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Abstract

In this paper, we propose an “arbitrarily varying chann@®/C) approach to study the capacity of non-coherent
transmission in a network that employs randomized lineawvok coding. The network operation is modeled by a
matrix channel over a finite field where the transfer matriaraes arbitrarily from time-slot to time-slot but up to
a known distribution over its rank. By extending the AVC riésuo this setup, we characterize the capacity of such
a non-coherent transmission scheme and show that subspdice és optimal for achieving the capacity.

By imposing a probability distribution over the state spatean AVC, we obtain a channel which we called
“partially arbitrarily varying channel” (PAVC). In this wé&, we characterize the “randomized”, “stochastic” as well
as the “deterministic” code capacity of a PAVC under the agererror probability criterion. Although we introduce
the PAVC to model the non-coherent network coding, thisresiten to an AVC might be of its own interest as well.

I. INTRODUCTION

Randomized linear network coding [1] is an efficient and ficat approach to implement network coding [2],
[3] in large dynamically changing networks because it doesraquire a priori the knowledge of the network
topology. However, in order to enable the receivers to dectaleach packet a coding vectors is appended to learn
the channel while the packet passes through the networkn $ther words, use of coding vectors is akin to use
of training symbols to learn the transformation induced hyeawork.

A different approach, than using coding vectors, is to agsamon-coherent scenario for communication, as
proposed in [4], where neither the source(s) nor the redsivbave any knowledge of the network topology or the
network nodes operations. Non-coherent communicatiawallcreation of end-to-end systems that are completely
oblivious to the network state. In that work, the authorspos®e communication via choosing subspaces and they
introduce a subspace channel called “operator channeligare! which has subspaces as input and output symbols).
Then, they focused on algebraic subspace code constraaii@mr a Grassmannian for the operator channel.

Following [4], different probabilistic models have beeroposed so far to model the non-coherent randomized
linear network coding channel where these models enabl® ukefine and characterize the capacity for such a
channel. In all of these works, when there is no error in thevokk, the non-coherent linear network coding
channel is modeled by a multiplicative matrix channel.

Montanariet al. [5] introduced a probabilistic model to capture the encktal functionality of non-coherent

network coding operation, with a focus on the case of errorection capabilities. Their model does not examine
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coding schemes defined over multiple blocks, but insteddwalthe packets length to increases to infinity, with
the result that in the large packet length limit the schensemally becomes coherent.

Jafariet al. [6], [7], [8] modeled the non-coherent network coding chelrsy assuming that the transfer matrix
has i.i.d. entries selected uniformly at random in everyetistot. They showed that coding over subspace is sufficient
to achieve the capacity for all range of channel parametdrsn, they obtained the channel capacity as a solution
of a convex optimization problem ove&?(min[M, N]) variables. Moreover, when the field size is greater than a
threshold, they characterize the capacity by solving th@ropation problem.

Silva et al. [9] derived the capacity of the multiplicative finite field ma channel under the assumption that
the transfer matrix is square and chosen uniformly at randorang all full-rank matrices. Similarly, in this model
they obtained that coding over subspaces is sufficient t@aetihe capacity.

Yang et al. [12], [13] (see also [10], [11]) considered a completely gfah scenario, making no assumption on
the distribution of the transfer matrix. They obtained upged lower bounds on the channel capacity, and give a
sufficient condition on the distribution of the transfer masuch that coding over subspaces is capacity achieving.
They also studied the achievable rates of coding over sgbspa

Nobregaet al. [14] considered the case where the probability distributid the rank of the transfer matrix is
arbitrary; however all matrices with the same rank are agbigble. Then, they followed a similar approach to
[8] to write the capacity as a solution of a convex optimiaatproblem ovelO(min[M, N]) variables. They also
observed that by using subspace codes we do not loose apythigrms of rate optimality and finally they provided
some upper and lower bounds for the capacity.

In most of the previous works, only certain probability misdier the channel transfer matrix have been discussed.
However, in practice a complete probabilistic charactian of the matrix channel is difficult and the network
may not follow a given probability model. Instead of assugnancomplete probability model, we consider in this
paper that only a partial knowledge about the probabilistariel of the channel is known.

More precisely, we assume that the rank distribution of thadfer matrix is known a priori, but the distribution
of matrices among each rank is unknown and arbitrary. Thowegly similar to the arbitrarily varying channel
(AVC) model introduced in [15] (refer to [16] and the refeces therein), but this non-coherent network coding
model is not exactly an AVC. We introduce a “partially arbary varying channel” (PAVC) to capture the statistical
property of this non-coherent network coding model.

By extending results for the AVC, we obtain the capacitiestted PAVC for deterministic, stochastic, and
randomized codes (Theorem 1, Theorem 2, and Theorem 3). Weefushow that the randomized and the
deterministic code capacities of the non-coherent netwoding model are the same (Theorem 4), and that subspace
coding is sufficient to achieve the capacity (Corollary 3)isTAVC approach to the non-coherent network coding
provides a justification for the optimality of subspace oadin a more general setting.

The paper is organized as follows. §H, we describe the non-coherent network coding model atrddiice the
PAVC. In §lll, we state the main results of the paper; the capacity ofd@Pand as a corollary we will state the

capacity of the non-coherent network coding under havingstaint over the rank distribution. The proofs of the
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PAVC capacity results are stated in Appendix A, Appendix B &ppendix C.

II. PROBLEM SETUP AND NOTATION
A. Notation

Let Uni(M) denote the uniform distribution over the skt. For example, we usUni(IFg) to denote the uniform
distribution over vectors of length that are defined over finite fielf,. For m x n matrices overF,, we use
Uni(F7* <™, r) to denote the uniform distribution over x n matrices with rank:.

We use bold letters to denote vectors and matrices. For theeatence of notation, we ugée: j] to denote the

set{i,i+1,...,5—1,7} wherei, j € Z.

