, s,y) : x ∈ Xn, s ∈ Sn,y ∈ Yn, Px,s,y = PXSY } . (20)

Similarly, we use notation for sections ofTXY , TXSY , etc.; for example

TY |X(x) , {y : (x,y) ∈ TXY } ,

TY |XS(x, s) , {y : (x, s,y) ∈ TXSY } . (21)

Lemma 4. If the PAVC is non-symmetrizable (see Definition 2), thenI(P ) defined by(19) is positive for everyP

satisfyingP (x) > 0 for all x ∈ X .

Proof: In fact, if I(P ) were zero for such aP , then (19) implies the existence of random variableS such that

for PXSY = PXPQPS|q(S)W , X andY are independent. Thus, we have

∑

s∈S

W (y|x; s)PS|q(S)(s|q(s))PQ(q(s)) = PY (y),

which does not depend onx. This implies the symmetrizability of the channel in a trivial manner, withU(s|x, q) =

PS|q(S)(s|q), which leads to a contradiction.
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Now, the proof of Theorem 1 proceeds as follows.

Proof of Theorem 1:First, note that by [18, Lemma 3.1] we have

max
PX

min
PS|q(S)

I(PX , W̄S) = min
PS|q(S)

max
PX

I(PX , W̄S). (22)

The converse part of this theorem follows by applying Lemma 5and Lemma 6.

By Lemma 4, non-symmetrizability implies thatI(P ) > 0 for every strictly positiveP . In order to prove that

for a non-symmetrizable PAVC,maxP I(P ) is an achievable rate, we use the continuity ofI(P ) as a function of

P and by applying Lemma 12, we conclude the achievability partof Theorem 1.

The following lemma, Lemma 5, is similar to [19, Lemma 1] and describes the converse part of the proof when

the channel is symmetrizable.

Lemma 5. For a symmetrizable PAVC, any deterministic code of block length n with K ≥ 2 codewords, each of

typeP has

E [ēd(S)] = max
PS|q(S)

∑

s∈Sn

ēd(s)PS|q(S)(s|q(s))PQn(q(s)) ≥
1

4
. (23)

Proof: Consider an arbitrary code with codeword set{x1, . . . ,xK} and decoderφ, wherexi = (xi1, . . . , xin)

for i ∈ [1 : K]. For someU ∈ U(X ×Q → S) satisfying (13) considerK random sequencesSj = (Sj1, . . . , Sjn)

whereSj ∈ Sn, with statistically independent components, where

P [Sjk = s] = U(s|xjk, q(s))PQ(q(s)). (24)

Then for each pair(i, j) and everyy = (y1, . . . , yn) ∈ Yn we can write

E [Wn(y|xi,Sj)] =

n∏

k=1

E [W (yk|xik, Sjk)]

=

n∏

k=1

∑

s∈S

W (yk|xik, s)U(s|xjk, q(s))PQ(q(s)). (25)

So, by using (13), it follows that

E [Wn(y|xi,Sj)] = E [Wn(y|xj ,Si)], (26)

and hence fori 6= j we have

E [ed(i,Sj)] + E [ed(j,Si)] =
∑

y: φ(y) 6=i

E [Wn(y|xi;Sj)] +
∑

y: φ(y) 6=j

E [Wn(y|xj ;Si)]

≥
∑

y∈Yn

E [Wn(y|xi;Sj)]

= 1. (27)
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Now, using this fact we can write

1

K

K∑

j=1

E [ēd(Sj)] =
1

K2

K∑

i=1

K∑

j=1

E [ed(i,Sj)]

≥
1

K2
·
K(K − 1)

2

=
K − 1

2K
, (28)

so it follows that for somej ∈ [1 : K] we have

E [ēd(Sj)] ≥
K − 1

2K
≥

1

4
. (29)

This leads to the desired result becauseE [ēd(S)] ≥ 1/4 for some distribution overS such that thekth element

of the random sequenceS is distributed independently according to the distribution of the formPS|q(S)PQ where

PS|q(S)(s|q) = U(s|xjk , q). So in general we havemaxPS|q(S)
E [ēd(S)] ≥ 1/4.

The following lemma, Lemma 6, is similar to [19, Lemma 2] and describes the converse part of the proof when

the rate is greater thanI(P ).

