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Abstract
We study the sparsity of spectro-temporal representation of
speech in reverberant acoustic conditions. This study motivates
the use of structured sparsity models for efficient speech recov-
ery. We formulate the underdetermined convolutive speech sep-
aration in spectro-temporal domain as the sparse signal recovery
where we leverage model-based recovery algorithms. To tackle
the ambiguity of the real acoustics, we exploit the Image Model
of the enclosures to estimate the room impulse response func-
tion through a structured sparsity constraint optimization. The
experiments conducted on real data recordings demonstrate the
effectiveness of the proposed approach for multi-party speech
applications.
Index Terms: speech sparsity, structured sparsity models, un-
derdetermined convolutive speech separation, Image Model

1. INTRODUCTION
Hands-free speech communication using microphone arrays has
been an active research area, playing a key role in many appli-
cations involving distant-speech recognition, scene analysis and
videoconferencing. Despite the vast efforts devoted to the issues
arise in real-world conditions, development of systems to oper-
ate in acoustic clutter of unknown competing sound sources yet
remains a demanding challenge.

Previous approaches to speech separation can be loosely
grouped into three categories. The first category relies on spa-
tial filtering techniques based on beamforming to capture a spe-
cific target by steering the beam pattern of a microphone array
[1]. The second category incorporates the statistical character-
istics of the sources to identify the mixing model. The sources
are usually recovered from the mixtures by least square opti-
mization or matrix pseudo-inversion [2]. The third category
is based on sparse representation of the signal, also known as
sparse component analysis (SCA) [3]. These techniques basi-
cally exploit a prior assumption that the sources have a sparse
representation in a known basis or frame. The assumption of
sparsity opens a new road to address the degenerate unmixing
problem when the number of sensors is less than the number of
speakers, also known as under-determined source separation.

In [4], we show that sparse component analysis is in fact
a highly potential approach to deal with overlapping problem
in speech recognition. We observe compelling evidence that
sparse recovery formulations could preserve the salient infor-
mation to recognize speech with conventional speech recogni-
tion systems. In this paper, we investigate the theoretical guar-
antees of sparse recovery algorithms for spectrographic repre-
sentation of speech. Our analysis motivates the use of structured
sparsity models in sparse component analysis of speech signal.
We then propose a framework of joint localization-separation
of convolutive speech mixtures where we leverage model-based

sparse recovery algorithms. To tackle the ambiguity of the real
acoustics, the room impulse response has been modeled exploit-
ing the structured sparsity obtained by the Image Model of the
enclosures. We incorporated this model in a structured sparsity
constrained formulation of the cross-relation optimization [5]
to estimate the impulse response of the room for a particular
source position as well as the corresponding reflection ratios of
the large surfaces. This model enables us to identify the room
impulse response for all locations in the room and we subsume
it into our formulation for separation of the desired speech us-
ing model-based sparse recovery.

The rest of the paper is organized as follows: Sparsity
of spectro-temporal representation of speech is investigated in
Section 2. We adopt our formulation of the convolutive source
separation presented in [4] and propose a structured sparse
acoustic modeling approach to tackle the ambiguity of the real
acoustics in Section 3. The experimental results are covered in
Section 4. Conclusions are drawn in Section 5.

2. Analysis of Speech Sparsity
A signal Z ∈ RG is N -sparse if only N � G entries of Z are
nonzero. We call the set of indices corresponding to the non-
zero entries as the support of Z. Many natural and manmade
signals are not strictly sparse, but they can be closely approxi-
mated as such if the absolute value of their support when sorted
decay according to the power law [6]

|ZI(i)| ≤ Pi−1/r, i = 1, ..., N, and r < 1, (1)

where I indexes the sorted coefficients in magnitude. Defining
the ZK as the best K-term approximation of Z, which is ob-
tained by keeping just the first K terms in ZI(i), the K-sparse
approximation error when measured in the `p norm would have
a power law decay exponent ρ as K increases:

‖Z − ZK‖p ≤ (rρ)−1/p PK−ρ, (2)

with ρ = 1
r
− 1

p
.

Relying on the key characteristic of sparse representation,
the G-dimensional data can be stably recovered from M =
O(N log(G/N)) dimensionality reducing while information
preserving measurements through efficient optimization algo-
rithms which search for the sparsest solution [4, 6]. The sparse
signal recovery algorithms offer provable guarantees for the re-
covery error of the signals characterized in (1) as

‖Z − ẐK‖2 ≤ C1‖Z − ZK‖2 + C2
1√
K

‖Z − ZK‖1; (3)

with the constants C1 and C2 depending on the sparse recovery
algorithm.