B. Non-coherent Network Coding Channel Model

Consider a unicast communication over a network where tlag reodes perform random linear network coding
over a finite fieldF,. Suppose that time is slotted and the channel is block tiargivg. At every time-slot, the
source injects\/ packetsX[t],..., X y[t] of lengthT symbols fromF, into the networkj.e., X;[t] € F}. The
receiver collectsV packetsY'1[¢], ..., Y n[t] and aims to decode the transmitted packets.

We use matricesX [¢t] and Y [t] to denote respectively, the transmitted and received psidle, the ith column
of these matrices represent tith transmitted and received packets, respectively. Forieashcommunication, at
time-slot (block)t, the receiver observes

Y[t = X[(H][), 0

where X[t] € F[>*M, Y[t] € FI*N, and H[t] € F})'*N. We assume that the channel transfer mafd{] is
unknown to both the transmitter and the receiver and it cearagbitrarily from one block to another block with
a constraint on its rank. More precisely, the ranksHft], ¢t = 1,2,..., are independent and follow the same
distribution of a random variabl®. The conditional distribution of [t] givenrk (H [t]) is unknown and changes
arbitrarily for differentt. However, we assume that the distribution of the randomabéir is known. We may

consider the channel transfer matrix as the channel stategiFen h[1 : n] the channel transition probability is
W (y[L: nllz[L: n)sh[L:n)) = ] Wi (y[t]|@[t); R[2])
t=1

whereW,, (y|z; h) £ l{y—zn) is @ stochastic matrix.
The above model is very similar to an arbitrarily varying shal (AVC) model (refer to [16] for more information
about AVC) but it does not completely fit into that model. Instkvork, we will show that it is indeed possible to

extend the AVC concepts and results for the above channethaodl characterize its capacity.

C. Partially Arbitrarily Varying Channel (PAVC)

Before defining a partially arbitrarily varying channel {R2), let us first consider an AVC model. Léf € X

andY € Y denote the input and output symbol of a channel wh¥rand ) are finite sets denoting the channel
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input and output alphabets, respectively. Let us considersmission scenario where the channel parameters vary
arbitrarily from symbol to symbol during the course of a sarission. More precisely, for the channel transition

matrix, we can write

W y|$ S HW yt|ItaSt) (2)
t=1

wheres = (s1,...,8,), s; € S, andW : X x § — Y is a given stochastic matriX§ is a finite set, often referred
to as the state space. This model, called a “discrete messs@rbitrarily varying channel,” will be referred to as
an AVC.

Now, we define a PAVC as an AVC with a probability constraineiothe state spac§. Define a function
q:S — Q whereQ £ {0,...,m} and define a random variab{g with alphabetQ whose distribution is known
by the encoder and the decoder. For a PAVC, we hg), t = 1,2..., are independent and follow the same

distribution of Q. In other words,
Pysy(qi; - aqn) H (3)

whereq(S) £ (q(S1),...,q(S.)). We call this model a “discrete memoryless partially agsity varying channel,”
and will refer to it as a PAVC.

In this work, we are interested in characterizing the capauii a PAVC. However, we first have to define the
capacity. As there are different notions of capacity for &fCAbased on different error criteria, the same is true
for a PAVC (for more information refer to [16]).

Suppose that the message set of a code is identified as the set{1,..., K}, so that a length block code
is given by a pair of mappingy, ¢), wherey : M — X™ is the encoder, and : )" — MU{0} is the decoder,
where the outpu® counts for an error. Let us define

e(i,s,0,0) 2 Y W(yly(i);s). @)

y: p(y)#i
Then, the error probability for messagewhen this code is used on a PAVC and when the state sequegteiis

to bes € §”, equals
6d(ivs) £ e(ivsa¢a¢)a (5)

and the average probability of error for a state sequenise

1 K
é ?;ed(i7s). (6)

Definition 1. A numberi > 0 is called an achievable rate for the given PAVC (for deteistio code and average

error probability criterion) if for everye > 0, § > 0, and sufficiently largen, there exists length- block code

(¢, ¢) with
%logK>Sﬁ—5, @)

and

max Eleq(S)] 2 max Y ea(s)Psja(s) (sla(s)) Por (a(s)) < e, ®)
Slq(S) Sla(s) s
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where Py« (q) £ T[]}, Po(g:). The maximum achievable rate is called the capacity of théGPAnd is denoted
by Cd:2_ (where superscript §” denotes for the average error probability criterion givday (6) and “d” denotes

pavc

for the determinist code).

Remark: Note that if there is no probability constraint on the stgiace in Definition 1 Ps is unknown instead
of Pgq(s)), then by replacing the maximization ovek 4(s) With Ps, we recover the average error criterion for
an AVC, namelymaxp, E [64(S)] < € is equivalent tomax; é4(s) < e.

In contrast to using deterministic codes, there existsf@ratommunication technique callemhdomized coding
which can provide improvement in performance if a commorra®@of randomness is available between the source
and the destination.

Precisely, a randomized cod@&, ®) is a random variable with values in the family of all lengthslock codes
(v, ¢), defined earlier in this section, with the same messageVéefThen, the error probability for message

when this code is used on a PAVC and when the state sequenetistg bes € S, equals
e(i,8) = By o [e(i, 5,0, @), 9)

and the average probability of error for a state sequenise

1 K
er(s) 2 = > en(i, s). (10)
i=1

Similar to Definition 1, we define the capacity;;,. by replacing the functioa,(s) with é,.(s). Here, the superscript
“r,a” denotes forrandomized codeandaverage error probability

Yet there is another communication scheme cafleding with stochastic encodevhich only allows random-
ization in the transmittei,e., there is no shared randomness between the encoder andctteedeMore precisely,
a code with stochastic encodgb, ¢) is a random variable with values in the family of all lengtthlock codes
(1, ) with the same message sét.

The error probability for message when this code is used on a PAVC and when the state sequegeiisto
bes € §", equals

et(ivs) éIE\Il [e(ivqujv(b)]’ (11)

and the average probability of error for a state sequenise
1 K
els) & 5= ;( 5). (12)

ave

Similar to Definition 1, we define the capacity;,. by replacing the function,(s) with ¢;(s). Here, the superscript

“t,a” denotes forcodes with stochastic encodand average error probability

IIl. MAIN RESULTS

Our main goal is to characterize the capacity of the non-@tienetwork coding channel describedsi-B.