Lemma 6. For anyδ > 0 andǫ < 1, there existsn0 such that for any code of block lengthn ≥ n0 with codewords,

each of typeP , 1
n logK ≥ I(P ) + δ implies

E [ēd(S)] = max
PS|q(S)

∑

s∈Sn

ēd(s)PS|q(S)(s|q(s))PQn(q(s)) > ǫ.

Proof: Suppose thatP ∗
S|q(S) achieves the minimum in (19). So for

PXSY (x, s, y) = P (x)PQ(q(s))P
∗
S|q(S)(s|q(s))W (y|x; s) (30)

we haveI(X ;Y ) = I(P ).

Now consider any code with codewords{x1, . . . ,xK} and decoderφ, and letS = (S1, . . . , Sn) ben independent

realization ofS according to the distributionP ∗
S|q(S)PQ. Then we can write

E [ēd(S)] =
1

K

K∑

i=1

E [ed(i,S)]

=
1

K

K∑

i=1

∑

y:φ(y) 6=i

E [Wn(y|xi;S)]

=
1

K

K∑

i=1

∑

y:φ(y) 6=i

n∏

j=1

E [W (yj |xij ;Sj)]. (31)

If we introduce a new discrete memory-less channel (DMC)W̄S defined by

W̄S(y|x) = E [W (y|x;S)] =
∑

s∈S

W (y|x; s)PS|q(S)(s|q(s))PQ(q(s)),

then we haveE [ēd(S)] = ē(W̄S), whereē(W̄S) is the average probability of error when the given code is used on

the DMC W̄S .
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Now, notice that (30) means thatY is connected toX by the channelW̄S . As mentioned before, we have

I(X ;Y ) = I(P ) so by the strong converse to the coding theorem for a DMC with codewords of typeP (see [17,

Corollary 1.4, p.104]),̄e(W̄S) is arbitrary close to1 if 1
n logK ≥ I(P ) + δ andn is large enough. This completes

the proof of Lemma 6.

In order to prove the achievability part of Theorem 1, we needto define a suitable decoderφ. Here, we will use

the same decoder as introduced in [19, Definition 3].

Definition 4 ([19, Definition 3]). Given the codewords{x1, . . . ,xK}, let φ(y) = i if and only if ans ∈ Sn exists

such that

1) the joint typePxi,s,y belongs toDη;

2) for each competitorj 6= i, such thatPxj ,s′,y ∈ Dη for somes′ ∈ Sn, we haveI(XY ;X ′|S) ≤ η, where

X,X ′, S, Y denote dummy random variables such thatPXX′SY = Pxi,xj ,s,y.

If no suchi exists, we setφ(y) = 0, i.e., declare an error.

Before proceeding further, let us state the following lemmas (Lemma 7-Lemma 9) which are some basic bounds

on types (e.g., see [17, Chapter 1]).

Lemma 7. The number of possible joint types of sequences of lengthn is a polynomial inn.

Lemma 8. If TX 6= ∅, we have

(n+ 1)−|X | exp {nH(X)} ≤ |TX | ≤ exp{nH(X)},

and if TY |X(x) 6= ∅, we have

(n+ 1)−|X ||Y| exp {nH(Y |X)} ≤ |TY |X(x)| ≤ exp{nH(Y |X)}.

Lemma 9. For any channelV : X 7→ Y, we have

∑

y∈TY |X (x)

V n(y|x) ≤ exp {−nD(PXY ||PX × V )} ,

wherePX × V denotes the distribution onX × Y with pmfPX(x)V (y|x) andV n(y|x) ,
∏n

t=1 V (yt|xt).

The set of codewords{x1, . . . ,xK} used in proving the achievability result is any set with the properties stated

in Lemma 10. It is shown in [19, Appendix] that a randomly chosen codeword set have these properties with

probability arbitrarily close to1.

Lemma 10 ([19, Lemma 3]). For any ǫ > 0, n ≥ n0(ǫ), K ≥ exp(nǫ), and typeP , there exist codewords

{x1, . . . ,xK} in Xn, each of typeP , such that for everyx ∈ Xn, s ∈ Sn, and every joint typePXX′S , by setting

R = 1
n logK, we have

|{j : (x,xj , s) ∈ TXX′S}| ≤ exp
{

n
(

|R− I(X ′;XS)|
+
+ ǫ

)}

, (32)
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1

K
|{i : (xi, s) ∈ TXS}| ≤ exp(−nǫ/2), if I(X ;S) > ǫ, (33)

and

1

K
|{i : (xi,xj , s) ∈ TXX′S for somej 6= i}| ≤ exp(−nǫ/2)

if I(X ;X ′S)− |R− I(X ′;S)|+ > ǫ. (34)

In addition to Lemma 10, we need Lemma 11 (which is similar to [19, Lemma 4]), in order to establish the

inambiguity of the decoding rule given in Definition 4.

