Repository logo

Infoscience

  • English
  • French
Log In
Logo EPFL, École polytechnique fédérale de Lausanne

Infoscience

  • English
  • French
Log In
  1. Home
  2. Academic and Research Output
  3. Conferences, Workshops, Symposiums, and Seminars
  4. Data Races vs. Data Race Bugs: Telling the Difference with Portend
 
conference paper

Data Races vs. Data Race Bugs: Telling the Difference with Portend

Kasikci, Baris Can Cengiz  
•
Zamfir, Cristian  
•
Candea, George  
2012
Asplos Xvii: Seventeenth International Conference On Architectural Support For Programming Languages And Operating Systems
International Conference on Architectural Support for Programming Languages and Operating Systems

Even though most data races are harmless, the harmful ones are at the heart of some of the worst concurrency bugs. Alas, spotting just the harmful data races in programs is like finding a needle in a haystack: 76%-90% of the true data races reported by state-of-the- art race detectors turn out to be harmless [45]. We present Portend, a tool that not only detects races but also automatically classifies them based on their potential con- sequences: Could they lead to crashes or hangs? Could their effects be visible outside the program? Are they harmless? Our proposed technique achieves high accuracy by efficiently analyzing multiple paths and multiple thread schedules in combination, and by performing symbolic comparison between program outputs. We ran Portend on 7 real-world applications: it detected 93 true data races and correctly classified 92 of them, with no human effort. 6 of them are harmful races. Portend’s classification accuracy is up to 88% higher than that of existing tools, and it produces easy- to-understand evidence of the consequences of harmful races, thus both proving their harmfulness and making debugging easier. We envision Portend being used for testing and debugging, as well as for automatically triaging bug reports.

  • Files
  • Details
  • Metrics
Loading...
Thumbnail Image
Name

asplos2012-kasikci.pdf

Access type

openaccess

Size

598.32 KB

Format

Adobe PDF

Checksum (MD5)

0f836df2649fd9745e0b71875c463d7e

Logo EPFL, École polytechnique fédérale de Lausanne
  • Contact
  • infoscience@epfl.ch

  • Follow us on Facebook
  • Follow us on Instagram
  • Follow us on LinkedIn
  • Follow us on X
  • Follow us on Youtube
AccessibilityLegal noticePrivacy policyCookie settingsEnd User AgreementGet helpFeedback

Infoscience is a service managed and provided by the Library and IT Services of EPFL. © EPFL, tous droits réservés