Toward this end, we first determine the capacity of a geneXelCP
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A. Capacity of a PAVC

Before stating the deterministic code capacity of a PAVC,nged the following definition.

Definition 2. A PAVC is calledsymmetrizabldf for some channell : X x Q — S, and for everyz, «/, andy

we have
ZW yla; s)U (s|2’,q(s)) ZW yla's $)U (s|z, q(s)) Pg (a(s)) - (13)

Letd(XxQ — S) be the set of all such channel (X x Q — &) = ) then the PAVC is calledon-symmetrizable

Then, the following theorem characterizes the capacity &6(C for deterministiccodes and average error

criterion.

Theorem 1. For the deterministiccode capacityC%2_ we haveC%2 > 0 if and only if the PAVC is non-

pavc pavc

symmetrizable. 1©£9;2_ > 0, then we have

pavc

d,a
Crave = max puin 1 (Px,Ws) = puin meoc (Px,Ws), (14)
where
Ws(ylz) £ B [W(yla; S)] =Y Wylw; 5)Psjqs) (slals)) Po (a(s)) , (15)

and I(Px,Ws) = I(X;Y) such thatY is connected toX through the channelVs.
Proof: For the proof refer to Appendix A. [ |

Theorem 2. For a PAVC, the capacity of codes with stochastic encodeqiskto the deterministic code capacity,

Ie C’;t:taavc Cga?/c
Proof: For the proof refer to Appendix B. [ |

Remark: Theorem 2 shows that randomization at the encoder does pobwm the deterministic code capacity of
a PAVC.

The following theorem characterizes the capacity of a PAdCréndomizedcode.

Theorem 3. Therandomizedcode capacity of a PAVC is given by

Comve = max Pmin I(Px,Ws) = Pmin max I(Px,Ws), (16)
X Is|q(s) Sla(s) +X

where Wy is defined in(15).

Proof: For the proof refer to Appendix C. |
Remark: Same as an AVC, the randomized code capacity of a PAVC for taeimum and the average error
probability criteria are the same.

Remark: In a more general scenario, whe(S;), t = 1,2,... are not i.i.d. but still for every time the marginal
probability P [q(S;) = i] = Pg(i), the adversary who controls the channel state has more pameehence the

capacity in this case is less than or equal to the capacity.df case.
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B. Capacity of Non-coherent Network Coding

According to the definition of the PAVC ifll-C, the non-coherent network coding model defined by (1 is
PAVC for which the deterministic and stochastic code capecare equal, as stated in Theorem 1 and Theorem 2,

and can be characterized as follows.

Corollary 1. The deterministic and stochastic code capacities of thewebE1) are equal. They are non-zero and
given by
C=max min I(X;Y)= min maxI(X;Y), 17)

Px  Pg|(H) Py ey Px
if and only if the channel is non-symmetrizahle,, if there is no stochastic matri& : X’ x [0 : min[M, N]] — H

such that we have

min[M,N] min[M,N]
> Y. Walylzsh)U(hle' r)Pr(r) = ) Y. Walyle'sh)U(hlz,7)Pr(r),
r=0  h: rk(h)=r r=0  h: rk(h)=r

forall @ € F]*M, o/ e FI*M andy € FI <V,

Similarly, using Theorem 3, the randomized code capacitthefnon-coherent network coding defined by (1) is

stated in the following corollary.
Corollary 2. The randomized code capacity of the channel definefLpis given by(17).

It is hard to show directly that the channel defined by (1) in-spmmetrizable. Instead, we prove this indirectly
in the next lemma by showing the existence of a (stochastiding scheme that gives a non-zero transmission rate

over the channel.

Lemma 1. If E[R] > 0, the channel defined bfl) is non-symmetrizable, and so by Corollary 1, its capacity is

non-zero and is given bl7). If E[R] = 0, then the capacity is zero.

Proof: The case forE [R] = 0 follows becauseH [t] is the zero matrix with probability one. To show the
non-symmetrizability of the channel defined by (1) wHehR] > 0, we construct a deterministic coding scheme
that can achieve a strictly positive rate. The idea is to aggrthe channel defined by (1) to a binary memoryless
Z-channel with a known cross-over probability.

For each time slot, let G[t] be a random matrix oveF,** with uniform i.i.d. components. Define a binary-
input binary-output channel as follows. L&t| be the input of the channel at tinte which takes the valué or
1 in F,. The output of the channel at the timas Y'[¢] = rk (B[t|G[t|H]t]). Since the dimension of the matrix
B[t|G[t|H]|t] is 1 x N, Yt] takes the integer valu@ or 1. Let us check the transition matrix of this channel. If
B[t] = 0, thenY[t] = 0. If BJt] = 1, thenY[t] = rk (G[t]H|[t]). Note thatrk (G[t|H[t]) is a random variable
whose distribution only depends on the distributionrtk{ H[t]) ~ R (see the computation in [12, Section 1V]).

Sincerk (H[t]), t = 1,2,... are independent, the channel is a binary memoryfeshannel.
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What remains is to check the cross over probability of thehannel given by
Pr{Y[t] = 0|X[t] = 1} = Pr{rk (G[t]H|[t]) = 0}.

SinceE [rk (H[t])] = E[R] > 0, Pr{rk(G[t]H][t]) = 0} < 1, because otherwisél[t] is the zero matrix with

probability one, a contradiction to the assumption fiak] > 0. Hence, the channel has a positive capacity

Definition 3 ([14]). A random matrix is calledi.g.r. (uniform given rank) if any two matrices with the same rank

are equiprobable.