Lemma 11. If the PAVC is non-symmetrizable andβ > 0, then for a sufficiently smallη, no set of random variables

X,X ′, S, S′, Y can simultaneously satisfy

PX = PX′ = P with min
x∈X

P (x) ≥ β, (35)

PXSY ∈ Dη, PX′S′Y ∈ Dη, (36)

and

I(XY ;X ′|S) ≤ η, I(X ′Y ;X |S′) ≤ η. (37)

Proof: The proof technique is very similar to the proof of [19, Lemma4].

So assuming that the decoderφ is being used as defined in Definition 4, lemma 11 proves that this decoder is

unambiguously defined ifη is chosen sufficiently small. In fact, if for somey ∈ Yn and somei 6= j, both xi

andxj satisfied conditions (1) and (2) in Definition 4, then somes and s′ would exist, with the joint types of

(xi,xj , s, s
′,y) represented by the dummy random variablesX,X ′, S, S′, Y (i.e., (xi,xj , s, s

′,y) ∈ TXX′SS′Y )

that satisfy conditions stated in Lemma 11. This is in contradiction with Lemma 11.

The following lemma, Lemma 12, provides the error analysis for the decoder given in Definition 4.

Lemma 12. Given any non-symmetrizable PAVC and arbitraryβ > 0, δ > 0, for any block lengthn ≥ n0 and

any typeP with minx P (x) > β, there exists a code with codewords{x1, . . . ,xK}, each of typeP , such that

1

n
logK > I(P )− δ, (38)

and

max
PS|q(S)

E [ēd(S)] = max
PS|q(S)

∑

s∈Sn

ēd(s)PS|q(S)(s|q(s))PQn(q(s)) < exp(−nγ). (39)

Here,n0 and γ > 0 depend only on the given PAVC, and onβ and δ.

Proof: Let {x1, . . . ,xK} be as in Lemma 10, withR = 1/n logK satisfying

I(P )− δ < R < I(P )−
2

3
δ, (40)

and with ǫ (from Lemma 10) to be specified later. Let the decoderφ be as defined in Definition 4. Lemma 11

proves that this decoderφ is unambiguously defined ifη is chosen sufficiently small.
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To bound the decoding error, let us fixPS|q(S) and write

E [ēd(S)] =
∑

s∈Sn

ēd(s)PS|q(S)(s|q(s))PQn(q(s))

=
∑

s∈Sn

1

K

K∑

i=1

∑

y: φ(y) 6=i

Wn(y|xi; s)PS|q(S)(s|q(s))PQn(q(s))

=
∑

TŜ

∑

s∈TŜ

PS|q(S)(s|q(s))PQn(q(s))




1

K

K∑

i=1

∑

y: φ(y) 6=i

Wn(y|xi; s)





︸ ︷︷ ︸

≤1

. (41)

For η ≥ 0, let us define a family of distributionPS of random variablesS with values from the setS by

Sη ,
{
PS : D

(
PS ||PQ × PS|q(S)

)
≤ η

}
, (42)

wherePS|q(S) is arbitrary andPQ is the pmf over the channel classes of the PAVC,i.e., it is known and fixed.

Then, by [17, Lemma 2.6, p.32], we may bound summation overPS|q(S)(s|q(s))PQn(q(s)) as follows

∑

s∈TŜ

PS|q(S)(s|q(s))PQn(q(s)) ≤
∑

s∈TŜ

PQn(q(s))

= PQn(TQ̂)

≤ exp
{

−nD(PQ̂||PQ)
}

, (43)

wherePQ̂ is the distribution onq(Ŝ) which is implied byPŜ . Now by Lemma 7, we have

E [ēd(S)] ≤
∑

TŜ :
PŜ∈Sη

∑

s∈TŜ

PS|q(S)(s|q(s))PQn(q(s))




1

K

K∑

i=1

∑

y: φ(y) 6=i

Wn(y|xi; s)





︸ ︷︷ ︸

ēd(s)

+exp (−n
η

2
). (44)

The rest of the proof is similar to that of [19, Lemma 5]. By fixing s such thatPs ∈ Sη and following similar

steps stated in [19, Lemma 5], we may bound the inner term in front of summation in the above expression and

show that it is exponentially vanishing asn→ ∞. This in fact completes the proof of Lemma 12.