To investigate the sparsity of spectro-temporal represen-
tation of speech signal, 25 speech utterances are taken from



TIMIT database and analyzed by short Time Fourier Transform
(STFT) with different window sizes. Table 1 summarizes the
percentage of the coefficients required for 10 dB reconstruc-
tion of the spectro-temporal components where C1 = 0 and
C2 = 2 are the theoretical lower-bounds. In addition to the
clean speech, we have studied the reverberant speech in two
acoustic conditions with moderate reverberation and high rever-
beration with the corresponding 200 ms and 500 ms reverber-
ation time. The concept of room Reverberation Time basically
defines the time required for the multi-path energy to decay 60
dB from the direct path; hence denoted by RT60.

As the results indicate, the sparsity is preserved in reverber-
ant speech. The maximum sparsity is obtained for 64 ms anal-
ysis window for clean as well as moderately reverberant speech
while in highly reverberant conditions, larger windows seem to
give sparser coefficients. We have already seen in [4] that with
less than 30% of the time-frequency coefficients, it is possible to
perform word recognition with more than 90% accuracy. This
observation verified the hypothesis that the information bear-
ing components for Automatic Speech Recognition (ASR) are
sparse; hence could be applied in the framework of SCA for
multi-party ASR. The discrepancy between speech sparsity in
terms of speech reconstruction and recognition, motivates ASR-
specific sparse representation. These results further motivate
exploiting the underlying structure of the sparse coefficients to
reduce the number of required measurements and improve the
recovery performance from very few observations [6, 7].

Table 1: Percentage of coefficients required for 10 dB recon-
struction of speech spectro-temporal representation

STFT Window (ms) 32 64 128 256
Clean 32.79 31.72 32.63 34.79

RT60 = 200ms 31.92 30.34 30.46 32.09
RT60 = 500ms 38 36.38 35.6 35.57

3. Multi-party Speech Recovery
3.1. Problem Statement

We consider an approximate model of the real environment as a
linear convolutive mixing process, stated concisely as:

xj(n) =

N∑
i=1

hji(n) ∗ si(n), j = 1, ...,M ; (4)

where si refers to the source signal i passing through the room
acoustic channel and recorded at sensor j (xj). The notation ∗
stands for convolution. The number of sources is N and the
number of microphones is M . The room impulse response
from source i to sensor j is approximated by the filter hji.
This formulation is stated in time domain. To represent it in
a sparse domain, we consider the spectro-temporal representa-
tion of speech signals.

Our objective is to separate the N sources from M convo-
lutive mixtures while M < N . Neither the number of sources
nor the source signals are assumed known so the scenario is
blind. We cast the underdetermined source separation problem
in spectro-temporal domain as a sparse signal recovery where
we exploit the underlying structure of the sparse coefficients to
obtain more efficient signal reconstruction. The structured spar-
sity models are discussed in Sections 3.2 and 3.3.

3.2. Structured Sparse Speech Representation

We consider a scenario in which N speakers are distributed in
a planar area discretized into G grids. We assume to have a

sufficiently dense grid so that each speaker is located at one of
the grid points and N � G. We then define a G-dimensional
vector with components of the signal coming from each grid.
We now entangle the spatial representation of the sources with
the spectral representation of the speech signal and define a vec-
tor Z whose support is the time-frequency contribution of each
source signal located at grid g. Suppose that the number of
analysis coefficients is F , each element of zg is an F × 1 vec-
tor which carries the spectral coefficients coming from grid g.
Hence, the spatio-spectral representation is a vector with F ×G
components obtained as Z = [Z1...ZG]

T .
Note that due to the spatial sparsity, there is a block-

structure underlying the sparse coefficients which could be ex-
ploited in sparse recovery algorithms to improve the efficiency
of the sparse recovery by limiting the degrees of freedom of the
sparse signal within a block configuration [6, 7].

3.3. Structured Sparse Acoustic Modeling

We consider the room acoustics as a rectangular enclosure
consisting of finite-impedance walls. Taking into account the
physics of the signal propagation and multi-path effects mod-
eled by the Image Method [8], the Room Impulse Response
(RIR) is the time domain Green’s function with the particular
form of

h(n, µ, ν) =

R∑
r=1

ιr

‖µ− νr‖κ
δ

(
n− ‖µ− νr‖

c

)
, (5)

where ι corresponds to the reflection ratio of the walls when the
signal is reflected r times. In practice, ι has a different value for
each wall, but for the sake of brevity we keep it constant here.
The νr refers to the source distances to the microphone: ν0 cor-
responds to the direct-path, and ν1,...,R refer to the multi-path
effect due to the contributing images within a radius given by
the speed of sound (c) times the reverberation time. The atten-
uation constant κ depends on the nature of the propagation and
is considered in our model equal to 1 which corresponds to the
spherical propagation. Note that this model implies the sparsity
of the high energy components of the acoustic channel. Given
the geometry of the reflection surfaces, the support of the sparse
coefficients is known.