Lemma 2. For any M x N random matrixH, AH B is u.g.r. with the same rank distribution as &f, where
A ~ Uni(FyM M) and B ~ Uni(FY*N N) are uniform and full-rank random matrices, and, B, and H

are independent.
Proof: Let G = AHB. Then

Pa(g) = Z Pa(a)Pg(b)Pu(a 'gb™ "),
acFY M perl N,
rk(a)=M,rk(b)=N

whereP4 (a) and Pg(b) respectively do not depend @anandb. Now, for another instancg’ of G with g’ = UgV
for some full rank matriced/ and V', we can see thaPg(g) = Pg(g’). In the following we show that if
rk (g) =tk (g’), then there exist full rank matricdg and V' such thatg’ = UgV'.
Fix two decompositiong = bc andg’ = b'c’ with rk (b) = rk (b') = rk (g), which impliesrk (¢) = rk (¢/) =
rk (g). Then there exist full rank square matridgsand V' such thatUb = b’ andcV = ¢'. Hence,g' = UgV'.
|

Lemma 3. In the capacity expressiofi7), the u.g.r. distribution forPg | i (z) is @ minimizer for the expression.

Proof: Let Pry g be the distribution that minimizes (17). Now consider a néarmel defined byAH B
where A ~ Uni(F}>*M M) and B ~ Uni(F)"*", N) are uniform full rank random matrices (note th4t B, and
H are independent). Then by Lemma 2, the rank distributiodd@f B is the same as that dif, but AH B has
a u.g.r. distribution.
By the data processing inequality, the mutual informatietween the input and output of the new channel is
less than or equal to the original channel. S‘Pﬁ\rk(H) is a minimizer, then the u.g.r. distribution with the same
rank distribution is also a minimizer. [ |

From Corollary 1, Corollary 2, Lemma 1, and Lemma 3 we obtam following theorem.

Theorem 4. The randomized and deterministic code capacities of theaotrerent network coding modelke., the
matrix channel defined bfl), are the same and are equal to the capacity of the matrix chlain= H X where

H has the same rank distribution & but has uniform distribution among matrices having the saam, i.e.,

C =max min I(X;Y) :H})aXI(X;HX).
X

Px Pyg|(H)
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Theorem 4 shows that, if only the knowledge of the rank distion of the transfer matrix is available, the
maximum rate that we can communicate over the channel defipéd) is equal to the communication rate over
a channel which has the same rank distribution but the chararesfer matrix is u.g.r.

Now, it is shown in [14, Theorem 16] that for a matrix multgdiive channel with u.g.r. distribution over the

transfer matrix, the subspace coding is sufficient to aehtbe capacity. So we have the following corollary.

Corollary 3. Subspace coding is sufficient to achieve the capacity (nawizkd and deterministic) of the non-

coherent network coding channel discussedliFB.

Although determining the exact value of the capacity in Teeo4 is still open, as shown in [14], the capacity
can be expressed as the solution of a convex optimizatioolgmrowith only O (min[M, N]) parameters which is

computationally tractable.

CONCLUSION

In this work, we proposed an arbitrarily varying channel @\Vapproach to model the non-coherent network
coding by a matrix channel where the channel statistics @vknonly up to a rank distribution over the transfer
matrix.

The previous works investigate the capacity of non-cohtemetwork coding (modeled by the matrix channel)
for certain probability distributions. In contrast, we aelthe problem model by considering that only the rank
distribution of the transfer matrix is known and apart frdmattthe transfer matrix can be changed arbitrarily from
time-slot to time-slot. We believe that this AVC approachidefits to model complex networks where relay nodes
perform randomized network coding.

In order to characterize the capacity of such a channel, inatka new class of channels, called partially AVC
(PAVC), with a partial probabilistic constraint over thetst space. By extending the previous result on AVC to

PAVC, we proved that the subspace coding is optimal to aehileg capacity of non-coherent network coding.
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APPENDIXA

PROOF OFTHEOREM 1

In this section, we prove Theorem 1. The proof goes alonglainsteps as it goes in [19]. However, for
completeness, we will be going to write the whole steps here.
Let us start with some definitions. For > 0, let us define a family of joint distributiorPx ¢y of random

variablesX, S, andY with values from the set&’, S, and)), respectively, by
‘@77 £ {PXSY D (PXSYHPX X Pg x W) <n WherePg(s) = PQ(q(S)) X PSM(S)(SM(S))} , (18)

where D(:||-) denotes Kullback-Leibler information divergence afgt x Pg x Pgjqs) x W denotes a joint
distribution onX” x § x ) with probability mass functiorPx () P (q(s))Ps|q(s)(sla(s))W (y|z; s). Note that in
the above definitionsl, is known and fix for a particular PAVC. We also define, for anstdution P on X', the
guantity
I(P) £ min I(X;Y), (19)
Prsyeo pep

where 7, denotes?,, for n = 0.

From [17], we define théypeof a sequence = (z1,...,z,) € X™ to be the distributiorP,, on X whereP,.(a)
is the relative frequency af € X in x. Similarly, joint typesare distributions on product spaces. Joint types of
length+ sequences will be represented by joint distributions of thymandom variables. For example Xf, S, Y

represents a joint typé.e., Pxgy = Py s,y fOr somex € X, s € S, andy € V", we write
Tx2{x: z€ X", P, = Px},
Txy 2 {(z,y): € X",y € V", Ppy= Pxv},
Txsy ={(z,8,y): £ € X", s€S",y€ V", Ppsy=Pxsy}. (20)
Similarly, we use notation for sections ofyy, Txsy, etc.; for example
Tyix(®) £{y: (z,y) € Txv},
Tyixs(x,s) £ {y: (w,s,y) € Txsv}. (21)

Lemma 4. If the PAVC is non-symmetrizable (see Definition 2), theR) defined by(19) is positive for everyP
satisfyingP(z) > 0 for all z € X.

Proof: In fact, if I(P) were zero for such &, then (19) implies the existence of random variaBlsuch that
for Pxsy = PxPqPs|qs)W, X andY are independent. Thus, we have

> Wyla; s)Psjqs) (slals)) Po(a(s)) = Py (y),
seS

which does not depend an This implies the symmetrizability of the channel in a avinanner, withlU (s|z, ¢) =

Ps)q(s)(s]g), which leads to a contradiction. [ |

February 23, 2012 DRAFT



Now, the proof of Theorem 1 proceeds as follows.