However, for completeness, we will state the rest of the proof as well. As we mentioned before, let us fixs such

thatPs ∈ Sη and observe that by (33) and Lemma 7 we have

1

K

∣
∣
∣
∣
∣
∣






i : (xi, s) ∈

⋃

I(X;S)>ǫ

TXS







∣
∣
∣
∣
∣
∣

≤ (number of joint types) · exp(−nǫ/2)

≤ exp(−nǫ/3), (45)

for n larger than a suitable thresholdn0, that depends onǫ.

So, in order to obtain an exponentially decreasing upper bound on ēd(s) (for thoses such thatPs ∈ Sη), it is

sufficient to consider only those codewordsxi for which (xi, s) ∈ TXS with I(X ;S) ≤ ǫ. Then, forPXSY /∈ Dη
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(see (18)), we have

D(PXSY ||PXS ×W ) = D(PXSY ||PX × PQ × PS|q(S) ×W )− I(X ;S)

> η − ǫ, (46)

and thus by Lemma 9, we can write

∑

y∈TY |XS(xi,s)

Wn(y|xi; s) ≤ exp {−D(PXSY ||PXS ×W )}

≤ exp{−n(η − ǫ)}.

Hence by Lemma 7, we have

∑

y: Pxi,s,y
/∈Dη

Wn(y|xi; s) ≤ exp {−n(η − 2ǫ)} . (47)

Next, note that ifPxi,s,y ∈ Dη and φ(y) 6= i, then condition (2) of Definition 4 must be violated. So let us

denote byEη the set of all joint distributionsPXX′SY such that (i) PXSY ∈ Dη; (ii) PX′S′Y ∈ Dη for someS′;

and (iii) I(XY ;X ′|S) > η. Then, it follows that

∑

y: Pxi,s,y
∈Dη

φ(y) 6=i

Wn(y|xi; s) ≤
∑

PXX′SY ∈Eη

eXX′SY (i, s), (48)

where

eXX′SY (i, s) ,
∑

y: (xi,xj ,s,y)∈TXX′SY

for somej 6= i

Wn(y|xi; s), (49)

and the summation (48) extends to all joint typesPXX′SY ∈ Eη (of course,eXX′SY (i, s) = 0 unlessPX′ = PX = P

andPXS = Pxi,s).

Combining (45)-(48), for thoses such thatPs ∈ Sη, we obtain that

ēd(s) ≤ exp{−nǫ/3}+ exp{−n(η − 2ǫ)}+
1

K

K∑

i=1

∑

PXX′SY ∈Eη

eXX′SY (i, s). (50)

Before finding an upper bound foreXX′SY (i, s), note that it is sufficient to do so only whenPXX′SY ∈ Eη satisfies

I(X ;X ′S) ≤ |R− I(X ′;S)|
+
+ ǫ, (51)

otherwise, by (34), we have

1

K
|{i : (xi,xj , s) ∈ TXX′S for somej 6= i}| < exp{−nǫ/2}. (52)

Since (xi,xj , s) ∈ TXX′S for somej 6= i is a necessary condition foreXX′SY (i, s) > 0 (see (49)), it follows

from Lemma 7 that the contribution to the double summation in(50) of the terms withPXX′SY ∈ Eη not satisfying

(51) is less thanexp{−nǫ/3}.

Now, from (49), we can write

eXX′SY (i, s) ≤
∑

j:(xi,xj ,s)∈TXX′S

∑

y∈TY |XX′S(xi,xj ,s)

Wn(y|xi; s). (53)
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BecauseWn(y|xi; s) is constant fory ∈ TY |XS(xi, s) and this constant is less than or equal to(|TY |XS(xi, s)|)
−1,

the inner sum in (53) is bounded above by

∣
∣TY |XX′S(xi,xj , s)

∣
∣ ·

(∣
∣TY |XS(xi, s)

∣
∣
)−1

,

which in turn, by Lemma 8, is less than or equal toexp{−n[I(Y ;X ′|XS) − ǫ]}. Now by using (32), it follows

from (53) that

eXX′SY (i, s) ≤ exp
{

−n
[

I(Y ;X ′|XS)− |R− I(X ′;XS)|
+
− 2ǫ

]}

. (54)

In order to further boundeXX′SY (i, s) when (51) holds, we distinguish between two cases: a)R ≤ I(X ′;S), and

b) R > I(X ′;S).