Our objective is to estimate the RIR function for all grid
locations. We assume that the geometry of the room is known.
Hence, given the impulse response for a particular point, we can
estimate the reflection coefficients of our model stated in (5) by
least squares fitting. We use the cross relation technique pre-
sented in [5] for the blind estimation of the impulse response.
Assuming that there is only one source active, the recorded sig-
nal at a pair of microphones can be expressed as:

xi(n) = hi(n) ∗ s(n), xj(n) = hj(n) ∗ s(n). (6)

It is straightforward to see that

xi(t) ∗ hj(t) = xj(t) ∗ hi(t); (7)

considering an L-tap acoustic filter, for n = L, ..., T, where T
is the length of the recorded signal, (7) becomes:

[χi(L)− χj(L)]

[
hj

hi

]
= 0, (8)

where h := [h(L), ..., h(0)]T and

χ(L) =


x(L) x(L+ 1) . . . x(2L)

x(L+ 1) x(L+ 2) . . . x(2L+ 1)
...

...
. . .

...
x(N − L) x(N − L+ 1) . . . x(N)

 .

(9)



This equation forms the basic idea for blind channel identi-
fication by least square optimization [5]. We propose a structure
sparsity constraint to capture the main reflections characterized
by the Image Model. The structured sparsity is theoretically
motivated due to the fact that the multi-path signal energy is
a function of the reflective areas. Hence, for the general envi-
ronment of the meeting rooms, many objects are acoustically
transparent [9]. In addition to the theoretical evidence, we em-
pirically verified the effectiveness of the structure sparsity con-
straint for identification of the real acoustic impulse responses
from noisy reverberant data generated by the impulse responses
available at AIR database [10].

Given the room geometry and the source location, the sup-
port of the highest energy components of the RIR is deter-
mined by the Image Model and denoted by Ωd which refers
to the direct path component calculated precisely as α and
Ωr which refers to the support of the reflections. We define
Π := [χi(L)−χj(L)] and H := [hjhi]

T . The structure sparse
acoustic filter will be obtained through the following optimiza-
tion

Ĥ = argmin ‖H‖1
s.t. ‖ΠH‖2 ≤ ε, H(Ωd) = α, H(Ωr) > 0

(10)

The estimated RIR is then used for estimating the reflection
ratios by minimizing the mean squared error between the esti-
mated RIR and all possible filters that our Image Model could
generate. Hence, the RIR function is identified for all grid posi-
tions.

3.4. Model-based Sparse Signal Recovery

Given the source-sensor transfer function characterized in (5)
and estimated through (10), we define Ξνi→µj , a diagonal ma-
trix consisting of the Fourier coefficients of the RIR function
between sensor position νi and source position µj . Follow-
ing from the convolution-multiplication property of the Fourier
transform, the observation mixture recorded at sensor i can be
expressed as Xi = φiZ where

φi = [Ξν1→µi ...Ξνg→µi ...ΞνG→µi ], (11)

and φi is the ith sensor’s measurement matrix. We express the
signal ensemble as a single vector X = [XT

1 ...XT
M ]T , where

each Xm is an F × 1 vector consisting of the spectral coef-
ficients of the signal at microphone m. Similarly, we concate-
nate each sensor measurement into a single measurement matrix
Φ = [φ1...φM ]T . The sparse vector Z generates the signal en-
semble as X = ΦZ.

We use a model-based sparse recovery approach proposed
in [7] to recover Z. To incorporate the underlying structure
of the sparse coefficients, a model approximation is performed
along with a gradient calculation at each iteration. Since the
sparse coefficients in our model live in at most N blocks, an N -
block-sparse signal is approximated by reweighting and thresh-
olding the energy of the blocks [7]. The recovered signal Z
contains the contribution of each speaker to the actual sensor
observations in the block corresponding to the speaker position.
We refer to our method as Blind Source Separation via Model-
based Sparse Recovery (BSS-MSR).

4. Experiments
4.1. Overlapping Speech Database

The experiments are performed in the framework of Multichan-
nel Overlapping Numbers Corpus (MONC) [11]. This database
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Figure 1: Room Impulse Response (RIR) estimation from noisy mea-
surements

is acquired by playback of utterances from the original Numbers
corpus. The recordings were made in a 8.2m × 3.6m × 2.4m
rectangular room containing a centrally located 4.8m × 1.2m
rectangular table. The positioning of loudspeakers was de-
signed to simulate the presence of 3 competing speakers seated
around a circular meeting room table of diameter 1.2m. The
loudspeakers were placed at 90◦ spacings at an elevation of
35cm (distance from table surface to center of main speaker el-
ement). An eight-element, 20cm diameter, circular microphone
array placed in the center of the table recorded the mixtures.
The speech signals are recorded at 8 kHz sampling frequency.

4.2. Room Acoustic Modeling

We used the CVX software package [12] for optimization for-
mulated in (10) while sigma is chosen 0.1. The data was pro-
vided by concatenating 20 single speaker speech utterances.