Proof of Theorem 1:First, note that by [18, Lemma 3.1] we have

max min [(Px,Ws) = min maxI(Px,Ws).
Px Psjq(s) Psiq(sy Px

The converse part of this theorem follows by applying Lemnman8 Lemma 6.

11

(22)

By Lemma 4, non-symmetrizability implies th&{P) > 0 for every strictly positiveP. In order to prove that

for a non-symmetrizable PAVGnaxp I(P) is an achievable rate, we use the continuity/6P) as a function of

P and by applying Lemma 12, we conclude the achievability pafheorem 1.

The following lemma, Lemma 5, is similar to [19, Lemma 1] arebcribes the converse part of the proof when

the channel is symmetrizable.

Lemma 5. For a symmetrizable PAVC, any deterministic code of bloogtlen with K > 2 codewords, each of

type P has
_ 1
Efeq(S)] = I;a();) Z edq(s PS|q(S)( slq(s)) Py (q(s)) > 1 (23)
9 sesn
Proof: Consider an arbitrary code with codeword $et, ...,z } and decodep, wherex; = (z;1, ..., 2mn)
fori e [1: K]. For somelU € U(X x Q — S) satisfying (13) consideK random sequenceS; = (Sj1,...,Sjn)
whereS; € S”, with statistically independent components, where
P[Sjr = s] = U(slz;k, a(s)) Po(a(s))- (24)
Then for each paifi, j) and everyy = (y1,...,y,) € Y™ we can write
E[W"(ylai, ;)] = [ E W (yxlzix, Sjn)]
k=1
= 11 D_ Wz, )U(s|zjn, a(s)) Pala(s)). (25)
k=1seS
So, by using (13), it follows that
E[W"™(ylz:, S;)] = E[W"(y|z;, Si)], (26)
and hence foi # j we have
Eleq(i,S;)] +Elea(i, Si)l = > EW"(ylzsS)l+ > E[W (ylz;;S)]
y: p(y)#i y: ¢(y)#j
> Y E[W(ylzi; S)]
eyn
=1 (27)
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Now, using this fact we can write

1 K 1 K K
e > Eleu(S;))] = 2 > Eleali, 8;)]
j=1 i=1 j=1
1 K(K-1)
K2 2
K-1
ST (28)
so it follows that for somg € [1 : K] we have
K-1_1
e . > >
Elea(S) 2 55— 2 1 (29)

This leads to the desired result becalisg,(S)] > 1/4 for some distribution ovelS such that thekith element

of the random sequenc® is distributed independently according to the distributaf the form Pg, sy P where

Ps|q(s)(slg) = U(s|zjk, q). So in general we haveaxpg, o E[€a(S)] > 1/4. [ |
The following lemma, Lemma 6, is similar to [19, Lemma 2] arebcribes the converse part of the proof when

the rate is greater thah( P).

Lemma 6. For anyd > 0 ande < 1, there exist3, such that for any code of block length> n, with codewords,

each of typeP, X log K > I(P) + 6 implies

Eleq(S)] = Isl‘la:;) Z ea(s)Ps|q(s)(sla(s))Pqn(q(s)) > e.
1) sesn
Proof: Suppose thaP’ S‘q achieves the minimum in (19). So for
Pxsy (x,s,y) = P(x)Pq(a(s)) Psjqs) (sla(s)) W (ylz; s) (30)

we havel (X;Y) = I(P).
Now consider any code with codewor{is,, ...,z x } and decodep, and letS = (S, ..., S,) ben independent

realization ofS according to the distributio®’, ) Fo. Then we can write

s
= EZE[ed(z S)]

K
Z S EW"(ylzi; S)

i=1 y:¢(y)#i

K

Z Z HE (jlwiz; S5)]- (31)
=1 y:p(y)#i =1

If we introduce a new discrete memory-less channel (DNVIG) defined by

Ws(ylz) = E[W (ylz; S)] = Y W yla: 5) Psjqcs) (sla(s) Pola(s)).

seES
then we havek [e,(S)] = €, whereeyy,) is the average probability of error when the given code il uze

the DMC Ws.
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Now, notice that (30) means thaf is connected taX by the channelVs. As mentioned before, we have
I(X;Y) = I(P) so by the strong converse to the coding theorem for a DMC wottewords of typeP (see [17,
Corollary 1.4, p.104])¢yy) is arbitrary close ta if %logK > I(P) + 6 andn is large enough. This completes
the proof of Lemma 6. |

In order to prove the achievability part of Theorem 1, we ntedefine a suitable decoder Here, we will use

the same decoder as introduced in [19, Definition 3].

Definition 4 ([19, Definition 3]) Given the codewordéx, ...,z x}, let ¢(y) = ¢ if and only if ans € S™ exists
such that
1) the joint typeF,, s, belongs toZ,;
2) for each competitorj # i, such thatP,, », € 2, for somes’ € S", we havel(XY; X'|S) < 7, where
X, X', S,Y denote dummy random variables such thatx: sy = Pz, «;,s,y-

If no suchi exists, we sep(y) = 0, i.e,, declare an error.

Before proceeding further, let us state the following lerarlaemma 7-Lemma 9) which are some basic bounds

on types €.g, see [17, Chapter 1]).
Lemma 7. The number of possible joint types of sequences of lemgsha polynomial inn.

Lemma 8. If Tx # (), we have
(n+1)"*exp {nH(X)} < [Tx| < exp{nH(X)},
and if Ty x(x) # 0, we have
(n+ 1) exp {nH(Y|X)} < [Ty x(@)] < exp{nH (Y|X)}.
Lemma 9. For any channel/ : X — ), we have

Z V™ (ylx) < exp{—nD(Pxy||Px x V)},
YETy x ()

where Px x V' denotes the distribution oA’ x Y with pmf Px (z)V (y|z) and V" (y|z) £ TT7, V (ye|ze).