For the case a), from (51) we have

I(X ;X ′|S) ≤ I(X ;X ′S) ≤ ǫ,

and hence by condition (iii) in the definition ofEη, we can write

I(Y ;X ′|XS) = I(XY ;X ′|S)− I(X ;X ′|S) ≥ η − ǫ.

Since for this case we haveR ≤ I(X ′;S) ≤ I(X ′;XS), it follows from (54) that

eXX′SY (i, s) ≤ exp{−n(η − 3ǫ)}. (55)

In case b), from (51) we have

R > I(X ;X ′S) + I(X ′;S)− ǫ

= I(X ′;XS) + I(X ;S)− ǫ

≥ I(X ′;XS)− ǫ,

and hence

|R− I(X ′;XS)|
+
≤ R− I(X ′;XS) + ǫ.

Substituting this into (54) it follows that

eXX′SY (i, s) ≤ exp {−n [I(X ′;XSY )−R− 3ǫ]}

≤ exp {−n [I(X ′;Y )−R− 3ǫ]} . (56)

Note thatPXX′SY ∈ Eη implies thatPX′S′Y ∈ Dη for someS′. So by definition ofDη given in (18),PX′S′Y

is arbitrary close toPX′′S′′Y ′′ ∈ D0 defined byPX′′S′′Y ′′ = P × PQ × PS′|q(S′) ×W . Now if η is sufficiently

small, thenI(X ′;Y ) is arbitrarily close toI(X ′′;Y ′′), say,I(X ′;Y ) ≥ I(X ′′;Y ′′)− δ/3. Using the definition of

I(P ) given in (19) and the assumption (40), we can write

I(X ′;Y )−R ≥ I(X ′′;Y ′′)− δ/3−R ≥ I(P )− δ/3−R ≥ δ/3,
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if η is sufficiently small and depends only onδ. Fixing η accordingly and also small enough for the decoding rule

to be unambiguous, (56) yields for case b) that

eXX′SY (i, s) ≤ exp

{

−n

[
δ

3
− 3ǫ

]}

. (57)

Now, from (50), by using (55) and (57) and Lemma 7, we obtain that

ēd(s) ≤ exp(−nǫ/4),

if, for instance,ǫ ≤ min[η/4, δ/10] andn is sufficiently large. Because the bound holds uniformly forthoses such

thatPs ∈ Sη, then by substituting it into (44) and using Lemma 7, the proof of Lemma 12 becomes complete.

APPENDIX B

PROOF OFTHEOREM 2

Proof of Theorem 2: Because deterministic codes are special cases of codes withstochastic encoder, the

achievability part of this theorem directly follows from that of Theorem 1.

The converse part of the theorem follows from similar steps that have been used in the proof of Theorem 1,i.e.,

Lemma 5 and Lemma 6.

When the rate is greater thanI(P ), defined in (19), the converse proof follows from the converse proof of

randomized codes,i.e., Lemma 14, by choosing the random decoderΦ to be a fixed decoderφ (this does not

change any part of the proof). When the channel is symmetrizable, the converse follows from Lemma 13 and this

completes the proof.

Lemma 13. For a symmetrizable PAVC, any stochastic code of block length n with K ≥ 2 codewords, each of

typeP has

E [ēd(S)] = max
PS|q(S)

∑

s∈Sn

ēd(s)PS|q(S)(s|q(s))PQn(q(s)) ≥
1

4
. (58)

Proof: Consider an arbitrary stochastic code(Ψ, φ) which is defined over the message setM = {1, . . . ,K}.

Let the random variableΨ be defined over a set ofL encoders
{
ψ(1), . . . , ψ(L)

}
with a pmf PΨ wherePΨ(l) is

the probability of choosing thelth encoderψ(l).