The super-resolution source localization is performed based
on the energy recovered from each grid location with our sparse
recovery algorithm while the forward model consists in the di-
rect path [4]. The support of the sparse coefficients was de-
termined considering a 6 sided model of an enclosure with a
known geometry. We assumed that the reflections of the carpet
floor are trapped under the table; hence, the meeting table was
considered as the floor in our Image Model. The room rever-
beration time is measured about 100 ms from the energy decay
curve of the estimated RIR and the reflection coefficients are
estimated as 0.1 for the walls as well as the ceiling and 0.6 for
the meeting table. Our estimation matches the empirical Sabin-
Franklin’s formula [13]:

RT60 =
24 ln(10)V

c
∑6

i=1 Si(1− ι2i )
, (12)

where V denotes the volume of the room, and ιi and Si de-
note the reflection coefficient and the surface of the ith wall,
respectively. Though our method is blind, we verified the es-
timated impulse response and the corresponding reflection co-
efficients through adaptive filtering technique using the origi-
nal clean speech provided at MONC from the original Numbers
corpus. Figure 1 shows the effectiveness of the room impulse
response estimation with the structured sparsity constraints and
the alternative least squared optimization from noisy data.



4.3. Speech Separation Performance

In [4], we provide speech recognition results of the separated
speech using model-based sparse recovery algorithm. The study
presented here provides a complementary insight to analyze
the effectiveness of our proposed BSS-MSR approach with real
data recordings while the structured sparsity models are incor-
porated to tackle the ambiguity of the room acoustics. We evalu-
ate the quality of the recovered speech using Weighted Spectral
Slope (WSS) distortion measure as well as Perceptual Evalua-
tion of Speech Quality (PESQ) [14]. These objective measures
are motivated due to the highest correlation (above 84%) with
word recognition rate in low to moderately reverberant condi-
tions [14].

Alternative to the sparse component analysis, the geomet-
ric source separation can be performed by beamforming. We
used the multi-source Steered Response Power (SRP) approach
presented in [15] for speaker bearing estimation for far-field
beamforming while super-resolution speaker localization based
on model-based sparse recovery (MSR) enables us to perform
near-field beamforming. The super-directive (SD) as well as
delay-and-sum (DS) beamformers are used for separation of the
desired speech signal from the competing sources. As another
alternative, we have compared our method with the convolutive-
BSS (C-BSS) approach proposed in [2] which has been shown
to be effective for speech recognition in multi-party scenarios.
The speech separation performances are summarized in Table
2. The spectro-temporal representation is obtained by window-
ing the signal in 128ms frames using Hann function with 50%
overlapping.

Table 2: Quality evaluation of the separated speech using DS and SD
beamformers while the speaker is localized either by SRP or MSR, vs.
C-BSS vs. BSS-MSR; B. and L. stand for the baseline and the lapel
microphone respectively.

N M. B. L. SRP-
DS

SRP-
SD

MSR-
DS

MSR-
SD

C-
BSS

BSS-
MSR

2 WSS 66.1 50.1 56 47.2 55.8 45.3 49.3 44
PESQ 1.8 2.3 2.3 2.6 2.3 2.6 2.5 2.6

3 WSS 76.3 53.3 64.5 55.2 64.2 52.3 55.1 52
PESQ 1.6 2.2 2.1 2.4 2.1 2.4 2.3 2.4

As the results indicate, the proposed method based on
model-based sparse recovery yields the least distortion in terms
of WSS and the highest perceptual quality. We have set up a
demo page for BSS-MSR subjective evaluations [4]. The best
performance of BSS-MSR is obtained through a two-step proce-
dure: (1) speaker localization and (2) separation by projection.
The number of speakers is determined by the algorithm by en-
ergy thresholding of the estimated sources. Furthermore, incor-
porating the MSR super-resolution localization framework into
the spatial filtering improves the performance of the beamform-
ers and they outperforms the convolutive BSS approach relying
on speech characteristics. There is more to investigate on the
effect of reverberation suppression of spatial filtering and the
reverberation cancellation obtained by BSS-MSR.

5. Conclusions
We presented rigorous analysis of speech sparsity in spectro-
temporal domain. Our observation motivates exploiting struc-
tured sparsity models for efficient speech recovery. Relying on
this evidence, we propose a framework for speech separation
from under-determined convolutive mixtures exploiting struc-
tured sparsity models for acoustic modeling as well as signal

recovery. The results on real data recording verify the effec-
tiveness of our proposed scheme for practical hands-free multi-
party applications. We also observe that there is a discrepancy
between speech sparsity in terms of speech recognition and re-
construction which motivates ASR-specific sparse representa-
tion to be integrated in sparse component analysis techniques to
achieve robustness in multi-party scenarios.
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