The set of codewordéxy, ...,z } used in proving the achievability result is any set with theperties stated
in Lemma 10. It is shown in [19, Appendix] that a randomly almssodeword set have these properties with

probability arbitrarily close tal.

Lemma 10 ([19, Lemma 3]) For any ¢ > 0, n > ng(e), K > exp(ne), and typeP, there exist codewords
{x1,...,xx} In X", each of typeP, such that for everg € X™, s € §", and every joint typePx x5, by setting

R = 1log K, we have

i+ (z,2;,8) € Txxs}| < exp {n (|R — (x5 X9 + e) } : (32)
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1 @) € Tes) Sexp(-ne/2), i I(X8) > ¢, (33)
and
% {i: (xi,zj,s) € Txx/s for somej # i}| < exp(—ne/2)
if I(X;X'S)—|R—-I(X;9)|T >e (34)

In addition to Lemma 10, we need Lemma 11 (which is similar 18, [Lemma 4]), in order to establish the

inambiguity of the decoding rule given in Definition 4.

Lemma 11. If the PAVC is non-symmetrizable agd> 0, then for a sufficiently smal}, no set of random variables

X, X', 58,58, Y can simultaneously satisfy

Px =Px, =P with gél/% P(x) > B, (35)
Pxsy € 9y, Pxisiyv € Dy, (36)
and
I(XY; X'[S) <, I(X'Y; X[5") <. (37)
Proof: The proof technique is very similar to the proof of [19, Lem#ja |

So assuming that the decodgiis being used as defined in Definition 4, lemma 11 proves thatdécoder is
unambiguously defined ify is chosen sufficiently small. In fact, if for somg € Y™ and somei # j, both x;
and z; satisfied conditions (1) and (2) in Definition 4, then somand s’ would exist, with the joint types of
(z;,xj,s,s,y) represented by the dummy random variablesX’. S, 5", Y (i.e, (z;,zj, 8,8, y) € Txx/ssv )
that satisfy conditions stated in Lemma 11. This is in caditi@on with Lemma 11.

The following lemma, Lemma 12, provides the error analysistiie decoder given in Definition 4.

Lemma 12. Given any non-symmetrizable PAVC and arbitraty> 0, § > 0, for any block lengthn > ny and

any typeP with min, P(x) > 3, there exists a code with codeworfis,, ...,z }, each of typeP, such that

%bgK > [(P) — 9, (38)
and
Pgaf)E[éd(S)] = gnax > () Psqcs) (sla(s)) Py (a(s)) < exp(—n). (39)
ats 51969 gegn

Here,ny and~ > 0 depend only on the given PAVC, and grand .
Proof: Let {x;,...,xx} be as in Lemma 10, wittR = 1/nlog K satisfying
I(P)—6<R<I(P)—§§, (40)

and with e (from Lemma 10) to be specified later. Let the decoddve as defined in Definition 4. Lemma 11

proves that this decoder is unambiguously defined if is chosen sufficiently small.
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To bound the decoding error, let us fBg|4(s) and write

Elea(S)] = Y _ €a(s)Psqs)(sla(s))Pon(a(s))

seSn
=D % Z 3 Wyl s) Psjacs)(sla(s)) Pon (als))
sES" i=1y: ¢(y)#i

K
—ZZPSIq(S) sla(s))Pon(a(s)) (%Z > W"(ylwi;S))- (41)

To scTe i=1y: o(y)#i

<1

Forn > 0, let us define a family of distributio®’s of random variables with values from the sef by

Iy = {Ps: D (Ps||Pq x Psjq(s)) <1}, (42)
where Pg|(s) is arbitrary andP;, is the pmf over the channel classes of the PAVE, it is known and fixed.
Then, by [17, Lemma 2.6, p.32], we may bound summation &¥ggs)(s|q(s))Pg-(q(s)) as follows

ZPS\q(S) sla(s))Por ( ZP"

s€Tg s€Tg
=Pon(Tg)
< exp {~nD(Py|Po)} (43)

wherePQ is the distribution orq(S) which is implied by P;. Now by Lemma 7, we have

Elea($) < > D Psjacs)(sla(s)Po-(a(s) ( Z Z W (ylxi; s )—i—exp( 727). (44)

Tg: SET i=1y: ¢(y)#
PSEEyT,

€q (S)

The rest of the proof is similar to that of [19, Lemma 5]. By fiigis such thatP, € ., and following similar
steps stated in [19, Lemma 5], we may bound the inner termant fof summation in the above expression and
show that it is exponentially vanishing as— oo. This in fact completes the proof of Lemma 12.

However, for completeness, we will state the rest of the pasowvell. As we mentioned before, let us fixsuch

that P, € ., and observe that by (33) and Lemma 7 we have
® {z (wi, 8) € U TXS} < (number of joint typep: exp(—ne/2)
I(

< exp(—ne/3), (45)

for n larger than a suitable threshold, that depends on.
So, in order to obtain an exponentially decreasing uppenti@ne,(s) (for thoses such thatPs € .#}), it is

sufficient to consider only those codewotdsfor which (x;, s) € Txgs with I(X;S) <e. Then, forPxsy ¢ 2,
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(see (18)), we have
D(Pxsy||Pxs x W) = D(Pxsy||Px x Pg x Pgjq(s) x W) = I(X;S5)
>N =€, (46)
and thus by Lemma 9, we can write