For someU ∈ U(X × Q → S) satisfying (13) considerK random sequencesSj = (Sj1, . . . , Sjn) where

Sj ∈ Sn, j ∈ [1 : K], is chosen according to the following distribution

P [Sj = s] =
L∑

l=1

[
n∏

k=1

U(sk|ψ
(l)(j)k, q(sk))PQ(q(sk))

]

PΨ(l)

=

[
L∑

l=1

n∏

k=1

U(sk|ψ
(l)(j)k, q(sk))PΨ(l)

][
n∏

k′=1

PQ(q(sk′))

]

=

[
L∑

l=1

n∏

k=1

U(sk|ψ
(l)(j)k, q(sk))PΨ(l)

]

︸ ︷︷ ︸

PS|q(S)

PQn(q(s)). (59)
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Then for each pair(i, j) and everyy = (y1, . . . , yn) ∈ Yn we can write

ESj
[EΨ [Wn(y|Ψ(i);Sj)]]

= EΨ

[
∑

s∈Sn

[
n∏

k=1

W (yk|Ψ(i)k; sk)

]

P [Sj = s]

]

= EΨ

[
L∑

l=1

[
∑

s∈Sn

n∏

k=1

W (yk|Ψ(i)k; sk)U(sk|ψ
(l)(j)k, q(sk))PQ(q(sk))

]

PΨ(l)

]

=

L∑

l′=1

L∑

l=1

[
∑

s∈Sn

n∏

k=1

W (yk|ψ
(l′)(i)k; sk)U(sk|ψ

(l)(j)k, q(sk))PQ(q(sk))

]

PΨ(l)PΨ(l
′)

=

L∑

l′=1

L∑

l=1

[
n∏

k=1

∑

s∈S

W (yk|ψ
(l′)(i)k; s)U(s|ψ(l)(j)k, q(s))PQ(q(s))

]

PΨ(l)PΨ(l
′). (60)

So, by using (13), it follows that

ESj
[EΨ [Wn(y|Ψ(i);Sj)]] = ESi

[EΨ [Wn(y|Ψ(j);Si)]], (61)

and hence fori 6= j we have

ESj
[et(i,Sj)] + ESi

[et(j,Si)] =
∑

y: φ(y) 6=i

ESj
[EΨ [Wn(y|Ψ(i);Sj)]] +

∑

y: φ(y) 6=j

ESi
[EΨ [Wn(y|Ψ(j);Si)]]

≥
∑

y∈Yn

ESj
[EΨ [Wn(y|Ψ(i);Sj)]]

= 1. (62)

Now, from here on the proof is very similar to that of Lemma 5. Using the above fact we can write

1

K

K∑

j=1

ESj
[ēt(Sj)] =

1

K2

K∑

i=1

K∑

j=1

ESj
[et(i,Sj)]

≥
1

K2
·
K(K − 1)

2

=
K − 1

2K
, (63)

so it follows that for somej ∈ [1 : K] we have

ESj
[ēt(Sj)] ≥

K − 1

2K
≥

1

4
. (64)

This leads to the desired result becauseE [ēt(S)] ≥ 1/4 for some distribution overS of the formPS|q(S)PQn

wherePS|q(S) is given in (59). So in general we havemaxPS|q(S)
E [ēd(S)] ≥ 1/4 and we are done.

APPENDIX C

PROOF OFTHEOREM 3

Suppose that there arek non-negative-valued functionsl1, . . . , lk on S where for simplicity we assume that

mins∈S li(s) = 0. GivenΛ1, . . . ,Λk, we say thats ∈ Sn satisfies state constraintsΛ1, . . . ,Λk, if li(s) ≤ Λi for
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all i, where

l(s) =
1

n

n∑

t=1

l(st), s ∈ Sn.

By applying the same method of [18], the result of [18, Theorem 3.1] can be extended to multiple state constraints

as stated in the following result.

Theorem 5. Therandomizedcode capacity of the AVC(2) under state constraintΛ1, . . . ,Λk, denoted byCr
avc(Λ),

is determined in [18], and is given by

Cr
avc(Λ1, . . . ,Λk) = max

PX

min
PS :∀i E[li(S)]≤Λi

I(PX , W̄S) = min
PS :∀i E[li(S)]≤Λi

max
PX

I(PX , W̄S).

Proof of Theorem 3: The converse part, using a similar argument to [18, Lemma 3.2and Theorem 3.1],

follows from Lemma 14. In the following we prove the achievability part.

Define an AVC with the following convergent state constraints. For eachi ∈ Q, define a non-negative-valued

function li on s ∈ Sn as

li(s) ,
1

n

n∑

t=1

1q(st)=i.