> W'ylmis) < exp{—D(Pxsy||Pxs x W)}

YTy | x5(%i,9)
<exp{—n(n—e}.
Hence by Lemma 7, we have
> W(ylwiss) < exp{-n(n—26)}. (47)
Y: Pmi,S,y¢-@77
Next, note that ifP,, s, € %, and¢(y) # i, then condition (2) of Definition 4 must be violated. So let us
denote byé, the set of all joint distribution®x xgy such thati) Pxgsy € %,; (ii) Px's'v € %, for somes’;

and (i) I(XY; X'|S) > n. Then, it follows that

S Wrhyless) < Y exxosv(is), (48)
Y: P, sy€Dy Pxxrsy €6y
d(y)#i
where
exxrsy(i,8) = > W"(ylz:; s), (49)

y: (i,2,8,Y)€ETx x5y
for somej # i

and the summation (48) extends to all joint tygésx sy € &, (of courseex x sy (i, s) = 0 unlessPx, = Px = P
andPXS = Pmi,s)-
Combining (45)-(48), for those such thatP, < .7, we obtain that

K
€q(s) < exp{—ne/3} + exp{—n(n—2¢)} + % Z Z exxsy (i, s). (50)

i=1 Py xr5y €&y

Before finding an upper bound fer x sy (7, s), note that it is sufficient to do so only whetx x5y € &, satisfies
I(X:X'S) < |R—I(X"; )" +¢, (51)
otherwise, by (34), we have
1
7 [{i: (xi,zj,8) € Txxg for somej # i}| < exp{—ne/2}. (52)
Since (z;,zj,s) € Txx's for somej # ¢ is a necessary condition fetx x sy (i,s) > 0 (see (49)), it follows
from Lemma 7 that the contribution to the double summatio(bD) of the terms withPx x5y € &, not satisfying
(51) is less tharxp{—ne/3}.
Now, from (49), we can write

exx'sy(i,s) < Z Z W (ylzs; s). (53)

Ji(mi,e;,8) €T x x5 YETy xx/ 5(®i,x;,8)
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BecausdV" (y|z;; s) is constant fory € Ty |y s (e, s) and this constant is less than or equal[®y| v s (i, s)|) ",

the inner sum in (53) is bounded above by

Ty xxs(®i,z;,8)] - (‘TYIXS(‘BZ"S)D_I’

which in turn, by Lemma 8, is less than or equaletp{—n[I(Y; X'|XS) — €]}. Now by using (32), it follows
from (53) that
exxrsy (i, 8) < exp {—n [I(Y; X'|X8) —|R—I(X"; X9 - 26} } . (54)

In order to further boundx x-sy (¢, s) when (51) holds, we distinguish between two casesz &) I(X’;S), and
b) R > I(X’;S).

For the case a), from (51) we have
I(X;X'|S) < I(X;X'S) <,
and hence by conditioriii) in the definition ofé;,, we can write
I(V; X'|XS)=I(XY;X'|S) - I(X;X'|S) >n—e.
Since for this case we have < I(X’; S) < I(X’; X.5), it follows from (54) that
exxsy (i, s) < exp{-n(n— 3e)}. (55)
In case b), from (51) we have
R>I(X;X'S)+I(X";S)—¢
=I(X";XS)+1(X;S) -«
> I(X'; XS) — e,

and hence
IR—I(X';XS)|" <R—I(X';XS) +e

Substituting this into (54) it follows that
exxsy(i,8) <exp{—n[[(X';XSY)— R — 3¢|}
<exp{-n[I(X";Y)— R — 3¢}. (56)

Note thatPx x sy € &, implies thatPx sy € 2, for somesS’. So by definition ofZ, given in (18),Px /sy
is arbitrary close toPx. sy € Py defined byPx. gy = P x Pg x Psiqsy x W. Now if 7 is sufficiently
small, then/(X’;Y) is arbitrarily close tol (X";Y"), say,I(X";Y) > I(X";Y") — §/3. Using the definition of

I(P) given in (19) and the assumption (40), we can write

I(X,;Y)=R>I(X";Y")=6§/3—R>I(P)-6/3—R>6/3,
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if n is sufficiently small and depends only énFixing n accordingly and also small enough for the decoding rule

to be unambiguous, (56) yields for case b) that

3
Now, from (50), by using (55) and (57) and Lemma 7, we obtaat th

exxrsy(i,5) < exp {—n [5 - 36} } | (57)

eq(s) < exp(—ne/4),

if, for instance,e < min[n/4, §/10] andn is sufficiently large. Because the bound holds uniformlytfases such

that P, € ., then by substituting it into (44) and using Lemma 7, the pafd_emma 12 becomes completa

APPENDIXB

PROOF OFTHEOREM 2

Proof of Theorem 2: Because deterministic codes are special cases of codesstoithastic encoder, the
achievability part of this theorem directly follows fromathof Theorem 1.
The converse part of the theorem follows from similar stéyad have been used in the proof of Theoremé,
Lemma 5 and Lemma 6.
When the rate is greater thal{P), defined in (19), the converse proof follows from the coneepsoof of
randomized coded,e,, Lemma 14, by choosing the random decodeto be a fixed decodey (this does not
change any part of the proof). When the channel is symmétdzéhe converse follows from Lemma 13 and this

completes the proof. [ |

Lemma 13. For a symmetrizable PAVC, any stochastic code of block kengtvith K > 2 codewords, each of

type P has
1
Elea(S)] = Ana > @i(s)Psjq(s)(sla(s)) Pon (als)) = T (58)
a SES"
Proof: Consider an arbitrary stochastic code, ¢) which is defined over the message ddt= {1,..., K}.

Let the random variablé be defined over a set df encoders{™), ... ¢} with a pmf Py where Py (1) is
the probability of choosing théth encoden)(®.
For someU € U(X x Q — S) satisfying (13) consides’ random sequenceS; = (Sj1,...,S;,) where

S; €S8", je[l: K], is chosen according to the following distribution

[T UCsule®()rs alsi)) Polalse))

k=1

Py (1)

=1

L n n
{znmww> H%wm]
=1 k=1 k'=1
L n
[z T 080 G a1 Po0)| P (a5 59
=1 k=1

Ps|q(s)
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Then for each paiti, j) and everyy = (y1,...,y,) € Y™ we can write

Es; [Ew [W"(y|¥(i); S;)]]

> [H Wy | (4)k; sk)

]P)[SJ = 8]1

Py (1)

L n
[ LT W (@ s 50U (s () a(sr)) P (a ()
=1 Lses™

k=
L L n
=> > [ TT w7 (el () s 50U (35[0 ()i a(sx)) Py (a(s)) | P (1) P (1)
r=11=1 Lses k=1
L L n
=> > lHZW yrl ) (s 9)U (s (ks a(5) Po(a() | Pu(D)Pu(l'). (60)
I'=11=1 Lk=1s€eS
So, by using (13), it follows that
Es, [Ee [W"(y|¥(i); S;)]] = Es, [Ev [W" (y|¥(5); Si)ll; (61)

and hence foi # j we have

Es, [e:(i, ;)] + Bs, [e:(5, )] = > Es, [Be [W"(y|¥(); )]+ Y, Es, [Ee [W"(y|¥(); S]]
y: d(y)#i y: $(y)#j

> Y Es, [Eg [W"(y[(i); S;)]]

,yeyn

— 1. (62)

Now, from here on the proof is very similar to that of Lemma Sing| the above fact we can write

1 K 1 K K
7 2 Es, [e(8)] = 75 > D Es, [es(i. S))]
j=1

i=1 j=1

MR SS)

- K? 2

K-1
T 5
so it follows that for somg € [1 : K] we have
K-1_1
[e:(S;)] > > -
Es, [@(S)] 2 57— = 7 (64)

This leads to the desired result becalise;(S)] > 1/4 for some distribution oveS of the form Pgq(s) Pg-

where Pgq(s) is given in (59). So in general we haveaxpg, o E[€4(S)] > 1/4 and we are done. [ ]

APPENDIXC

PROOF OFTHEOREM 3

Suppose that there are non-negative-valued functions, ..., l; on & where for simplicity we assume that

minges l;(s) = 0. Given Ay, ..., A, we say thats € S™ satisfies state constraints, ..., Ay, if 1;(s) < A; for
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all 7, where

1 n
(s) =~ ;l(st), s€S".
By applying the same method of [18], the result of [18, TheoR1] can be extended to multiple state constraints

as stated in the following result.

Theorem 5. Therandomizectode capacity of the AVQ2) under state constrainty, ..., Ay, denoted byC?,  (A),

is determined in [18], and is given by

CocA1, . Ag) = I(Px,Ws) = max I (Px, Ws).

"B bt B (912, " Pawvi BLLS)|<A Px
Proof of Theorem 3: The converse part, using a similar argument to [18, LemmaaB® Theorem 3.1],
follows from Lemma 14. In the following we prove the achieNiap part.
Define an AVC with the following convergent state constrairor eachi € Q, define a non-negative-valued

function/; ons € 8™ as

1 n
Li(s) &~ > Lyga=i-
t=1
For anye > 0, consider the state constraints
[li(s) — Po(i)| <e,¥ie Q. (65)
By Theorem 5, the capacity of the AVC under the state comggdb5) is

C!(Pg,€) & max min I(Px,Wg) = min max [ (Px, Ws),
Px Ps: Ps: P,
vieQ, |Pla(S)=i]—Pq(i)|<e VieQ, |Plq(S)=i]—Pq(i)|<e

where we usé& [I;(S)] = P[q(S) = i]. By the monotonicity and the continuity @f}

avc

(Pg, €) as a function of,
Crr)avc = §l>ll(:J) C::vc(PQ’ 6)' (66)

Then we show that any ra8 < C7,,. = sup,. C}

avc

(Pg, €) is achivable for PAVC.
Pick aney such thath < Cf,.(Pg, €), which is possible by (66). Fix any > 0 and¢é > 0. Chooses’ with

avc

0 < ¢’ < e. SincefR is achievable for the AVC with the state constraints (65)thwd’ in place ofe¢ and for

sufficiently largen, there exists a random cod@&, ®) of blocklengthn, rate larger tham? — 6 and
er(s) <&

for all state sequences satisfying (65) within place ofe. For a random sequencg of PAVC, by Hoeffding’s
inequality,
P[|l;(S) — Po(i)| < €0, Vi € Q] > 1 — 2exp(—2¢2n).

For random codéW¥, ®) with sufficiently largen such that2 exp(—2e2n) < e — &/, we have
Ee. (S)] <El[e . (S)| [l;(S) — Po(i)] < e€o,Vi € Q] +P[|l:(S) — Pg(i)| > €o, for somei € Q]
<e'4+e—¢€.
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Thus for sufficiently largen, there exists blocklength random code for PAVC with rate larger th& — § and

E[e.(S)] < e. ThereforefR is achievable for PAVC. This completes the proof of the teewor [ |

Lemma 14. For anyé > 0 ande < 1, there existsy, such that for any randomized cod&, ®) of block length

n > ng, having%logK > minpy, 5 Maxpy I(Px,Ws) + § implies

Ele.(S)] = nax ZeT 8)Psq(s)(8la(s))Po-(q(s)) > e

Psiacs) jogn

Proof: Let us fix Pg|q(s) and assume thaPyx = P* achieves the maximum af( Py, W) for this choice.

Now, let S = (S5y,...,S,) ben independent realization o according to the distributiois sy FPg. Then we

can write

E[e,(S)] = %ZE e (i, S)]

1 K
=% ZES By, [e(i, S, ¥, )]

y:P(y)#i

K
_%ZE@@{ 3 ES[Wn(yN’(m);S)]}
_E@{ Z 3 HES (] ¥ () 5 Sm} (67)

i=1 y:®(y)#i j=1
All of the random variable$; are i.i.d., so if we introduce a new discrete memory-lessinkb(DMC) W defined
by

then we have

=Ev.0 (74 (¥, ®)], (68)

wheree yy.) (¢, ¢) is the average probability of error when a cade ¢) is used on the DMGVs. Now, by using
the strong converse to the coding theorem for the DNIG, every cod€(+, ) of rate R > maxp, I(Px,Ws)+§

has an average error probabilityy, (v, ¢) arbitrary close td if n is large enough. So as a result, for every 1

we haveE [¢,(S)] > e and this completes the proof. [ |
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