For anyǫ > 0, consider the state constraints

|li(s)− PQ(i)| ≤ ǫ, ∀i ∈ Q. (65)

By Theorem 5, the capacity of the AVC under the state constraints (65) is

Cr
avc(PQ, ǫ) , max

PX

min
PS :

∀i∈Q, |P[q(S)=i]−PQ(i)|≤ǫ

I(PX , W̄S) = min
PS :

∀i∈Q, |P[q(S)=i]−PQ(i)|≤ǫ

max
PX

I(PX , W̄S),

where we useE [li(S)] = P [q(S) = i]. By the monotonicity and the continuity ofCr
avc(PQ, ǫ) as a function ofǫ,

Cr
pavc = sup

ǫ>0
Cr

avc(PQ, ǫ). (66)

Then we show that any rateR < Cr
pavc = supǫ>0C

r
avc(PQ, ǫ) is achivable for PAVC.

Pick anǫ0 such thatR < Cr
avc(PQ, ǫ0), which is possible by (66). Fix anyε > 0 and δ > 0. Chooseε′ with

0 < ε′ < ε. SinceR is achievable for the AVC with the state constraints (65), with ε′ in place of ǫ and for

sufficiently largen, there exists a random code(Ψ,Φ) of blocklengthn, rate larger thanR− δ and

ēr(s) ≤ ε′

for all state sequences satisfying (65) withε′ in place ofǫ. For a random sequenceS of PAVC, by Hoeffding’s

inequality,

P [|li(S)− PQ(i)| ≤ ǫ0, ∀i ∈ Q] ≥ 1− 2 exp(−2ǫ20n).

For random code(Ψ,Φ) with sufficiently largen such that2 exp(−2ǫ20n) < ε− ε′, we have

E [ēr(S)] ≤ E [ēr(S)| |li(S)− PQ(i)| ≤ ǫ0, ∀i ∈ Q] + P [|li(S)− PQ(i)| > ǫ0, for somei ∈ Q]

< ε′ + ε− ε′.
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Thus for sufficiently largen, there exists blocklengthn random code for PAVC with rate larger thanR − δ and

E [ēr(S)] < ε. Therefore,R is achievable for PAVC. This completes the proof of the theorem.

Lemma 14. For any δ > 0 and ǫ < 1, there existsn0 such that for any randomized code(Ψ,Φ) of block length

n ≥ n0, having 1
n logK ≥ minPS|q(S)

maxPX
I(PX , W̄S) + δ implies

E [ēr(S)] = max
PS|q(S)

∑

s∈Sn

ēr(s)PS|q(S)(s|q(s))PQn(q(s)) > ǫ.

Proof: Let us fix PS|q(S) and assume thatPX = P ∗ achieves the maximum ofI(PX , W̄S) for this choice.

Now, let S = (S1, . . . , Sn) be n independent realization ofS according to the distributionPS|q(S)PQ. Then we

can write

E [ēr(S)] =
1

K

K∑

i=1

E [er(i,S)]

=
1

K

K∑

i=1

ES [EΨ,Φ [e(i,S,Ψ,Φ)]]

=
1

K

K∑

i=1

EΨ,Φ




∑

y:Φ(y) 6=i

ES [Wn(y|Ψ(x);S)]





= EΨ,Φ




1

K

K∑

i=1

∑

y:Φ(y) 6=i

n∏

j=1

ESj
[W (yj |Ψ(x)j ;Sj)]



. (67)

All of the random variablesSj are i.i.d., so if we introduce a new discrete memory-less channel (DMC)W̄S defined

by

W̄S(y|x) = E [W (y|x;S)],

then we have

E [ēr(S)] = EΨ,Φ




1

K

K∑

i=1

∑

y:Φ(y) 6=i

n∏

j=1

W̄S(yj |Ψ(x)j)



,

= EΨ,Φ

[
ē(W̄S)(Ψ,Φ)

]
, (68)

whereē(W̄S)(ψ, φ) is the average probability of error when a code(ψ, φ) is used on the DMCW̄S . Now, by using

the strong converse to the coding theorem for the DMCW̄S , every code(ψ, φ) of rateR ≥ maxPX
I(PX , W̄S)+ δ

has an average error probabilityē(W̄S)(ψ, φ) arbitrary close to1 if n is large enough. So as a result, for everyǫ < 1

we haveE [ēr(S)] > ǫ and this completes the proof.
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